A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions †
Abstract
1. Introduction
2. Results
2.1. Both Isothermal MDA and PCR-Based MALBAC Are Suitable for Aneuploidy and Microdeletion Detection Using Ion ReproSeqTM PGS
2.2. Isothermal MDA Is More Suitable for Microsatellite Marker Genotyping than PCR-Based MALBAC
2.3. Isothermal MDA Provides More Reproducible Results than PCR-Based MALBAC for Pathogenic Variant Analysis
3. Discussion
4. Materials and Methods
4.1. Biological Samples and Whole Genome Amplification
4.2. Copy Number Variation Analysis
4.3. Multiplex Microsatellite PCR and Capillary Electrophoresis
4.4. Huntington Triplet-Primed PCR (TP-PCR) and SMN1 Deletion Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PGT | Preimplantation genetic testing |
PGT-M | Preimplantation genetic testing for monogenic disorders |
PGT-A | Preimplantation genetic testing for aneuploidy |
WGA | Whole genome amplification |
NGS | Next-generation sequencing |
Mb | Mega (1,000,000) bases |
MDA | Multiple displacement amplification |
MALBAC | Multiple annealing and looping-based amplification cycles |
PCR | Polymerase chain reaction |
TP-PCR | Triplet-primed polymerase chain reaction |
ADO | Allele dropout |
DNA | Deoxyribonucleic acid |
PGT-SR | Preimplantation genetic testing for structural rearrangements |
IVF | In vitro fertilised/fertilisation |
AF | Amplification failure |
SNP | Single nucleotide polymorphism |
HD | Huntington’s disease |
SMA | Spinal muscular atrophy |
CCR | Coriell cell repositories |
pg | Picogram |
ng | Nanogram |
References
- Handyside, A.H.; Kontogianni, E.H.; Hardy, K.; Winston, R.M. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990, 344, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; De Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The international glossary on infertility and fertility care, 2017. Fertil. Steril. 2017, 32, 1786–1801. [Google Scholar]
- ESHRE PGT-M Working Group; Carvalho, F.; Moutou, C.; Dimitriadou, E.; Dreesen, J.; Giménez, C.; Goossens, V.; Kakourou, G.; Vermeulen, N.; Zuccarello, D.; et al. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders†. Hum. Reprod. Open 2020, 2020, hoaa018. [Google Scholar] [CrossRef]
- Vanneste, E.; Voet, T.; Le Caignec, C.; Ampe, M.; Konings, P.; Melotte, C.; Debrock, S.; Amyere, M.; Vikkula, M.; Schuit, F.; et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 2009, 15, 577. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Xu, Y.; Li, R.; Song, J.; Wang, J.; Zeng, Y.; Pan, J.; Zhou, C.; Xu, Y. Role of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young women. Fertil. Steril. 2019, 111, 928–935. [Google Scholar] [CrossRef]
- Goldman, K.N.; Nazem, T.; Berkeley, A.; Palter, S.; Grifo, J.A. Preimplantation genetic diagnosis (PGD) for monogenic disorders: The value of concurrent aneuploidy screening. J. Genet. Couns. 2016, 25, 1327–1337. [Google Scholar] [CrossRef]
- Xiao, M.; Shi, H.; Rao, J.; Xi, Y.; Zhang, S.; Wu, J.; Zhu, S.; Zhou, J.; Xu, H.; Lei, C.; et al. Combined preimplantation genetic testing for genetic kidney disease: Genetic risk identification, assisted reproductive cycle, and pregnancy outcome analysis. Front. Med. 2022, 9, 936578. [Google Scholar] [CrossRef]
