Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin–Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging
Abstract
:1. Introduction
2. Myelin Hypothesis of Cognitive Impairment
3. Cytosolic Phospholipase A2 and Myelin Degradation
4. G-Protein Coupled Receptor 109A Inhibits Cytosolic Phospholipase A2
5. GPR109A Downregulation and Cognitive Impairment
6. G-Protein Coupled Receptor 109A Agonists and Nootropic Effect
7. Anthranilic Acid as a Putative G-Protein Coupled Receptor 109A Agonist
8. Assessment of Anthranilic Acid in Clinical Settings
9. Anthranilic Acid in Schizophrenia
10. Anthranilic Acid in Alzheimer’s Dementia
11. Anthranilic Acid in Post-Stroke Cognitive Impairment
12. Upregulation of Anthranilic Acid Formation in Context of Cognitive Impairment
13. Key Therapeutic Potentials of Modulation of Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin Cascade for Improvement of Cognitive Function in Schizophrenia, Dementia, and Aging
13.1. Interventions Aimed at Upregulation of Endogenous Anthranilic Acid Formation
13.2. Pegylated Human Kynureninase
13.3. Interferons
13.4. Sodium Benzoate and Nootropic Effect
13.5. Inhibitors of Kynurenine Aminotransferase
13.6. Nervus Vagus Stimulation
14. Exogenous Agonists of G-Protein Coupled Receptor 109A and Their Nootropic Effect
15. Additional Considerations
15.1. AA and Diet
15.2. Food Supplements
Citrus Honey
15.3. Sex-Specific Elevation of AA
15.4. AA Elevation as Early Biomarker of Cognitive Impairment
15.5. AA Elevation Is an Adaptive (Compensatory) Response Aimed at Attenuating Cognitive Impairment
16. Conclusions and Future Directions
16.1. Upregulated Formation of AA and Cognitive Impairment
16.2. GPR109A and the Pathogenesis of Cognitive Impairment
16.3. Repurposing Exogenous GPR109A Agonists as Nootropic Medications
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | anthranilic acid |
Aβ | amyloid-β |
AD | Alzheimer’s dementia |
BA | butyric acid |
BHB | R-β-hydroxybutyric acid |
cPLA2 | cytosolic phospholipase A2 |
FFA | free fatty acids |
GPR109A | G-protein coupled receptor 109A |
IDO | indolamine 2,3 dioxygenase |
IFN γ | interferon gamma |
KAT | kynurenine aminotransferase |
KMO | kynurenine 3-monooxygenase |
Kyn | kynurenine |
KYNA | kynurenic acid |
MCI | mild cognitive impairment |
NMDAR | N-methyl-D-aspartate receptor |
TDO | tryptophan 2,3 dioxygenase 2 |
VNS | vagus nerve stimulation |
References
- Bartzokis, G.; Lu, P.H.; Mintz, J. Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimer’s Dement. 2007, 3, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Huang Jordan, D.; Zhang, Q. Myelin Pathology in Alzheimer’s Disease: Potential Therapeutic Opportunities. Aging Dis. 2024, 15, 698–713. [Google Scholar] [CrossRef] [PubMed]
- Maas, D.A.; Eijsink, V.D.; Spoelder, M.; van Hulten, J.A.; De Weerd, P.; Homberg, J.R.; Vallès, A.; Nait-Oumesmar, B.; Martens, G.J.M. Interneuron hypomyelination is associated with cognitive inflexibility in a rat model of schizophrenia. Nat. Commun. 2020, 11, 2329. [Google Scholar] [CrossRef] [PubMed]
- Bartzokis, G. Myelination and Brain Electrophysiology in Healthy and Schizophrenic Individuals. Neuropsychopharmacology 2003, 28, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Kister, A.; Kister, I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front. Chem. 2022, 10, 1041961. [Google Scholar] [CrossRef]
- Asadollahi, E.; Trevisiol, A.; Saab, A.S.; Looser, Z.J.; Dibaj, P.; Ebrahimi, R.; Kusch, K.; Ruhwedel, T.; Möbius, W.; Jahn, O.; et al. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat. Neurosci. 2024, 27, 1934–1944. [Google Scholar] [CrossRef]
- Papuć, E.; Konrad, R. The role of myelin damage in Alzheimer’s disease pathology. Arch. Med. Sci. 2020, 16, 345–351. [Google Scholar] [CrossRef]
