Selenomethionine Mitigates Effects of Nocardia cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells
Abstract
1. Introduction
2. Results
2.1. Antimicrobial Susceptibility
2.2. Cytotoxicity Effects of SeMet on bMECs
2.3. Transmission Electron Microscopy (TEM) of bMECs
2.4. Gene Expression and Production of Pro-Inflammatory Cytokines
2.5. Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSH-px) Activities and MDA Concentration
2.6. N. Cyriacigeorgica Stimulated Reactive Oxygen Species (ROS)
2.7. N. cyriacigeorgica Induced Apoptosis in bMECs
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Bacterial Culture and Basic Tests
4.3. Minimum Inhibitory Concentration (MIC) Determination
4.4. Assessment of Cell Viability by CCK-8
4.5. Assessment of Lactate Dehydrogenase (LDH) Release
4.6. Transmission Electron Microscopy (TEM) of BMECs
4.7. Determination of Pro-Inflammatory Cytokines
4.8. RNA Extraction and Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR)
4.9. Determination of MDA Concentration, SOD and GSH-px Activities
4.10. Measurement of Reactive Oxygen Species (ROS) Concentrations
4.11. Determination of Apoptosis
4.12. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mushtaq, S.; Shah, A.M.; Shah, A.; Lone, S.A.; Hussain, A.; Hassan, Q.P.; Ali, M.N. Bovine mastitis: An appraisal of its alternative herbal cure. Microb. Pathog. 2018, 114, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, K.; Globan, M.; Naimo, P.; Williamson, D.A.; Lea, K.; Bond, K. Identification and antimicrobial susceptibility of referred Nocardia isolates in Victoria, Australia 2009–2019. J. Med. Microbiol. 2022, 71, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, Y.X.; Barkema, H.W.; Gao, J.; De Buck, J.; Kastelic, J.P.; Liu, G.; Ali, T.; Shahid, M.; Han, B. Short communication: Molecular characteristics, antimicrobial susceptibility, and pathogenicity of clinical Nocardia cyriacigeorgica isolates from an outbreak of bovine mastitis. J. Dairy Sci. 2017, 100, 8414–8842. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.H.; Qian, Z.W.; Mou, P.P.; Xie, L. Clinical Nocardia species: Identification, clinical characteristics, and antimicrobial susceptibility in Shandong, China. Bosn. J. Basic Med. Sci. 2020, 20, 531–538. [Google Scholar] [CrossRef]
- Conville, P.S.; Brown-Elliott, B.A.; Smith, T.; Zelazny, A.M. The complexities of Nocardia taxonomy and identification. J. Clin. Microbiol. 2017, 6, e01419-17. [Google Scholar] [CrossRef]
- Stevanović, O.; Milanov, D.; Prošić, I.; Gajdov, V.; Nedić, D.; Sladojević, Ž.; Radalj, A. Multilocus sequence analysis (MLSA) of a Nocardia cyriacigeorgica strain causing severe bovine mastitis in Bosnia and Herzegovina. Acta Vet. Hung. 2023, 71, 65–70. [Google Scholar] [CrossRef]
- Condas, L.A.Z.; de Farias, M.R.; Siqueira, A.K.; Salerno, T.; Chi, K.D.; Werner, J.; de Vargas, A.C.; Bond, G.B.; Gonoi, T.; Matsuzawa, T.; et al. Molecular identification and antimicrobial resistance pattern of Nocardia isolated from 14 diseased dogs and cats. Braz. J. Microbiol. 2023, 54, 1287–1294. [Google Scholar] [CrossRef]
- Tan, Y.E.; Chen, S.C.A.; Halliday, C.L. Antimicrobial susceptibility profiles and species distribution of medically relevant Nocardia species: Results from a large tertiary laboratory in Australia. J. Glob. Antimicrob. Resist. 2020, 20, 110–117. [Google Scholar] [CrossRef]
- Lebeaux, D.; Bergeron, E.; Berthet, J.; Djadi-Prat, J.; Mouniée, D.; Boiron, P.; Lortholary, O.; Rodriguez-Nava, V. Antibiotic susceptibility testing and species identification of Nocardia isolates: A retrospective analysis of data from a French expert laboratory, 2010–2015. Clin. Microbiol. Infect. 2019, 25, 489–495. [Google Scholar] [CrossRef]
- Li, H.; Song, F.; Duan, L.R.; Sheng, J.J.; Xie, Y.H.; Yang, Q.; Chen, Y.; Dong, Q.Q.; Zhang, B.L.; Wang, S.W. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway. Sci. Rep. 2016, 6, 23693. [Google Scholar] [CrossRef]