- Handyside, A.H.; Harton, G.L.; Mariani, B.; Thornhill, A.R.; Affara, N.; Shaw, M.-A.; Griffin, D.K. Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med. Genet. 2009, 47, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Backenroth, D.; Zahdeh, F.; Kling, Y.; Peretz, A.; Rosen, T.; Kort, D.; Zeligson, S.; Dror, T.; Kirshberg, S.; Burak, E.; et al. Haploseek: A 24-hour all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet. Med. 2019, 21, 1390–1399. [Google Scholar] [CrossRef]
- Treff, N.R.; Zimmerman, R.; Bechor, E.; Hsu, J.; Rana, B.; Jensen, J.; Li, J.; Samoilenko, A.; Mowrey, W.; Van Alstine, J.; et al. Validation of concurrent preimplantation genetic testing for polygenic and monogenic disorders, structural rearrangements, and whole and segmental chromosome aneuploidy with a single universal platform. Eur. J. Med. Genet. 2019, 62, 103647. [Google Scholar] [CrossRef]
- Masset, H.; Esteki, M.Z.; Dimitriadou, E.; Dreesen, J.; Debrock, S.; Derhaag, J.; Derks, K.; Destouni, A.; Drüsedau, M.; Meekels, J.; et al. Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Hum. Reprod. 2019, 34, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Huang, L.; Xu, L.; Huang, J.; Ma, F.; Zhu, X.; Tang, Y.; Liu, M.; Lian, Y.; Liu, P.; et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc. Natl. Acad. Sci. USA 2015, 112, 15964–15969. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Hu, D.; Lu, S.; Sun, X. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. J. Clin. Lab. Anal. 2018, 32, e22267. [Google Scholar] [CrossRef]
- Backenroth, D.; Altarescu, G.; Zahdeh, F.; Mann, T.; Murik, O.; Renbaum, P.; Segel, R.; Zeligson, S.; Hakam-Spector, E.; Carmi, S.; et al. SHaploseek is a sequencing-only, high-resolution method for comprehensive preimplantation genetic testing. Sci. Rep. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Mai, A.D.; Harton, G.L.; Quang, V.N.; Van, H.N.; Thi, N.H.; Thuy, N.P.; Le Thi, T.H.; Minh, D.N.; Quoc, Q.T. Development and clinical application of a preimplantation genetic testing for monogenic disease (PGT-M) for beta thalassemia in Vietnam. J. Assist. Reprod. Genet. 2020, 38, 365–374. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Wu, C.; Xu, Y.; Ding, C.; Zhang, G.; Xu, Y.; Zhou, C. Eleven healthy live births: A result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening. J. Assist. Reprod. Genet. 2020, 37, 549–557. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhou, W.; Cai, R.; Yan, T.; Xu, X. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping. J. Hum. Genet. 2018, 63, 407–416. [Google Scholar] [CrossRef]
- Li, N.; Wang, L.; Wang, H.; Ma, M.; Wang, X.; Li, Y.; Zhang, W.; Zhang, J.; Cram, D.S.; Yao, Y. The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities. J. Genet. Genom. 2015, 42, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Satirapod, C.; Sukprasert, M.; Panthan, B.; Charoenyingwattana, A.; Chitayanan, P.; Chantratita, W.; Choktanasiri, W.; Trachoo, O.; Hongeng, S. Clinical utility of combined preimplantation genetic testing methods in couples at risk of passing on beta thalassemia/hemoglobin E disease: A retrospective review from a single center. PLoS ONE 2019, 14, e0225457. [Google Scholar] [CrossRef]
