Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities
Abstract
1. Introduction
2. Material and Methods
3. Basic Principles of Molecular Endoscopy
- -
- Confocal Laser Endomicroscopy (CLE): Provides high-resolution, in vivo histopathological imaging by integrating laser scanning microscopy into an endoscope [5].
- -
- Fluorescence Molecular Endoscopy (FME): Uses targeted fluorescent probes to enhance the contrast between normal and diseased tissue, facilitating the identification of dysplastic or neoplastic changes [2].
- -
- Near-Infrared Fluorescence (NIRF) Imaging: Employs near-infrared probes to achieve deeper tissue penetration and improved signal-to-background ratio [2].
4. Clinical Applications
4.1. Esophageal Cancer
4.1.1. Barrett’s Esophagus and Esophageal Adenocarcinoma
Fluorescence Molecular Endoscopy as a Novel Approach
VEGF-A and the Potential of Topical Fluorescent Probes
The Need for a Multi-Target Imaging Strategy
HSP70: A Potential Biomarker for Monitoring Tumor Progression
Limitations of c-MET as a Molecular Target in BE Surveillance
4.1.2. Esophageal Squamous Cell Carcinoma
Detecting Precursors Using Fluorescence Molecular Endoscopy
GLUT1 Targeted Imaging with 2D-800CW for Early Detection of ESCC
DPP-IV Activatable Fluorescence Probes for the Detection of ESCC
4.2. Colorectal Cancer
4.2.1. Near-Infrared Imaging and Advancements in NIR-II Technology
Reference | Probe | Target | Aim of the Study | Mean TBR | Main Outcomes |
---|---|---|---|---|---|
Nagengast et al. [24] | Bevacizumab-800CW | VEGF-A | Detection of dysplasia in EB | 4.30 (topical application) | Overall detection enhancement of 25% compared to WLE and NBI. |
Chen et al. [25] | QRHKPRE-Cy5 KSPNPRF-IRDye800 | EGFR ErbB2 | Detection of dysplasia in EB | 1.61 ± 0.21 and 1.68 ± 0.24 resp. | A total of 92% of HGD and EAC lesions could be visualized. |
Burggraaf et al. [44] | GE-137 | C-Met | Detection of colorectal adenomas | 2.3 ± 1.1 (Iv application) | A total of 38 adenomas were detected with WLE, along with an additional 9 lesions that were not visible with WLE. |
Hartmans et al. [45] | Bevacizumab-800CW | VEGF-A | Detection of colorectal adenomas | 1.84 (25 mg dose Iv application) | Increased target concentrations in dysplastic areas (4.81–6.86 nmol/mL) compared to normal mucosa (3.73–3.82 nmol). |
Tjalma et al. [46] | Bevacizumab-800CW | VEGF-A | Restaging locally advanced rectal cancer after nCRT | -- | Restaging with FME yielded a positive predictive value of 95% and an accuracy of 92% (90% and 80% using WLE). |
Bojarski et al. [47] | Adalimumab-FITC | mTNFα | Evaluating the probability of therapeutic responses in IBD | -- | The high mTNF+ cell count was associated with higher short-term response rates (92%) after anti-TNF therapy. |
Atreya et al. [48] | Vedolizumab–FITC | α4β7 | Evaluating the probability of therapeutic responses in IBD | -- | Pre-therapy FME detected pericytic α4β7+ cells in the mucosa of patients with a sustained clinical and endoscopic responses to subsequent therapy. |
Rath et al. [49] | Vedolizumab- 800CW | α4β7 | Visualizing the distribution of IV vedo-800CW and identifying its target cells | Approximately 2:1 (153.7 au in inflamed mucosa vs. 77.7 au in non-inflamed mucosa) | Dose-dependent fluorescent signal in inflamed mucosa. Target saturation. Preferential binding to plasma cells. |
4.2.2. Molecular Biomarkers for Fluorescence-Guided Endoscopy
4.2.3. Challenges of Antibody-Based Probes
4.2.4. Protease-Activatable Probes: A Novel Approach
4.2.5. Molecular Imaging for Treatment Guidance
