The Impact of Protein Glycosylation on the Identification of Patients with Pediatric Appendicitis
Abstract
:1. Introduction
2. Results and Discussion
- If the A2G2S1#19 structure has a relative area% above 0.44, the sample could be classified into the control group with 94% sensitivity and 100% specificity (Supplementary Figure S3A).
- If the A2BG3S2#31 structure has a relative area% above 0.84, the sample could be classified into the control group with 91% sensitivity and 100% specificity (Supplementary Figure S3B).
- If the A3G3S3#34 structure has a relative area% above 0.25, the sample could be classified into the appendicitis patient group with 94% sensitivity and 100% specificity (Supplementary Figure S3C).
- If the A2G2S2#25 structure has a relative area% above 25, the sample could be classified into the appendicitis patient group with 79% sensitivity and 99% specificity (Supplementary Figure S3D).
3. Materials and Methods
3.1. Chemicals
3.2. Patient Samples
- -
- Control group
- -
- Abdominal pain control subgroup
- -
- Patients with acute appendicitis
3.3. N-Glycan Release from Serum Proteins, Labelling and Clean Up
3.4. UPLC-MS Analysis
3.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moris, D.; Paulson, E.K.; Pappas, T.N. Diagnosis and Management of Acute Appendicitis in Adults: A Review. JAMA 2021, 326, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Lapsa, S.; Ozolins, A.; Strumfa, I.; Gardovskis, J. Acute Appendicitis in the Elderly: A Literature Review on an Increasingly Frequent Surgical Problem. Geriatrics 2021, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Ferris, M.; Quan, S.; Kaplan, B.S.; Molodecky, N.; Ball, C.G.; Chernoff, G.W.; Bhala, N.; Ghosh, S.; Dixon, E.; Ng, S.; et al. The Global Incidence of Appendicitis: A Systematic Review of Population-based Studies. Ann. Surg. 2017, 266, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Alloo, J.; Gerstle, T.; Shilyansky, J.; Ein, S.H. Appendicitis in children less than 3 years of age: A 28-year review. Pediatr. Surg. Int. 2004, 19, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Jumah, S.; Wester, T. Non-operative management of acute appendicitis in children. Pediatr. Surg. Int. 2022, 39, 11. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Harada, Y.; Hiroshige, J.; Shimizu, T. Factors associated with delayed diagnosis of appendicitis in adults: A single-center, retrospective, observational study. PLoS ONE 2022, 17, e0276454. [Google Scholar] [CrossRef] [PubMed]
- Bhangu, A.; Søreide, K.; Di Saverio, S.; Assarsson, J.H.; Drake, F.T. Acute appendicitis: Modern understanding of pathogenesis, diagnosis, and management. Lancet 2015, 386, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Di Saverio, S.; Podda, M.; De Simone, B.; Ceresoli, M.; Augustin, G.; Gori, A.; Boermeester, M.; Sartelli, M.; Coccolini, F.; Tarasconi, A.; et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J. Emerg. Surg. 2020, 15, 27. [Google Scholar] [CrossRef]
- Bom, W.J.; Scheijmans, J.C.G.; Salminen, P.; Boermeester, M.A. Diagnosis of Uncomplicated and Complicated Appendicitis in Adults. Scand. J. Surg. 2021, 110, 170–179. [Google Scholar] [CrossRef]
- Salö, M.; Friman, G.; Stenström, P.; Ohlsson, B.; Arnbjörnsson, E. Appendicitis in children: Evaluation of the pediatric appendicitis score in younger and older children. Surg. Res. Pract. 2014, 2014, 438076. [Google Scholar] [CrossRef]
- Uppot, R.N. Technical challenges of imaging & image-guided interventions in obese patients. Br. J. Radiol. 2018, 91, 20170931. [Google Scholar] [CrossRef]
- Yu, C.-W.; Juan, L.-I.; Wu, M.-H.; Shen, C.-J.; Wu, J.-Y.; Lee, C.-C. Systematic review and meta-analysis of the diagnostic accuracy of procalcitonin, C-reactive protein and white blood cell count for suspected acute appendicitis. Br. J. Surg. 2012, 100, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, A.; Murchan, P.; Wilson, I.; Balfe, P. The value of hyperbilirubinaemia in the diagnosis of acute appendicitis. Ann. R. Coll. Surg. Engl. 2011, 93, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Tintor, G.; Jukić, M.; Šupe-Domić, D.; Jerončić, A.; Pogorelić, Z. Diagnostic Accuracy of Leucine-Rich α-2-Glycoprotein 1 as a Non-Invasive Salivary Biomarker in Pediatric Appendicitis. Int. J. Mol. Sci. 2023, 24, 6043. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.Z.J.; Thong, X.R.; Lau, K.Y.; Balasubramaniam, S.; Shelat, V.G. Acute appendicitis-advances and controversies. World J. Gastrointest. Surg. 2021, 13, 1293–1314. [Google Scholar] [CrossRef] [PubMed]