- Theodorou, E.; Chronopoulou, E.; Ozturk, O.; Brunetti, X.; Serhal, P.; Ben-Nagi, J. Impact of double trophectoderm biopsy on reproductive outcomes following single euploid blastocyst transfer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 298, 35–40. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Leigh, D.; Cram, D.S.; Wang, L.; Yao, Y. Third-generation sequencing: Any future opportunities for PGT? J. Assist. Reprod. Genet. 2021, 38, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Liu, Q.; Xiao, C.; Yi, S.; Huang, D. Assessment of multiple annealing and looping-based amplification cycle-based whole-genome amplification for short tandem repeat genotyping of low copy number-DNA. Genet. Test. Mol. Biomark. 2022, 26, 191–197. [Google Scholar] [CrossRef]
- Mir Pardo, P.; Martínez-Conejero, J.A.; Martín, J.; Simón, C.; Cervero, A. Combined preimplantation genetic testing for autosomal dominant polycystic kidney disease: Consequences for embryos available for transfer. Genes 2020, 11, 692. [Google Scholar] [CrossRef]
- Borgonovo, T.; Solarewicz, M.M.; Vaz, I.M.; Daga, D.; Rebelatto, C.L.K.; Senegaglia, A.C.; Ribeiro, E.; Cavalli, I.J.; Brofman, P.S. Emergence of clonal chromosomal alterations during the mesenchymal stromal cell cultivation. Mol. Cytogenet. 2015, 8, 94. [Google Scholar] [CrossRef]
- Nikitina, V.; Astrelina, T.; Nugis, V.; Ostashkin, A.; Karaseva, T.; Dobrovolskaya, E.; Usupzhanova, D.; Suchkova, Y.; Lomonosova, E.; Rodin, S.; et al. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture. PLoS ONE 2018, 13, e0192445. [Google Scholar] [CrossRef]
- Harton, G.L.; De Rycke, M.; Fiorentino, F.; Moutou, C.; SenGupta, S.; Traeger-Synodinos, J.; Harper, J.C. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum. Reprod. 2011, 26, 33–40. [Google Scholar] [CrossRef]
- Chow, J.F.; Yeung, W.S.; Lee, V.C.; Lau, E.Y.; Ng, E.H. Validation of two whole genome amplification methods for PGD on monogenetic diseases and aneuploidy screening. Reprod. Biomed. Online 2018, 36, e21–e22. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, M.; Lee, C.G.; Chong, S.S. Identification of novel microsatellite markers <1 Mb from the HTT CAG repeat and development of a single-tube tridecaplex PCR panel of highly polymorphic markers for preimplantation genetic diagnosis of Huntington disease. Clin. Chem. 2016, 62, 1096–1105. [Google Scholar] [PubMed]
- Zhao, M.; Lian, M.; Cheah, F.S.; Tan, A.S.; Agarwal, A.; Chong, S.S. Identification of novel microsatellite markers flanking the SMN1 and SMN2 duplicated region and inclusion into a single-tube tridecaplex panel for haplotype-based preimplantation genetic testing of spinal muscular atrophy. Front. Genet. 2019, 10, 1105. [Google Scholar] [CrossRef]