4.2.6. Fluorescence Molecular Imaging of Sessile Serrated Adenomas (SSAs)
4.3. Inflammatory Bowel Diseases
4.3.1. Challenges in Dysplasia Detection and the Role of Molecular Endoscopy
4.3.2. Biomarkers and Fluorescence Probes for IBD Diagnosis
4.3.3. Early Detection of Colitis-Associated Neoplasia
4.3.4. Molecular Endoscopy for Therapy Monitoring and Stratification
4.3.5. Risk Stratification and Personalized Disease Management
4.3.6. Combining Molecular Endoscopy with Biomarker Analysis
4.3.7. Advances in Imaging of Activated Macrophages
4.3.8. Challenges in Clinical Implementation
5. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.; Anandasabapathy, S.; Richards-Kortum, R. Advances in optical gastrointestinal endoscopy: A technical review. Mol. Oncol. 2021, 15, 2580–2599. [Google Scholar] [CrossRef] [PubMed]
- Stibbe, J.A.; Hoogland, P.; Achterberg, F.B.; Holman, D.R.; Sojwal, R.S.; Burggraaf, J.; Vahrmeijer, A.L.; Nagengast, W.B.; Rogalla, S. Highlighting the Undetectable—Fluorescence Molecular Imaging in Gastrointestinal Endoscopy. Mol. Imaging Biol. 2023, 25, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Rath, T.; Neurath, M.F. Molecular Imaging. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Tenditnaya, A.; Gabriëls, R.Y.; Hooghiemstra, W.T.R.; Klemm, U.; Nagengast, W.B.; Ntziachristos, V.; Gorpas, D. Performance Assessment and Quality Control of Fluorescence Molecular Endoscopy with a Multi-Parametric Rigid Standard. IEEE Trans. Med. Imaging 2024, 43, 3710–3718. [Google Scholar] [CrossRef] [PubMed]
- Ham, N.S.; Myung, S.-J. Endoscopic molecular imaging in inflammatory bowel disease. Intest. Res. 2021, 19, 33–44. [Google Scholar] [CrossRef]
- Gabriëls, R. Detection and Molecular Analysis of Inflammation and Malignancies in the Gastrointestinal Tract: Shining A New Light on Gastrointestinal Diseases; University of Groningen: Groningen, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Waldner, M.J.; Neurath, M.F. Molecular Endoscopy for the Diagnosis and Therapeutic Monitoring of Colorectal Cancer. Front. Oncol. 2022, 12, 835256. [Google Scholar] [CrossRef]
- Van Der Sommen, F.; Curvers, W.L.; Nagengast, W.B. Novel Developments in Endoscopic Mucosal Imaging. Gastroenterology 2018, 154, 1876–1886. [Google Scholar] [CrossRef]
- Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128. [Google Scholar] [CrossRef]
- Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.; Amelink, A. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle. J. Biomed. Opt. 2013, 18, 107005. [Google Scholar] [CrossRef]
- Visrodia, K.; Singh, S.; Krishnamoorthi, R.; Ahlquist, D.A.; Wang, K.K.; Iyer, P.G.; Katzka, D.A. Magnitude of Missed Esophageal Adenocarcinoma After Barrett’s Esophagus Diagnosis: A Systematic Review and Meta-analysis. Gastroenterology 2016, 150, 599–607.e7. [Google Scholar] [CrossRef]
- Uno, K.; Koike, T.; Hatta, W.; Saito, M.; Tanabe, M.; Masamune, A. Development of Advanced Imaging and Molecular Imaging for Barrett’s Neoplasia. Diagnostics 2022, 12, 2437. [Google Scholar] [CrossRef]
- Rubenstein, J.H.; Sawas, T.; Wani, S.; Eluri, S.; Singh, S.; Chandar, A.K.; Perumpail, R.B.; Inadomi, J.M.; Thrift, A.P.; Piscoya, A.; et al. AGA Clinical Practice Guideline on Endoscopic Eradication Therapy of Barrett’s Esophagus and Related Neoplasia. Gastroenterology 2024, 166, 1020–1055. [Google Scholar] [CrossRef] [PubMed]