- Gu, L.; Wu, D.; Tang, X.; Qi, X.; Li, X.; Bai, F.; Chen, X.; Ren, Q.; Zhang, Z. Myelin changes at the early stage of 5XFAD mice. Brain Res. Bull. 2018, 137, 285–293. [Google Scholar] [CrossRef]
- Moutinho, M.; Puntambekar, S.S.; Tsai, A.P.; Coronel, I.; Lin, P.B.; Casali, B.T.; Martinez, P.; Oblak, A.L.; Lasagna-Reeves, C.A.; Lamb, B.T.; et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 2022, 14, eabl7634. [Google Scholar] [CrossRef]
- Dean, D.C.; Hurley, S.A.; Kecskemeti, S.R.; O’Grady, J.P.; Canda, C.; Davenport-Sis, N.J.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Asthana, S.; et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 2017, 74, 41–49. [Google Scholar] [CrossRef]
- Gong, Z.; Bilgel, M.; Kiely, M.; Triebswetter, C.; Ferrucci, L.; Resnick, S.M.; Spencer, R.G.; Bouhrara, M. Lower myelin content is associated with more rapid cognitive decline among cognitively unimpaired individuals. Alzheimer’s Dement. 2023, 19, 3098–3107. [Google Scholar] [CrossRef] [PubMed]
- Buchsbaum, M.S.; Tang, C.Y.; Peled, S.; Gudbjartsson, H.; Lu, D.; Hazlett, E.A.; Downhill, J.; Haznedar, M.; Fallon, J.H.; Atlas, S.W. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. NeuroReport 1998, 9, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Marner, L.; Nyengaard, J.R.; Tang, Y.; Pakkenberg, B. Marked loss of myelinated nerve fibers in the human brain with age. J. Comp. Neurol. 2003, 462, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, L.R.; Risacher, S.L.; Nho, K.; Saykin, A.J. Myelin repair in Alzheimer’s disease: A review of biological pathways and potential therapeutics. Transl. Neurodegener. 2022, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Horrobin, D.F.; Glen, A.I.M.; Vaddadi, K. The membrane hypothesis of schizophrenia. Schizophr. Res. 1994, 13, 195–207. [Google Scholar] [CrossRef]
- Ansarey, S.H. Inflammation and JNK’s role in Niacin-GPR109A diminished flushed effect in microglial and neuronal cells with relevance to schizophrenia. Front. Psychiatry 2021, 12, 771144. [Google Scholar] [CrossRef]
- De, S.; Trigueros, M.A.; Kalyvas, A.; David, S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during wallerian degeneration. Mol. Cell. Neurosci. 2003, 24, 763–765. [Google Scholar] [CrossRef]
- Keshavan, M.S.; Stanley, J.A.; Montrose, D.M.; Minshew, N.J.; Pettegrew, J.W. Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: An in vivo 31P MRS study. Mol. Psychiatry 2003, 8, 316–323. [Google Scholar] [CrossRef]
- Gentile, M.T.; Reccia, M.G.; Sorrentino, P.P.; Vitale, E.; Sorrentino, G.; Puca, A.A.; Colucci-D’amato, L. Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer’s Disease Pathogenesis. Mol. Neurobiol. 2012, 45, 596–604. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; McEvoy, J.; Baillie, R.A. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry 2007, 12, 934–945. [Google Scholar] [CrossRef]
- Xia, P.; Kramer, R.M.; King, G.L. Identification of the mechanism for the inhibition of Na+, K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J. Clin. Investig. 1995, 96, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Satake, N.; Morton, B.E. Scotophobin A causes dark avoidance in goldfish by elevating pineal N-acetylserotonin. Pharmacol. Biochem. Behav. 1979, 10, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.F.; Bachurin, S.O.; Prakhie, I.V.; Zefirov, N.S. Quinone reductase 2 and antidepressant effect of melatonin derivatives. Ann. N. Y. Acad. Sci. 2010, 1199, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Beibei, L.I.; Hongjian, Z.; Mohammed, A.; Kim, H.-Y. Negative regulation of cytosolic phospholipase A2 by melatonin in the rat pineal gland. Biochem. J. 2000, 351, 709–716. [Google Scholar]