- Chen, M.; Tan, A.S.; Cheah, F.S.; Saw, E.E.; Chong, S.S. Identification of novel microsatellite markers <1 Mb from the HBB gene and development of a single-tube pentadecaplex PCR panel of highly polymorphic markers for preimplantation genetic diagnosis of beta-thalassemia. Electrophoresis 2015, 36, 2914–2924. [Google Scholar]
- Zhao, M.; Chen, M.; Tan, A.S.C.; Cheah, F.S.H.; Mathew, J.; Wong, P.C.; Chong, S.S. Single-tube tetradecaplex panel of highly polymorphic microsatellite markers <1 Mb from F8 for simplified preimplantation genetic diagnosis of hemophilia A. J. Thromb. Haemost. 2017, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, M.; Lee, C.G.; Chong, S.S. Identification of microsatellite markers <1 Mb from the FMR1 CGG repeat and development of a single-tube tetradecaplex PCR panel of highly polymorphic markers for preimplantation genetic diagnosis of fragile X syndrome. Genet. Med. 2016, 18, 869–875. [Google Scholar]
- Lian, M.; Zhao, M.; Lee, C.G.; Chong, S.S. Single-tube dodecaplex PCR panel of polymorphic microsatellite markers closely linked to the DMPK CTG repeat for preimplantation genetic diagnosis of myotonic dystrophy type 1. Clin. Chem. 2017, 63, 1127–1140. [Google Scholar] [CrossRef]
- Xie, P.; Liu, P.; Zhang, S.; Cheng, D.; Chen, D.; Tan, Y.Q.; Hu, L.; Qiu, Y.; Zhou, S.; Ou-Yang, Q.; et al. Segmental aneuploidies with 1 Mb resolution in human preimplantation blastocysts. Genet. Med. 2022, 24, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qin, M.; Ma, M.; Li, H.; Wang, N.; Zhu, X.; Yan, L.; Qiao, J.; Yan, Z. Assessing the necessity of screening ≤5 Mb segmental aneuploidy in routine PGT for aneuploidies. Reprod. Biomed. Online 2024, 49, 103991. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chang, C.; Bai, H.; Qian, W.; Zou, Y.; Wu, D.; Hu, W.; Chen, Y.; Li, T.; Lu, S.; et al. A Novel and comprehensive whole-genome sequencing–based preimplantation genetic testing approach for different genetic conditions. J. Mol. Diagn. 2025, 27, 395–404. [Google Scholar] [CrossRef]
- Zhao, M.; Lee, C.G.; Law, H.Y.; Chong, S.S. Enhanced detection and sizing of the HTT CAG repeat expansion in Huntington disease using an improved triplet-primed PCR assay. Neurodegener. Dis. 2016, 16, 348–351. [Google Scholar] [CrossRef]
Genomic DNA (10 ng) | 2 µL of WGA Product from a 5-Cell REPLI-gTM SC MDA Reaction | 2 µL of WGA Product from a 5-Cell ChromSwiftTM MALBAC Reaction | |||||
---|---|---|---|---|---|---|---|
AF | ADO | AF | ADO | AF | ADO | ||
HTT (CAG)n and flanking STR markers | D4S3038FAM (AC)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 1/21 (2.38%) | 6/30 (20%) | 8/17 (23.53%) |
HD2098407FAM (GA)n | 0/10 (0%) | 0/9 (0%) | 0/30 (0%) | 0/27 (0%) | 0/30 (0%) | 0/27 (0%) | |
D4S43HEX (AC)n | 0/10 (0%) | 0/8 (0%) | 1/30 (3.33%) | 0/23 (0%) | 0/30 (0%) | 0/24 (0%) | |
HD2362117HEX (CA)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 1/21 (2.38%) | 0/30 (0%) | 0/21 (0%) | |
HD2417179HEX (AC)n | 0/10 (0%) | 0/9 (0%) | 0/30 (0%) | 3/27 (5.56%) | 3/30 (10%) | 13/25 (26%) | |
D4S127HEX (GT)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 0/21 (0%) | 0/30 (0%) | 0/21 (0%) | |
D4S126FAM (TG)n | 0/10 (0%) | 0/10 (0%) | 0/30 (0%) | 1/30 (1.67%) | 3/30 (10%) | 1/27 (1.85%) | |