- Mandarino, F.V.; Barchi, A.; Leone, L.; Fanti, L.; Azzolini, F.; Viale, E.; Esposito, D.; Salmeri, N.; Puccetti, F.; Barbieri, L.; et al. Endoscopic vacuum therapy versus self-expandable metal stent for treatment of anastomotic leaks < 30 mm following oncologic Ivor-Lewis esophagectomy: A matched case–control study. Surg. Endosc. 2023, 37, 7039–7050. [Google Scholar] [CrossRef] [PubMed]
- Mandarino, F.V.; Barchi, A.; Fanti, L.; D’Amico, F.; Azzolini, F.; Esposito, D.; Biamonte, P.; Lauri, G.; Danese, S. Endoscopic vacuum therapy for post-esophagectomy anastomotic dehiscence as rescue treatment: A single center case series. Esophagus 2022, 19, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, G.; Fanti, L.; Fanizza, J.; Barà, R.; Barchi, A.; Fasulo, E.; Elmore, U.; Rosati, R.; Annese, V.; Laterza, L.; et al. VAC-Stent in the Treatment of Post-Esophagectomy Anastomotic Leaks: A New “Kid on the Block” Who Marries the Best of Old Techniques—A Review. J. Clin. Med. 2024, 13, 3805. [Google Scholar] [CrossRef]
- Jubashi, A.; Kotani, D.; Kojima, T.; Takebe, N.; Shitara, K. Current landscape of targeted therapy in esophageal squamous cell carcinoma. Curr. Probl. Cancer 2024, 53, 101152. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [Google Scholar] [CrossRef]
- Barchi, A.; Dell’Anna, G.; Massimino, L.; Mandarino, F.V.; Vespa, E.; Viale, E.; Passaretti, S.; Annese, V.; Malesci, A.; Danese, S.; et al. Unraveling the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma: The “omics” era. Front. Oncol. 2025, 14, 1458138. [Google Scholar] [CrossRef]
- Lee, J.H.; Wang, T.D. Molecular endoscopy for targeted imaging in the digestive tract. Lancet Gastroenterol. Hepatol. 2016, 1, 147–155. [Google Scholar] [CrossRef]
- Neves, A.A.; Di Pietro, M.; O’Donovan, M.; Waterhouse, D.J.; Bohndiek, S.E.; Brindle, K.M.; Fitzgerald, R.C. Detection of early neoplasia in Barrett’s esophagus using lectin-based near-infrared imaging: An ex vivo study on human tissue. Endoscopy 2018, 50, 618–625. [Google Scholar] [CrossRef]
- Marcazzan, S.; Braz Carvalho, M.J.; Konrad, M.; Strangmann, J.; Tenditnaya, A.; Baumeister, T.; Schmid, R.M.; Wester, H.-J.; Ntziachristos, V.; Gorpas, D.; et al. CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett’s esophagus. EJNMMI Res. 2022, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- van Heijst, L.E.; Zhao, X.; Gabriëls, R.Y.; Nagengast, W.B. Today’s Mistakes and Tomorrow’s Wisdom in Endoscopic Imaging of Barrett’s Esophagus. Visc. Med. 2022, 38, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Nagengast, W.B.; Hartmans, E.; Garcia-Allende, P.B.; Peters, F.T.M.; Linssen, M.D.; Koch, M.; Koller, M.; Tjalma, J.J.J.; Karrenbeld, A.; Jorritsma-Smit, A.; et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 2019, 68, 7–10. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Chang, T.S.; Joshi, B.; Zhou, J.; Rubenstein, J.H.; Wamsteker, E.J.; Kwon, R.S.; Appelman, H.; Beer, D.G.; et al. Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut 2021, 70, 1010–1013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, T.-S.; Chen, J.; Kwon, R.S.; Jiang, Y.; Seibel, E.J.; Turgeon, D.K.; Wang, T.D. Targeted detection of Barrett’s neoplasia: A case report. Glob. Transl. Med. 2024, 3, 2223. [Google Scholar] [CrossRef]
- Fang, H.-Y.; Stangl, S.; Marcazzan, S.; Carvalho, M.J.B.; Baumeister, T.; Anand, A.; Strangmann, J.; Huspenina, J.S.; Wang, T.C.; Schmid, R.M.; et al. Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett’s esophagus. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2049–2063. [Google Scholar] [CrossRef]