- Bachurin, S.; Oxenkrug, G.; Lermontova, N.; Afanasiev, A.; Beznosko, B.; Vankin, G.; Shevtzova, E.; Mukhina, T.; Serkova, T. N-acetyl-serotonin, melatonin and their derivatives improve cognition and protect against b-amyloid-induced neurotoxicity. Ann. N. Y. Acad. Sci. 1999, 890, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.; Ratner, R. N-acetylserotonin and aging-associated cognitive impairment and depression. Aging Dis. 2012, 3, 330–338. [Google Scholar]
- Oxenkrug, G. Serotonin-kynurenine hypothesis of depression: Historical overview and recent developments. Curr. Drug Targets 2013, 14, 514–521. [Google Scholar] [CrossRef]
- Plaisance, E.P.; Lukasova, M.; Offermanns, S.; Zhang, Y.; Cao, G.; Judd, R.L. Niacin stimulates adiponectin secretion through the GPR109A receptor. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E549–E558. [Google Scholar] [CrossRef]
- Boatman, P.D.; Richman, J.G.; Semple, G. Nicotinic acid receptor agonists. J. Med. Chem. 2008, 51, 7653–7662. [Google Scholar] [CrossRef]
- Guzman, M. Is There Astrocyte-Neuron Ketone Body Shuttle? Trends Endocrinol. Metab. 2001, 12, 169. [Google Scholar] [CrossRef]
- Perrone, M.; Pagano, M.; Belardo, C.; Ricciardi, F.; Ricciardi, F.; Fusco, A.; Trotta, M.C.; Infantino, R.; Gargano, F.; Parente, A.; et al. Potential role of the hydroxyl carboxylic acid receptor type 2 (HCAR2) in microglia pathophysiology: A possible cross-talk with C-X-C chemokine receptor 1 (CXCR1). Neuropharmacology 2023, 228, 109456. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain microglia in psychiatric disorders. Lancet Psychiat 2017, 4, 563–572. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Hu, H.; Zhao, M.; Sun, L. Microglia in Alzheimer’s Disease: A Target for Therapeutic Intervention. Front. Cell. Neurosci. 2021, 15, 749587. [Google Scholar] [CrossRef] [PubMed]
- Ravirajsinh, N.J.; Martin, P.M. GPR109A activation and aging liver. Aging 2019, 11, 8044–8045. [Google Scholar] [CrossRef]
- Wanders, D.; Graff, E.C.; Judd, R.L. Effects of high fat diet on GPR109A and GPR81 gene expression. Biochem. Biophys. Res. Comm. 2012, 425, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, Y.; Takeshima, T.; Mori, N. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2000, 97, 5440–5444. [Google Scholar] [CrossRef]
- Kraeuter, A.-K.; Mashavave, T.; Suvarna, A.; Buuse, M.v.D.; Sarnyai, Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology 2020, 237, 1397–1405. [Google Scholar] [CrossRef]
- Fu, S.-P.; Wang, J.-F.; Xue, W.-J.; Liu, H.-M.; Liu, B.-R.; Zeng, Y.-L.; Li, S.-N.; Huang, B.-X.; Lv, Q.-K.; Wang, W.; et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J. Neuroinflamm. 2015, 12, 9. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Wilson, R.S.; Scherr, P.A. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J. Neurol. Neurosur. Psychiat. 2004, 75, 1093–1099. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lin, P.-Y.; Lee, Y.; Hung, C.-F.; Hsu, S.-T.; Wu, C.-C.; Wang, L.-J. Serum levels of β-hydroxybutyrate and pyruvate, metabolic changes and cognitive function in patients with schizophrenia during antipsychotic treatment: A preliminary study. Neuropsychiat. Dis. Treat. 2018, 14, 799–808. [Google Scholar] [CrossRef]
- Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lambert, N.A.; et al. GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009, 69, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Qin, F.; Zhang, M.; Li, J.; Li, J.; Lai, M. Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 2023, 42, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.; Smenton, A.; Raghavan, S.; Shen, H.; Ding, F.-X.; Carballo-Jane, E.; Luell, S.; Ciecko, T.; Holt, T.G.; Wolff, M.; et al. Anthranilic acid replacements in a niacin receptor agonist. Bioorganic Med. Chem. Lett. 2010, 20, 3426–3430. [Google Scholar] [CrossRef]