HTT (CAG)n | |||||||
I1CAHDFAM (AC)n | 0/10 (0%) | 0/9 (0%) | 0/30 (0%) | 3/27 (5.56%) | 0/30 (0%) | 4/27 (7.41%) | |
HD3139793HEX (TTCC)n | 0/10 (0%) | 0/6 (0%) | 0/30 (0%) | 1/18 (2.78%) | 0/30 (0%) | 0/18 (0%) | |
HD3377975FAM (AC)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 1/21 (2.38%) | 13/30 (43.33%) | 5/10 (25%) | |
D4S412FAM (TG)n | 0/10 (0%) | 0/8 (0%) | 0/30 (0%) | 1/24 (2.08%) | 11/30 (36.67%) | 2/16 (6.25%) | |
HD3615631HEX (AC)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 0/21 (0%) | 0/30 (0%) | 0/21 (0%) | |
HD3829173HEX (GT)n | 0/10 (0%) | 0/10 (0%) | 0/30 (0%) | 0/30 (0%) | 0/30 (0%) | 0/30 (0%) | |
STR markers flanking SMN1 and SMN2 | D5S1417HEX (TG)n | 0/10 (0%) | 0/6 (0%) | 0/30 (0%) | 0/18 (0%) | 0/30 (0%) | 0/18 (0%) |
D5S1413FAM (GT)n | 0/10 (0%) | 0/6 (0%) | 0/30 (0%) | 0/18 (0%) | 0/30 (0%) | 0/18 (0%) | |
SMA6863FAM (GA)n | 0/10 (0%) | 0/8 (0%) | 0/30 (0%) | 2/24 (4.17%) | 1/30 (3.33%) | 3/24 (6.25%) | |
SMA6873FAM (AC)n | 0/10 (0%) | 0/6 (0%) | 0/30 (0%) | 1/18 (2.78%) | 10/30 (33.33%) | 2/12 (8.33%) | |
D5S1370HEX (TG)n | 0/10 (0%) | 0/8 (0%) | 0/30 (0%) | 1/24 (2.08%) | 0/30 (0%) | 0/24 (0%) | |
SMA6877NED (TG)n | 0/10 (0%) | 0/5 (0%) | 0/30 (0%) | 0/15 (0%) | 0/30 (0%) | 2/15 (6.67%) | |
SMN2/SMN1 | |||||||
D5S1408FAM (AC)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 0/21 (0%) | 0/30 (0%) | 0/21 (0%) | |
SMA7093FAM (TG)n | 0/10 (0%) | 0/7 (0%) | 0/30 (0%) | 2/21 (4.76%) | 0/30 (0%) | 1/21 (2.38%) | |
D5S610HEX (TG)n | 0/10 (0%) | 0/8 (0%) | 0/30 (0%) | 0/24 (0%) | 0/30 (0%) | 1/24 (2.08%) | |
SMA7115HEX (AG)n | 0/10 (0%) | 0/9 (0%) | 0/30 (0%) | 3/27 (5.56%) | 0/30 (0%) | 0/27 (0%) | |
SMA7120NED (AC)n | 0/10 (0%) | 0/8 (0%) | 0/30 (0%) | 0/24 (0%) | 0/30 (0%) | 0/24 (0%) | |
D5S1999HEX (GA)n | 0/10 (0%) | 0/5 (0%) | 0/30 (0%) | 0/15 (0%) | 0/30 (0%) | 0/15 (0%) | |
D5S637FAM (CACT)n | 0/10 (0%) | 0/6 (0%) | 0/30 (0%) | 0/18 (0%) | 0/30 (0%) | 0/18 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, V.J.; Liang, Y.; Tan, A.S.; Wong, S.; Asherah, N.; Chua, P.; Lee, C.G.; Choolani, M.A.; Dang, T.; Chong, S.S. A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions. Int. J. Mol. Sci. 2025, 26, 4532. https://doi.org/10.3390/ijms26104532
Tan VJ, Liang Y, Tan AS, Wong S, Asherah N, Chua P, Lee CG, Choolani MA, Dang T, Chong SS. A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions. International Journal of Molecular Sciences. 2025; 26(10):4532. https://doi.org/10.3390/ijms26104532
Chicago/Turabian StyleTan, Vivienne J., Ying Liang, Arnold S. Tan, Simin Wong, Nur Asherah, Pengyian Chua, Caroline G. Lee, Mahesh A. Choolani, Truong Dang, and Samuel S. Chong. 2025. "A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions" International Journal of Molecular Sciences 26, no. 10: 4532. https://doi.org/10.3390/ijms26104532
APA StyleTan, V. J., Liang, Y., Tan, A. S., Wong, S., Asherah, N., Chua, P., Lee, C. G., Choolani, M. A., Dang, T., & Chong, S. S. (2025). A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions. International Journal of Molecular Sciences, 26(10), 4532. https://doi.org/10.3390/ijms26104532