- de Jongh, S.J.; Voskuil, F.J.; Schmidt, I.; Karrenbeld, A.; Kats-Ugurlu, G.; Meersma, G.J.; Westerhof, J.; Witjes, M.J.H.; van Dam, G.M.; Robinson, D.J.; et al. C-Met targeted fluorescence molecular endoscopy in Barrett’s esophagus patients and identification of outcome parameters for phase-I studies. Theranostics 2020, 10, 5357–5367. [Google Scholar] [CrossRef]
- Liang, M.; Wang, L.; Xiao, Y.; Yang, M.; Mei, C.; Zhang, Y.; Shan, H.; Li, D. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2787–2801. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Rieder, J.; Tan, K.V.; Tenditnaya, A.; Vojnovic, B.; Gorpas, D.; Quante, M.; Vallis, K.A. Targeting c-MET for Endoscopic Detection of Dysplastic Lesions within Barrett’s Esophagus Using EMI-137 Fluorescence Imaging. Clin. Cancer Res. 2025, 31, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Onoyama, H.; Kamiya, M.; Kuriki, Y.; Komatsu, T.; Abe, H.; Tsuji, Y.; Yagi, K.; Yamagata, Y.; Aikou, S.; Nishida, M.; et al. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci. Rep. 2016, 6, 26399. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Q.; Koller, M.; Linssen, M.D.; Hooghiemstra, W.T.R.; de Jongh, S.J.; van Vugt, M.A.T.M.; Fehrmann, R.S.N.; Li, E.; Nagengast, W.B. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int. J. Mol. Sci. 2021, 22, 9270. [Google Scholar] [CrossRef] [PubMed]
- Codipilly, D.C.; Qin, Y.; Dawsey, S.M.; Kisiel, J.; Topazian, M.; Ahlquist, D.; Iyer, P.G. Screening for esophageal squamous cell carcinoma: Recent advances. Gastrointest. Endosc. 2018, 88, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Analysis Working Group: Asan University; BC Cancer Agency; Brigham and Women’s Hospital; Broad Institute; Brown University; Case Western Reserve University; Dana-Farber Cancer Institute; Duke University; Greater Poland Cancer Centre; et al. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Hao, J.-J.; Lin, D.-C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.-Y.; Chang, C.; Jiang, Y.; Lu, C.-C.; Shi, Z.-Z.; Xu, X.; et al. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet. 2016, 48, 1500–1507. [Google Scholar] [CrossRef]
- Qi, J.-H.; Huang, S.-L.; Jin, S.-Z. Novel milestones for early esophageal carcinoma: From bench to bed. World J. Gastrointest. Oncol. 2024, 16, 1104–1118. [Google Scholar] [CrossRef]
- Paggi, S.; Mogavero, G.; Amato, A.; Rondonotti, E.; Andrealli, A.; Imperiali, G.; Lenoci, N.; Mandelli, G.; Terreni, N.; Conforti, F.S.; et al. Linked color imaging reduces the miss rate of neoplastic lesions in the right colon: A randomized tandem colonoscopy study. Endoscopy 2018, 50, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Aniwan, S.; Chiu, H.-M.; Laohavichitra, K.; Chirapongsathorn, S.; Yamamura, T.; Kuo, C.-Y.; Yoshida, N.; Ang, T.L.; Takezawa, T.; et al. Linked-Color Imaging Detects More Colorectal Adenoma and Serrated Lesions: An International Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2023, 21, 1493–1502.e4. [Google Scholar] [CrossRef]
- Shinozaki, S.; Kobayashi, Y.; Hayashi, Y.; Sakamoto, H.; Sunada, K.; Lefor, A.K.; Yamamoto, H. Colon polyp detection using linked color imaging compared to white light imaging: Systematic review and meta-analysis. Dig. Endosc. 2020, 32, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Paggi, S.; Radaelli, F.; Senore, C.; Maselli, R.; Amato, A.; Andrisani, G.; Di Matteo, F.; Cecinato, P.; Grillo, S.; Sereni, G.; et al. Linked-color imaging versus white-light colonoscopy in an organized colorectal cancer screening program. Gastrointest. Endosc. 2020, 92, 723–730. [Google Scholar] [CrossRef]