- Chen, T.; Noto, D.; Hoshino, Y.; Mizuno, M.; Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflamm. 2019, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.; Hess, M.; Weimer, B.C. Microbial-derived tryptophan metabolites and their role in neurological disease: Anthranilic acid and anthranilic acid derivatives. Microorganisms 2023, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef]
- Schwarcz, R.; Stone, T.W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017, 112, 237–247. [Google Scholar] [CrossRef]
- Phillips, R.S. Structure and mechanism of kynureninase. Arch. Biochem. Biophys. 2014, 544, 69–74. [Google Scholar] [CrossRef]
- Moroni, F. Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 1999, 375, 87–100. [Google Scholar] [CrossRef]
- Sathyasaikumar, K.V.; Stachowski, E.K.; Wonodi, I.; Roberts, R.C.; Rassoulpour, A.; McMahon, R.P.; Schwarcz, R. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr. Bull. 2011, 37, 1147–1156. [Google Scholar] [CrossRef]
- Schwarcz, R.; Rassoulpour, A.; Wu, H.-Q.; Medoff, D.; Tamminga, C.A.; Roberts, R.C. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry 2001, 50, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, S.; Schwieler Nilsson, L.; Linderholm, K.; Engberg, G. The kynurenic acid hypothesis of schizophrenia. Physiol. Behav. 2007, 92, 203–209. [Google Scholar] [CrossRef]
- Tashiro, T.; Murakami, Y.; Mouri, A.; Imamura, Y.; Nabeshima, T.; Yamamoto, Y.; Saito, K. Kynurenine 3-monooxygenase is implicated in antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions. Behav. Brain Res. 2017, 317, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Du Preez, J.; Harvey, B.H. Development and validation of a single analytical method for the determination of tryptophan, and its kynurenine metabolites in rat plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 898, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. J. Neurochem. 1991, 56, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Solvang, S.-E.H.; Hodge, A.; Watne, L.O.; Cabral-Marques, O.; Nordrehaug, J.E.; Giles, G.G.; Dugué, P.-A.; Nygård, O.; Ueland, P.M.; McCann, A.; et al. Kynurenine pathway metabolites in the blood and cerebrospinal fluid are associated with human aging. Oxidative Med. Cell. Longev. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Jacobs, K.R.; Lim, C.K.; Blennow, K.; Zetterberg, H.; Chatterjee, P.; Martins, R.N.; Brew, B.J.; Guillemin, G.J.; Lovejoy, D.B. Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol. Aging 2019, 80, 11–20. [Google Scholar] [CrossRef]
- Skorobogatov, K.; De Picker, L.; Verkerk, R.; Coppens, V.; Leboyer, M.; Müller, N.; Morrens, M. Brain Versus Blood: A Systematic Review on the Concordance Between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders. Front. Immunol. 2021, 12, 716980. [Google Scholar] [CrossRef]
- Oxenkrug, G.; van der Hart, M.; Roeser, J.; Summergrad, P. Anthranilic Acid: A Potential Biomarker and Treatment Target for Schizophrenia. Ann. Psychiatry Ment. Health 2016, 4, 1059–1062. [Google Scholar] [PubMed] [PubMed Central]
- Fazio, F.; Lionetto, L.; Curto, M.; Iacovelli, L.; Cavallari, M.; Zappulla, C.; Ulivieri, M.; Napoletano, F.; Capi, M.; Corigliano, V.; et al. Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci. Rep. 2015, 5, 17799. [Google Scholar] [CrossRef]
- Steiner, J.; Dobrowolny, H.; Guest, P.C.; Bernstein, H.-G.; Fuchs, D.; Roeser, J.; Summergrad, P.; Oxenkrug, G. Gender-specific elevation of plasma anthranilic acid in schizophrenia: Protection against glutamatergic hypofunction? Schizophr. Res. 2022, 243, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.; Forester, B. Anthranilic Acid, a GPR109A Agonist, and Schizophrenia. Int. J. Tryptophan Res. 2024, 17, 11786469241239125. [Google Scholar] [CrossRef] [PubMed]