- Rojo de la Vega, M.; Dodson, M.; Gross, C.; Mansour, H.M.; Lantz, R.C.; Chapman, E.; Wang, T.; Black, S.M.; Garcia, J.G.; Zhang, D.D. Role of Nrf2 and autophagy in acute lung injury. Curr. Pharmacol. Rep. 2016, 2, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Ayemele, A.G.; Tilahun, M.; Lingling, S.; Elsaadawy, S.A.; Guo, Z.; Zhao, G.; Xu, J.; Bu, D. Oxidative stress in dairy cows: Insights into the mechanistic mode of actions and mitigating strategies. Antioxidants 2021, 10, 1918. [Google Scholar] [CrossRef]
- Kaja, S.; Payne, A.J.; Naumchuk, Y.; Koulen, P. Quantification of lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Curr. Protoc. Toxicol. 2017, 72, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, M.; Geng, N.; Du, Y.; Li, Z.; Gao, X.; Han, B.; Liu, J.; Liu, Y. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Vet. Res. 2022, 53, 10. [Google Scholar] [CrossRef] [PubMed]
- Damien, B.; Eike, L.; Bernardo, S.F. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar]
- Xue, B.X.; Yue, Y.L.; Zi, C.H. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep. 2019, 39, BSR20180992. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Gao, J.; Liu, G.; Zhou, M.; Yang, J.; Wang, D.; Kastelic, J.; Han, B. Selenomethionine activates selenoprotein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J. Dairy Sci. 2021, 104, 10171–10182. [Google Scholar] [CrossRef]
- Zou, Y.; Shao, J.; Li, Y.; Zhao, F.; Liu, J.; Liu, H. Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. Oxid. Med. Cell. Long. 2019, 2019, 1503478. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal Yatoo, M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. VetlQ 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Zhang, L.; Gu, X.; Liu, G.; Shahid, M.; Gao, J.; Ali, T.; Han, B. Nocardia cyriacigeogica from bovine mastitis induced in vitro apoptosis of bovine mammary epithelial cells via activation of mitochondrial-caspase pathway. Front. Cell. Infect. Microbiol. 2017, 7, 194. [Google Scholar] [CrossRef]
- Toyokawa, M.; Ohana, N.; Ueda, A.; Imai, M.; Tanno, D.; Honda, M.; Takano, Y.; Ohashi, K.; Saito, K.; Shimura, H. Identification and antimicrobial susceptibility profiles of Nocardia species clinically isolated in Japan. Sci. Rep. 2021, 11, 16742. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, X.; Xu, H.; Sun, L.; Li, C.; Guo, W.; Xiang, L.; Luo, G.; Cui, Y.; Lu, B. Clinical features, identification, antimicrobial resistance patterns of Nocardia species in China: 2009–2017. Diagn. Microbiol. Infect. Dis. 2019, 94, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Nishikawa, T.; Oka, K.; Ota, K.; Shimizu, T. How an antimicrobial stewardship team treated a Nocardia farcinica-associated brain abscess: A case report. Cureus 2024, 16, e54605. [Google Scholar] [CrossRef] [PubMed]
- Paige, E.K.; Spelman, D. Nocardiosis: 7-year experience at an Australian tertiary hospital. Intern. Med. J. 2019, 49, 373–379. [Google Scholar] [CrossRef]
- Zhuang, C.; Liu, G.; Barkema, H.W.; Zhou, M.; Xu, S.; ur Rahman, S.; Liu, Y.; Kastelic, J.P.; Gao, J.; Han, B. Selenomethionine suppressed TLR4/NF-κB pathway by activating selenoprotein S to alleviate ESBL Escherichia coli-induced inflammation in bovine mammary epithelial cells and macrophages. Front. Microbiol. 2020, 11, 1461. [Google Scholar] [CrossRef]
- Miranda, S.G.; Wang, Y.J.; Purdie, N.G.; Osborne, V.R.; Coomber, B.L.; Cant, J.P. Selenomethionine stimulates expression of glutathione peroxidase 1 and 3 and growth of bovine mammary epithelial cells in primary culture. J. Dairy Sci. 2009, 92, 2670–2683. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.; Yan, S.; Guo, X.; Zhao, Y.; Shi, B. The protective effect of selenium on the lipopolysaccharide-induced oxidative stress and depressed gene expression related to milk protein synthesis in bovine mammary epithelial cells. Biol. Trace Elem. Res. 2020, 197, 141–148. [Google Scholar] [CrossRef]
- Mavangira, V.; Sordillo, L.M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res. Vet. Sci. 2018, 116, 4–14. [Google Scholar] [CrossRef]