- Oliveira Dos Santos, C.E.; Malaman, D.; Pereira-Lima, J.C.; de Quadros Onófrio, F.; Ribas Filho, J.M. Impact of linked-color imaging on colorectal adenoma detection. Gastrointest. Endosc. 2019, 90, 826–834. [Google Scholar] [CrossRef]
- Dos Santos, C.E.O.; Malaman, D.; Arciniegas Sanmartin, I.D.; Onófrio, F.D.Q.; Pereira-Lima, J.C. Effect of Linked-color Imaging on the Detection of Adenomas in Screening Colonoscopies. J. Clin. Gastroenterol. 2022, 56, e268–e272. [Google Scholar] [CrossRef]
- Kamiński, M.F.; Hassan, C.; Bisschops, R.; Pohl, J.; Pellisé, M.; Dekker, E.; Ignjatovic-Wilson, A.; Hoffman, A.; Longcroft-Wheaton, G.; Heresbach, D.; et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2014, 46, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, J.; Kamerling, I.M.C.; Gordon, P.B.; Schrier, L.; de Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 2015, 21, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Hartmans, E.; Tjalma, J.J.J.; Linssen, M.D.; Allende, P.B.G.; Koller, M.; Jorritsma-Smit, A.; de Oliveira Nery, M.E.S.; Elias, S.G.; Karrenbeld, A.; de Vries, E.G.E.; et al. Potential Red-Flag Identification of Colorectal Adenomas with Wide-Field Fluorescence Molecular Endoscopy. Theranostics 2018, 8, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Tjalma, J.J.J.; Koller, M.; Linssen, M.D.; Hartmans, E.; de Jongh, S.J.; Jorritsma-Smit, A.; Karrenbeld, A.; de Vries, E.G.; Kleibeuker, J.H.; Pennings, J.P.; et al. Quantitative fluorescence endoscopy: An innovative endoscopy approach to evaluate neoadjuvant treatment response in locally advanced rectal cancer. Gut 2020, 69, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Bojarski, C.; Waldner, M.; Rath, T.; Schürmann, S.; Neurath, M.F.; Atreya, R.; Siegmund, B. Innovative Diagnostic Endoscopy in Inflammatory Bowel Diseases: From High-Definition to Molecular Endoscopy. Front. Med. 2021, 8, 655404. [Google Scholar] [CrossRef]
- Atreya, R.; Neumann, H.; Neufert, C.; Waldner, M.J.; Billmeier, U.; Zopf, Y.; Willma, M.; App, C.; Münster, T.; Kessler, H.; et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat. Med. 2014, 20, 313–318. [Google Scholar] [CrossRef]
- Rath, T.; Bojarski, C.; Neurath, M.F.; Atreya, R. Molecular imaging of mucosal α4β7 integrin expression with the fluorescent anti-adhesion antibody vedolizumab in Crohn’s disease. Gastrointest. Endosc. 2017, 86, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Luo, S.; Wang, X.; Cui, Y.; Li, M.; Zhang, Z.; Fu, L.; Cao, C.; Shi, X.; Liu, H.; et al. CD24-Targeted NIR-II Fluorescence Imaging Enables Early Detection of Colorectal Neoplasia. Cancer Res. 2024, 84, 4099–4113. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, Q.; Jia, Q.; Yan, H.; Chi, Y.; Jia, Y.; Qiao, C.; Feng, Y.; Yang, Z.; Zhang, R.; et al. A H2S-activated NIR-II imaging probe for precise diagnosis and pathological evaluation of colorectal tumor. Theranostics 2025, 15, 189–201. [Google Scholar] [CrossRef]
- Tjalma, J.J.; Garcia-Allende, P.B.; Hartmans, E.; Terwisscha van Scheltinga, A.G.; Boersma-van Ek, W.; Glatz, J.; Koch, M.; van Herwaarden, Y.J.; Bisseling, T.M.; Nagtegaal, I.D.; et al. Molecular Fluorescence Endoscopy Targeting Vascular Endothelial Growth Factor A for Improved Colorectal Polyp Detection. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2016, 57, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.P.; Dai, Z.; Gao, Z.; Lee, J.H.; Ghimire, N.; Chen, J.; Prabhu, A.; Wamsteker, E.J.; Kwon, R.S.; Elta, G.H.; et al. Detection of Sessile Serrated Adenomas in the Proximal Colon Using Wide-Field Fluorescence Endoscopy. Gastroenterology 2017, 152, 1002–1013.e9. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, S.J.; Vrouwe, J.P.M.; Voskuil, F.J.; Schmidt, I.; Westerhof, J.; Koornstra, J.J.; de Kam, M.L.; Karrenbeld, A.; Hardwick, J.C.H.; Robinson, D.J.; et al. The Optimal Imaging Window for Dysplastic Colorectal Polyp Detection Using c-Met-Targeted Fluorescence Molecular Endoscopy. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 1435–1441. [Google Scholar] [CrossRef]