- Chouraki, V.; Preis, S.R.; Yang, Q.; Beiser, A.; Li, S.; Larson, M.G.; Weinstein, G.; Wang, T.J.; Gerszten, R.E.; Vasan, R.S.; et al. Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimer’s Dement. 2017, 13, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Goozee, K.; Lim, C.K.; James, I.; Shen, K.; Jacobs, K.R.; Sohrabi, H.R.; Shah, T.; Asih, P.R.; Dave, P.; et al. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci. Rep. 2018, 22, 8008. [Google Scholar] [CrossRef] [PubMed]
- Bakker, L.; Ramakers, I.H.; Eussen, S.J.; Choe, K.; Hove, D.L.v.D.; Kenis, G.; Rutten, B.P.; van Oostenbrugge, R.J.; Staals, J.; Ulvik, A.; et al. The role of the kynurenine pathway in cognitive functioning after stroke: A prospective clinical study. J. Neurol. Sci. 2023, 454, 120819. [Google Scholar] [CrossRef]
- Alberati-Giani, D.; Buchli, R.; Malherbe, P.; Broger, C.; Lang, G.; Köhler, C.; Lahm, H.; Cesura, A.M. Isolation and expression of a cDNA clone encoding human kynureninase. Eur. J. Biochem. 1996, 239, 460–468. [Google Scholar] [CrossRef]
- Machill, G. Vergleich der Kynureninase-Aktivität in verschiedenen Organen von Säugetieren [Comparison of kynureninase activity in various organs of mammals]. Acta Biol. Med. Ger. 1972, 29, 179–182. [Google Scholar]
- Georgiou, G.; Stern, E.; Blazek, J.; Calamito, C. Human Kynureninase Enzymes and Uses Thereof. U.S. Patent 11,648,272 B2, 16 May 2023. [Google Scholar]
- Triplett, T.A.; Garrison, K.C.; Marshall, N.; Donkor, M.; Blazeck, J.; Lamb, C.; Qerqez, A.; Dekker, J.D.; Tanno, Y.; Lu, W.-C.; et al. Reversal of IDO-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 2018, 36, 758–764. [Google Scholar] [CrossRef]
- Heyes, M.P.; Chen, C.Y.; Major, E.O.; Saito, K. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem. J. 1997, 326, 351–356. [Google Scholar] [CrossRef]
- Alberati-Giani, D.; Ricciardi-Castagnoli, P.; Kohler, C.; Cewra, A.M. Regulation of the kynurenine metabolic pathway by interferon-y in murine cloned macrophages microglial cells. J. Neu-Rochem. 1996, 66, 996–1004. [Google Scholar] [CrossRef]
- Asp, L.; Johansson, A.-S.; Mann, A.; Owe-Larsson, B.; Urbanska, E.M.; Kocki, T.; Kegel, M.; Engberg, G.; Lundkvist, G.B.; Karlsson, H. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts. J. Inflamm. 2011, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Chiarugi, A.; Calvani, M.; Meli, E.; Traggiai, E.; Moroni, F. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol. 2001, 120, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T.; Pawlak, D.; Inglot, M.; Zalewska, M.; Marciniak, D.; Bugajska, J.; Janocha-Litwin, J.; Malyszczak, K. The role of anthranilic acid in the increase of depressive symptoms and major depressive disorder during treatment for hepatitis C with pegylated interferon-α2a and oral ribavirin. J. Psychiatry Neurosci. 2021, 46, E166–E175. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.; Grant, M.; Feigenbaum, A.; Singh, R.; Hendren, R.; Siriwardena, K.; Phillips, J.; Sanchez-Valle, A.; Waisbren, S.; Gillis, J.; et al. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol. Genet. Metab. 2015, 114, 73–79. [Google Scholar] [CrossRef]
- Subramanian, V.; Vaidyanathan, C.S. Anthranilate Hydroxylase from Aspergillus niger: New Type of NADPH-Linked Nonheme Iron Monooxygenase. J. Bacteriol. 1984, 160, 651–655. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, P.-K.; Chang, Y.-C.; Chuo, L.-J.; Chen, Y.-S.; Tsai, G.E.; Lane, H.-Y. Benzoate, a D-Amino Acid Oxidase Inhibitor, for the Treatment of Early-Phase Alzheimer Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Psychiatry 2014, 75, 678–685. [Google Scholar] [CrossRef]