- Sordillo, L.M. Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 2016, 99, 4967–4982. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, X.; Yan, S.; Zhang, B.; Shi, B. Mechanism underlying the protective effect of selenium on NO-induced oxidative damage in bovine mammary epithelial cells. Biol. Trace Elem. Res. 2019, 191, 104–114. [Google Scholar] [CrossRef]
- Gong, J.; Ni, L.; Wang, D.; Shi, B.; Yan, S. Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest. Sci. 2014, 70, 84–90. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, A.; Niyogi, S. Dose and chemical species-specific effects of selenium against arsenite toxicity in cultured hepatocytes of rainbow trout (Oncorhynchus mykiss). Metallomics 2017, 9, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, S.; Wang, Z.; Liu, J. Selenium ameliorates S. aureus-induced inflammation in bovine mammary epithelial cells by regulating ROS-induced NLRP3 inflammasome. Biol. Trace Elem. Res. 2022, 200, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Miao, Y.; Dong, J.; Cui, L.; Liu, K.; Li, J.; Meng, X.; Zhu, G.; Wang, H. Selenomethionine inhibits NF-κB-mediated inflammatory responses of bovine mammary epithelial cells caused by Klebsiella pneumoniae by increasing autophagic flux. Biol. Trace Elem. Res. 2024, 202, 1568–1581. [Google Scholar] [CrossRef]
- Ma, X.M.; Xu, S.Y.; Li, J.J.; Cui, L.Y.; Dong, J.S.; Meng, X.; Zhu, G.Q.; Wang, H. Selenomethionine protected bMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway. Inter. Immunopharmacol. 2022, 110, 109027. [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Hamishehkar, H.; Shadvar, K.; Ostadi, Z.; Sanaie, S.; Saghaleini, S.H.; Nader, N.D. The effect of intravenous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol. Investig. 2019, 48, 147–159. [Google Scholar] [CrossRef]
- Wang, H.; Bi, C.; Wang, Y.; Sun, J.; Meng, X.; Li, J. Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways. BMC Vet. Res. 2018, 14, 197. [Google Scholar] [CrossRef]
- Ulasov, A.V.; Rosenkranz, A.A.; Georgiev, G.P.; Sobolev, A.S. Nrf2/Keap1/are signaling: Towards specific regulation. Life Sci. 2022, 291, 120111. [Google Scholar] [CrossRef]
- Wen, Y.; Kang, X.; Li, Z.; Xia, L.; Lu, Y. Identification of a secretory heme-binding protein from Nocardia seriolae involved in cell apoptosis. J. Fish Dis. 2022, 45, 1189–1199. [Google Scholar] [CrossRef]
- Chen, J.; Xia, L.; Wang, W.; Wang, Z.; Hou, S.; Xie, C.; Cai, J.; Lu, Y. Identification of a mitochondrial-targeting secretory protein from Nocardia seriolae which induces apoptosis in fathead minnow cells. J. Fish Dis. 2019, 42, 1493–1507. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B.B.; Wu, P.X.; Chu, Y.; Gui, S.S.; Zheng, Y.Z.; Chen, X.D. Dietary selenium alleviated mouse liver oxidative stress and NAFLD induced by obesity by regulating the KEAP1/NRF2 pathway. Antioxidants 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.G.; Purdie, N.G.; Osborne, V.R.; Coomber, B.L.; Cant, J.P. Selenomethionine increases proliferation and reduces apoptosis in bovine mammary epithelial cells under oxidative stress. J. Dairy Sci. 2011, 94, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cong, X.; Qin, K.; Yan, M.K.; Xu, X.F.; Liu, M.K.; Xu, X.; Zhang, Y.; Gao, Q.Y.; Cheng, S.Y.; et al. Se-enriched cardamine violifolia improves laying performance and regulates ovarian antioxidative function in aging laying hens. Antioxidants 2023, 12, 450. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Yang, J.; Feng, W.; Deng, G.; Xu, S.; Guo, M. Extracellular vesicles derived from selenium-deficient MAC-T cells aggravated inflammation and apoptosis by triggering the endoplasmic reticulum (ER) stress/PI3K-AKT-mTOR pathway in bovine mammary epithelial cells. Antioxidants 2023, 12, 2077. [Google Scholar] [CrossRef]
- Xie, L.; Xu, Y.; Ding, X.; Li, K.; Liang, S.; Li, D.; Wang, Y.; Fu, A.; Yu, W.; Zhan, X. Selenomethionine attenuated H2O2-induced oxidative stress and apoptosis by Nrf2 in chicken liver cells. Antioxidants 2023, 12, 1685. [Google Scholar] [CrossRef]
- CLSI M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th edtion. CLSI: Berwyn, PA, USA, 2024.