- Boogerd, L.S.F.; Hoogstins, C.E.S.; Schaap, D.P.; Kusters, M.; Handgraaf, H.J.M.; van der Valk, M.J.M.; Hilling, D.E.; Holman, F.A.; Peeters, K.C.M.J.; Mieog, J.S.D.; et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: A dose-escalation pilot study. Lancet Gastroenterol. Hepatol. 2018, 3, 181–191. [Google Scholar] [CrossRef]
- Chung, S.-J.; Hadrick, K.; Nafiujjaman, M.; Apu, E.H.; Hill, M.L.; Nurunnabi, M.; Contag, C.H.; Kim, T. Targeted Biodegradable Near-Infrared Fluorescent Nanoparticles for Colorectal Cancer Imaging. ACS Appl. Bio Mater. 2024, 7, 7861–7870. [Google Scholar] [CrossRef]
- Yim, J.J.; Harmsen, S.; Flisikowski, K.; Flisikowska, T.; Namkoong, H.; Garland, M.; van den Berg, N.S.; Vilches-Moure, J.G.; Schnieke, A.; Saur, D.; et al. A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions. Proc. Natl. Acad. Sci. USA 2021, 118, e2008072118. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Malcomson, L.; Emsley, R.; Gollins, S.; Maw, A.; Myint, A.S.; Rooney, P.S.; Susnerwala, S.; Blower, A.; Saunders, M.P.; et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): A propensity-score matched cohort analysis. Lancet Oncol. 2016, 17, 174–183. [Google Scholar] [CrossRef]
- Erichsen, R.; Baron, J.A.; Hamilton-Dutoit, S.J.; Snover, D.C.; Torlakovic, E.E.; Pedersen, L.; Frøslev, T.; Vyberg, M.; Hamilton, S.R.; Sørensen, H.T. Increased Risk of Colorectal Cancer Development Among Patients with Serrated Polyps. Gastroenterology 2016, 150, 895–902.e5. [Google Scholar] [CrossRef]
- Rath, T.; Kiesslich, R.; Neurath, M.F.; Atreya, R. Molecular imaging within the lower gastrointestinal tract: From feasibility to future. Dig. Endosc. 2018, 30, 730–738. [Google Scholar] [CrossRef]
- Agrawal, M.; Jess, T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef]
- Islam, B.; Nguyen, V. What Is the Risk? Epidemiology and Evidence for Surveillance Regimens. Clin. Colon. Rectal Surg. 2024, 37, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Laredo, V.; García-Mateo, S.; Martínez-Domínguez, S.J.; López de la Cruz, J.; Gargallo-Puyuelo, C.J.; Gomollón, F. Risk of Cancer in Patients with Inflammatory Bowel Diseases and Keys for Patient Management. Cancers 2023, 15, 871. [Google Scholar] [CrossRef]
- Maselli, R.; de Sire, R.; Massimi, D.; Franchellucci, G.; Busacca, A.; Castiglione, F.; Rispo, A.; Hassan, C.; Armuzzi, A.; Repici, A. Advancements in Endoscopic Resection for Colitis-Associated Colorectal Neoplasia in Inflammatory Bowel Disease: Turning Visible into Resectable. Diagnostics 2023, 14, 9. [Google Scholar] [CrossRef]
- Coelho-Prabhu, N.; Lewis, J.D. Update on Endoscopic Dysplasia Surveillance in Inflammatory Bowel Disease. Off. J. Am. Coll. Gastroenterol. ACG 2023, 118, 1748. [Google Scholar] [CrossRef] [PubMed]
- Zammarchi, I.; Santacroce, G.; Iacucci, M. Next-Generation Endoscopy in Inflammatory Bowel Disease. Diagnostics 2023, 13, 2547. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, G.; Zammarchi, I.; Tan, C.K.; Coppola, G.; Varley, R.; Ghosh, S.; Iacucci, M. Present and future of endoscopy precision for inflammatory bowel disease. Dig. Endosc. 2024, 36, 292–304. [Google Scholar] [CrossRef]