- Lane, H.-Y.; Lin, C.-H.; Green, M.F.; Hellemann, G.; Huang, C.-C.; Chen, P.-W.; Tun, R.; Chang, Y.-C.; Tsai, G.E. Add-on Treatment of Benzoate for Schizophrenia. A Randomized, Double-blind, Placebo-Controlled Trial of d-Amino Acid Oxidase Inhibitor. JAMA Psychiatry 2013, 70, 1267–1275. [Google Scholar] [CrossRef]
- Dounay, A.B.; Anderson, M.; Bechle, B.M.; Campbell, B.M.; Claffey, M.M.; Evdokimov, A.; Evrard, E.; Fonseca, K.R.; Gan, X.; Ghosh, S.; et al. Discovery of Brain-Penetrant, Irreversible Kynurenine Aminotransferase II Inhibitors for Schizophrenia. ACS Med. Chem. Lett. 2012, 3, 187–192. [Google Scholar] [CrossRef]
- Giorgini, F.; Huang, S.Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Thomas, M.A.; Tararina, M.; Wu, H.Q.; Schwarcz, R.; Muchowski, P.J. Targeted deletion of kynurenine 3-monooxygenase in mice: A new tool for studying kynurenine pathway metabolism in periphery and brain. J. Biol. Chem. 2013, 288, 36554–36566. [Google Scholar] [CrossRef]
- Phillips, R.S.; Iradukunda, E.C.; Hughes, T.; Bowen, J.P. Modulation of Enzyme Activity in the Kynurenine Pathway by Kynurenine Monooxygenase Inhibition. Front. Mol. Biosci. 2019, 6, 3. [Google Scholar] [CrossRef]
- Comai, S.; Costa, C.V.; Ragazzi, E.; Bertazzo, A.; Allegri, G. The effect of age on the enzyme activities of tryptophan metabolism along the kynurenine pathway in rats. Clin. Chim. Acta 2005, 360, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Klinkenberg, S.; Borne, C.v.D.; Aalbers, M.; Verschuure, P.; Kessels, A.; Leenen, L.; Rijkers, K.; Aldenkamp, A.; Vles, J.; Majoie, H. The effects of vagus nerve stimulation on tryptophan metabolites in children with intractable epilepsy. Epilepsy Behav. 2014, 37, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Olsen, L.K.; Solis, E.; McIntire, L.K.; Hatcher-Solis, C.N. Vagus nerve stimulation: Mechanisms and factors involved in memory enhancement. Front. Hum. Neurosci. 2023, 17, 1152064. [Google Scholar] [CrossRef] [PubMed]
- Carlson, L.A. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005, 258, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Taing, K.; Chen, L.O.; Weng, H.-R. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neur Regen. Res. 2013, 18, 763–768. [Google Scholar] [CrossRef]
- Lauring, B.; Taggart, A.K.P.; Tata, J.R.; Dunbar, R.; Caro, L.; Cheng, K.; Chin, J.; Colletti, S.L.; Cote, J.; Khalilieh, S.; et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci. Transl. Med. 2012, 4, 148ra115. [Google Scholar] [CrossRef]
- Olson, E.J.; Mahar, K.M.; Haws, T.F.; Fossler, M.J.; Gao, F.; de Gouville, A.C.; Sprecher, D.L.; Lepore, J.J. A randomized, placebo-controlled trial to assess the effects of 8 weeks of administration of GSK256073, a selective GPR109A agonist, on high-density lipoprotein cholesterol in subjects with dyslipidemia. Clin. Pharmacol. Drug Dev. 2019, 8, 871–883. [Google Scholar] [CrossRef]
- White, J.W. Methyl Anthranilate Content of Citrus Honey. J. Food Sci. 1996, 31, 102–110. [Google Scholar] [CrossRef]
- Sesta, G.; Piana, M.L.; Oddo, L.P.; Lusco, L.; Belligoli, P. Methyl anthranilate in Citrus honey. Analytical method and suitability as a chemical marker. Apidologie 2008, 39, 334–342. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Zgrajka, W.; Kuc, D.; Turski, W.A. Presence of kynurenic acid in food and honeybee products. Amino Acids 2009, 36, 75–80. [Google Scholar] [CrossRef]
- Turski, M.P.; Chwil, S.; Turska, M.; Chwil, M.; Kocki, T.; Rajtar, G.; Parada-Turska, J. An exceptionally high content of kynurenic acid in chestnut honey and flowers of chestnut tree. J. Food Compos. Analysis 2016, 48, 67–72. [Google Scholar] [CrossRef]