- Duyan, M.; Vural, N. Assessment of the Diagnostic Value of Novel Biomarkers in Adult Patients With Acute Appendicitis: A Cross-Sectional Study. Cureus 2022, 14, e32307. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Mariño, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef]
- Groux-Degroote, S.; Cavdarli, S.; Uchimura, K.; Allain, F.; Delannoy, P. Glycosylation changes in inflammatory diseases. Adv. Protein Chem. Struct. Biol. 2020, 119, 111–156. [Google Scholar] [CrossRef]
- Radovani, B.; Gudelj, I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front. Immunol. 2022, 13, 893365. [Google Scholar] [CrossRef]
- Plomp, R.; Ruhaak, L.R.; Uh, H.-W.; Reiding, K.R.; Selman, M.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; Wuhrer, M. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci. Rep. 2017, 7, 12325. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Mittermayr, S.; Váradi, C.; Bones, J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2017, 142, 700–720. [Google Scholar] [CrossRef] [PubMed]
- Molnarova, K.; Cokrtova, K.; Tomnikova, A.; Krizek, T.; Kozlik, P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. Monatshefte Für. Chem. Chem. Mon. 2022, 153, 659–686. [Google Scholar] [CrossRef] [PubMed]
- Lubis, A.; Prayudani, S.; Hamzah, M.L.; Lase, Y.; Lubis, M.; Al-Khowarizmi, A.; Hutagalung, G. Deep neural networks approach with transfer learning to detect fake accounts social media on Twitter. Indones. J. Electr. Eng. Comput. Sci. 2024, 33, 269. [Google Scholar] [CrossRef]
Glycan Structure and Disease Score Correlation (Point-Biserial Test: *** p < 0.001) | Other Glycan Structures Correlations (Spearman Test: *** p < 0.001) |
---|---|
*** A2G2S1#19 | *** A2G2#9 |
*** A2BG3S2#31 | |
*** A3G3S3#34 | |
*** A2G2S2#25 | *** FA2G1#4 |
*** FA2G1#5 | |
*** A2G2#9 | |
*** FA2G2#12 | |
*** M4G1S1#15 | |
*** A2FG2S1#20 | |
*** A2BG3S2#31 | *** A2BG3S2#29 |
*** A2G2S1#19 | |
*** A3G3S3#34 | *** A2G2S1#19 |
Laboratory data correlation with other data (Spearman test: *** p < 0.001) | |
CRP | *** A2G2S1#19 |
*** A2G2S2#25 | |
*** A2BG3S2#31 | |
WBC | *** ANC |
Test Variables | AUC | Std. Error | Asymptotic 99% Confidence Interval | |
---|---|---|---|---|
Sensitivity | Specificity | |||
A2G2S1#19 | 0.98 | 0.02 | 94% | 100% |
A2BG3S2#31 | 0.97 | 0.02 | 91% | 100% |
M7#17 | 0.92 | 0.03 | 84% | 99% |
FA2G2S2#24 | 0.88 | 0.04 | 78% | 97% |
A3G3S3#34 | 0.98 | 0.02 | 94% | 100% |
A2G2S2#25 | 0.89 | 0.04 | 79% | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dojcsák, D.; Farkas, F.; Farkas, T.; Papp, J.; Garami, A.; Viskolcz, B.; Váradi, C. The Impact of Protein Glycosylation on the Identification of Patients with Pediatric Appendicitis. Int. J. Mol. Sci. 2024, 25, 6432. https://doi.org/10.3390/ijms25126432
Dojcsák D, Farkas F, Farkas T, Papp J, Garami A, Viskolcz B, Váradi C. The Impact of Protein Glycosylation on the Identification of Patients with Pediatric Appendicitis. International Journal of Molecular Sciences. 2024; 25(12):6432. https://doi.org/10.3390/ijms25126432
Chicago/Turabian StyleDojcsák, Dalma, Flóra Farkas, Tamás Farkas, János Papp, Attila Garami, Béla Viskolcz, and Csaba Váradi. 2024. "The Impact of Protein Glycosylation on the Identification of Patients with Pediatric Appendicitis" International Journal of Molecular Sciences 25, no. 12: 6432. https://doi.org/10.3390/ijms25126432
APA StyleDojcsák, D., Farkas, F., Farkas, T., Papp, J., Garami, A., Viskolcz, B., & Váradi, C. (2024). The Impact of Protein Glycosylation on the Identification of Patients with Pediatric Appendicitis. International Journal of Molecular Sciences, 25(12), 6432. https://doi.org/10.3390/ijms25126432