- Gabriëls, R.Y.; van der Waaij, A.M.; Linssen, M.D.; Dobosz, M.; Volkmer, P.; Jalal, S.; Robinson, D.; Hermoso, M.A.; Lub-de Hooge, M.N.; Festen, E.A.M.; et al. Fluorescently labelled vedolizumab to visualise drug distribution and mucosal target cells in inflammatory bowel disease. Gut 2024, 73, 1454–1463. [Google Scholar] [CrossRef]
- Iacucci, M.; Jeffery, L.; Acharjee, A.; Nardone, O.M.; Zardo, D.; Smith, S.C.L.; Bazarova, A.; Cannatelli, R.; Shivaji, U.N.; Williams, J.; et al. Ultra-high Magnification Endocytoscopy and Molecular Markers for Defining Endoscopic and Histologic Remission in Ulcerative Colitis—An Exploratory Study to Define Deep Remission. Inflamm. Bowel Dis. 2021, 27, 1719–1730. [Google Scholar] [CrossRef]
- Kelderhouse, L.E.; Mahalingam, S.; Low, P.S. Predicting Response to Therapy for Autoimmune and Inflammatory Diseases Using a Folate Receptor-Targeted Near-Infrared Fluorescent Imaging Agent. Mol. Imaging Biol. 2016, 18, 201–208. [Google Scholar] [CrossRef]
Probe Types | |||
---|---|---|---|
Fluorescent antibodies | Peptides | Small molecules | |
Targeting principle | Probes bind disease-specific biomarkers (proteins, receptors) on or in cells, enabling a contrast between healthy and pathological tissue. | ||
Key modalities | |||
CLE In vivo histology-level imaging via laser scanning through the endoscope. | FME Detection of probe-bound areas using fluorescence excitation or emission optics. | qFME Numerical measurement of fluorescence intensity to detect subtle lesions, delineate margins, and quantify tracer/drug accumulation. | NIRF Deeper tissue penetration, reduced autofluorescence, and higher signal-to-background ratio. |
Administration | |||
Intravenous Uniform distribution and high specificity | Topical Rapid application, but variable coverage | ||
Applications | |||
Early dysplasia detection on Barrett’s esophagus, esophageal adenocarcinoma, and squamous cell carcinoma; IBD therapy monitoring; ADR; and precise tumor margin delineation in CRC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Anna, G.; Mandarino, F.; Centanni, L.; Lodola, I.; Fanizza, J.; Fasulo, E.; Bencardino, S.; Fuccio, L.; Facciorusso, A.; Donatelli, G.; et al. Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities. Int. J. Mol. Sci. 2025, 26, 4834. https://doi.org/10.3390/ijms26104834
Dell’Anna G, Mandarino F, Centanni L, Lodola I, Fanizza J, Fasulo E, Bencardino S, Fuccio L, Facciorusso A, Donatelli G, et al. Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities. International Journal of Molecular Sciences. 2025; 26(10):4834. https://doi.org/10.3390/ijms26104834
Chicago/Turabian StyleDell’Anna, Giuseppe, Francesco Mandarino, Lucia Centanni, Ilaria Lodola, Jacopo Fanizza, Ernesto Fasulo, Sarah Bencardino, Lorenzo Fuccio, Antonio Facciorusso, Gianfranco Donatelli, and et al. 2025. "Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities" International Journal of Molecular Sciences 26, no. 10: 4834. https://doi.org/10.3390/ijms26104834
APA StyleDell’Anna, G., Mandarino, F., Centanni, L., Lodola, I., Fanizza, J., Fasulo, E., Bencardino, S., Fuccio, L., Facciorusso, A., Donatelli, G., Parigi, T. L., Furfaro, F., D’Amico, F., Massironi, S., Malesci, A., Ungaro, F., Danese, S., & Annese, V. (2025). Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities. International Journal of Molecular Sciences, 26(10), 4834. https://doi.org/10.3390/ijms26104834