- Hughes, C.F.; Ward, M.; Tracey, F.; Hoey, L.; Molloy, A.M.; Pentieva, K.; McNulty, H. B-Vitamin Intake and Biomarker Status in Relation to Cognitive Decline in Healthy Older Adults in a 4-Year Follow-Up Study. Nutrients 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.A. Vitamin B6: Physiology. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: London, UK, 2013; pp. 340–350. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, P.-K.; Wang, S.-H.; Lane, H.-Y. Effect of Sodium Benzoate on Cognitive Function among Patients with Behavioral and Psychological Symptoms of Dementia. Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open. 2021, 4, e216156. [Google Scholar] [CrossRef] [PubMed]
- Jayawickrama, G.S.; Nematollahi, A.; Sun, G.; Gorrell, M.D.; Church, W.B. Inhibition of human kynurenine aminotransferase isozymes by estrogen and its derivatives. Sci. Rep. 2017, 7, 17559. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.F.; Gurevich, D.; Siegel, B.; Dumlao, M.S.; Gershon, S. Correlation between brain adrenal axis activity and cognitive impairment in Alzheimer’s disease: Is there a gender effect? Psychiatry Res. 1989, 29, 169–175. [Google Scholar] [CrossRef]
- Yurgelun-Todd, D.A.; Killgore, W.D.; Young, A.D. Sex differences in cerebral tissue volume and cognitive performance during adolescence. Psychol. Rep. 2002, 91, 743–757. [Google Scholar] [CrossRef]
- Mayeux, R. Alzheimer’s disease biomarkers—Timing is everything. N. Engl. J. Med. 2024, 390, 761–763. [Google Scholar] [CrossRef]
- Rabbito, A.; Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, B. Biochemical Markers in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1989. [Google Scholar] [CrossRef]
- Verjee, Z.H.M. Tryptophan metabolism in baboons: Effect of riboflavin and pyridoxine deficiency. Intern. J. Biochem. 1973, 2, 711–718. [Google Scholar] [CrossRef]
- Oxenkrug, G.; van der Hart, M.; Roeser, J.; Summergrad, P. Peripheral Tryptophan—Kynurenine Metabolism Associated with Metabolic Syndrome is Different in Parkinson’s and Alzheimer’s Diseases. Endocrinol. Diabetes Metab. J. 2017, 1. Available online: http://researchopenworld.com/wp-content/uploads/2017/11/EDMJ-2017-113 (accessed on 19 November 2017).
- Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci. 2010, 5, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Messamore, E.; Hoffman, W.F.; Yao, J.K. Niacin sensitivity and the arachidonic acid pathway in schizophrenia. Schizophr. Res. 2010, 122, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Jiang, G.S. Niacin-respondent subset of schizophrenia—A therapeutic review. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 988–997. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oxenkrug, G. Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin–Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging. Int. J. Mol. Sci. 2024, 25, 13269. https://doi.org/10.3390/ijms252413269
Oxenkrug G. Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin–Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging. International Journal of Molecular Sciences. 2024; 25(24):13269. https://doi.org/10.3390/ijms252413269
Chicago/Turabian StyleOxenkrug, Gregory. 2024. "Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin–Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging" International Journal of Molecular Sciences 25, no. 24: 13269. https://doi.org/10.3390/ijms252413269
APA StyleOxenkrug, G. (2024). Anthranilic Acid–G-Protein Coupled Receptor109A–Cytosolic Phospholipase A2–Myelin–Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging. International Journal of Molecular Sciences, 25(24), 13269. https://doi.org/10.3390/ijms252413269