- Ross, J.E.; Scangarella-Oman, N.E.; Flamm, R.K.; Jones, R.N. Determination of disk diffusion and MIC quality control guidelines for GSK2140944, a novel bacterial type II topoisomerase inhibitor antimicrobial agent. J. Clin. Microbiol. 2014, 52, 2629–2632. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M.; Xu, S.; Khan, M.A.; Shi, Y.; Qu, W.; Gao, J.; Liu, G.; Kastelic, J.P.; Han, B. Mycoplasma bovis-generated reactive oxygen species and induced apoptosis in bovine mammary epithelial cell cultures. J. Dairy Sci. 2020, 103, 10429–10445. [Google Scholar] [CrossRef]
Antimicrobial | Nocardia cyriacigeorgica—MIC (μg/mL) | Resistance Rate (%) | MIC90 (μg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | |||
Gentamycin | 5 | 2 | 1 | 2 | 5 | 10/15 (66.7) | 512 | ||||||
Enrofloxacin | 1 | 1 | 13 | 15/15 (100) | 256 | ||||||||
Penicillin | 15 | 15/15 (100) | 512 | ||||||||||
Amoxicillin | 2 | 13 | 15/15 (100) | 256 | |||||||||
cephalonium | 1 | 2 | 12 | 15/15 (100) | 256 | ||||||||
Cefalexin | 15 | 15/15 (100) | 512 | ||||||||||
Ceftriaxone | 1 | 2 | 12 | 15/15 (100) | 256 | ||||||||
Ceftiofur | 1 | 2 | 12 | 14/15 (93.3) | 256 | ||||||||
Lincomycin | 15 | 15/15 (100) | - | ||||||||||
Erythromycin | 14 | 15/15 (100) | - |
Gene | Primer Sequence | Reference | |
---|---|---|---|
TNF-α | Upstream | 5′-ACGGGCTTTACCTCATCTACTC | Liu et al., 2020 [49] |
Downstream | 3′-GCTCTTGATGGCAGACAGG | ||
IL-1β | Upstream | 5′-AGGTGGTGTCGGTCATCGT | Liu et al., 2020 [49] |
Downstream | 3′-GCTCTCTGTCCTGGAGTTTGC | ||
IL-6 | Upstream | 5′-ATCAGAACACTGATCCAGATCC | Liu et al., 2020 [49] |
Downstream | 3′-CAAGGTTTCTCAGGATGAGG | ||
IL-8 | Upstream | 5′-ACACATTCCACACCTTTCCA | Liu et al., 2020 [49] |
Downstream | 3′-GGTTTAGGCAGACCTCGTTT | ||
GAPDH | Upstream | 5′-CATTGACCTTCACTACATGGT | Liu et al., 2020 [49] |
Downstream | 3′-ACCCTTCAAGTGAGCCCCAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assabayev, T.; Han, J.; Bahetijiang, H.; Abdrassilova, V.; Khan, M.A.; Barkema, H.W.; Liu, G.; Kastelic, J.P.; Zhou, X.; Han, B. Selenomethionine Mitigates Effects of Nocardia cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 10976. https://doi.org/10.3390/ijms252010976
Assabayev T, Han J, Bahetijiang H, Abdrassilova V, Khan MA, Barkema HW, Liu G, Kastelic JP, Zhou X, Han B. Selenomethionine Mitigates Effects of Nocardia cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells. International Journal of Molecular Sciences. 2024; 25(20):10976. https://doi.org/10.3390/ijms252010976
Chicago/Turabian StyleAssabayev, Talgat, Jinge Han, Halihaxi Bahetijiang, Venera Abdrassilova, Muhammad Asfandyar Khan, Herman W. Barkema, Gang Liu, John P. Kastelic, Xueying Zhou, and Bo Han. 2024. "Selenomethionine Mitigates Effects of Nocardia cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells" International Journal of Molecular Sciences 25, no. 20: 10976. https://doi.org/10.3390/ijms252010976
APA StyleAssabayev, T., Han, J., Bahetijiang, H., Abdrassilova, V., Khan, M. A., Barkema, H. W., Liu, G., Kastelic, J. P., Zhou, X., & Han, B. (2024). Selenomethionine Mitigates Effects of Nocardia cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells. International Journal of Molecular Sciences, 25(20), 10976. https://doi.org/10.3390/ijms252010976