The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production
Abstract
:1. Introduction
2. Results
2.1. The GMF Increases Leaf Area and Lowers Stomatal Density, but Does Not Alter the Water Content
2.2. The GMF Modulates Chloroplast Morphology
2.3. The GMF Impacts Leaf Total Protein, Carbon, Carbohydrate Content, δ13C and Chlorophyll Composition
2.4. The GMF Impacts on RubisCO Content
2.5. The GMF Impacts on the Reaction Centers and the Reduction of Quinones
2.6. The GMF Modulates the MagR Homolog Genes IScA2 and CpIScA
2.7. The GMF Impacts on ROS Production and Gene Expression
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Near Null Magnetic Field (NNMF) Generation System and Plant Exposure
4.3. Stomatal Density, Leaf Area and Relative Water Content (RWC)
4.4. Transmission Electron Microscopy and Chloroplast Morphometry
4.5. RNA Preparation, cDNA Cloning and qRT-PCR Assays
4.6. Chlorophyll and Carotenoid Extraction
4.7. Liquid Chromatography of Chlorophylls, Chlorophyll Degradation Products and Carotenoids
4.8. Total Sugar Content of Lima Bean Leaves
4.9. Total Protein Content of Lima Bean Leaves
4.10. Total Carbon and Carbon Isotope Discrimination (δ13C) Analyses
4.11. Capillary Gel Electrophoresis
4.12. RubisCO Extraction and Enzyme Activity
4.13. H2O2 Quantification
4.14. Determination of Total Peroxides Content
4.15. Chl a Fluorescence Kinetics
4.16. Membrane Preparation, Gel Electrophoresis and Immunoblotting
4.17. Electrochromic Shift Measurement
4.18. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maffei, M.E. Magnetoreception in plants. In Bioelectromagnetism. History, Foundations and Applications; Shoogo, U., Tsukasa, S., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 191–214. [Google Scholar]
- Erdmann, W.; Kmita, H.; Kosicki, J.Z.; Kaczmarek, Ł. How the geomagnetic field influences life on earth—An integrated approach to geomagnetobiology. Orig. Life Evol. Biosph. 2021, 51, 231–257. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, A.; De Santis, A.; Maffei, M.E. Magnetoreception: An unavoidable step for plant evolution? Trends Plant Sci. 2014, 19, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wiltschko, R.; Wiltschko, W. The magnetite-based receptors in the beak of birds and their role in avian navigation. J. Comp. Physiol. A-Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Wiltschko, R.; Wiltschko, W. Magnetoreception. Bioessays 2006, 28, 157–168. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Lohmann, C.M.F.; Putman, N.F. Magnetic maps in animals: Nature’s gps. J. Exp. Biol. 2007, 210, 3697–3705. [Google Scholar] [CrossRef]
- Maffei, M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 2014, 5, 445. [Google Scholar] [CrossRef]
- Kattnig, D.R.; Hore, P.J. The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers. Sci. Rep. 2017, 7, 11640. [Google Scholar] [CrossRef]
- Kattnig, D.R. Radical-pair-based magnetoreception amplified by radical scavenging: Resilience to spin relaxation. J. Phys. Chem. B 2017, 121, 10215–10227. [Google Scholar] [CrossRef]
- Hammad, M.; Albaqami, M.; Pooam, M.; Kernevez, E.; Witczak, J.; Ritz, T.; Martino, C.; Ahmad, M. Cryptochrome mediated magnetic sensitivity in arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 2020, 19, 341–352. [Google Scholar] [CrossRef]
- Agliassa, C.; Narayana, R.; Christie, J.M.; Maffei, M.E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. B 2018, 185, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Galland, P.; Ritz, T.; Wiltschko, R.; Wiltschko, W. Magnetic intensity affects cryptochrome-dependent responses in arabidopsis thaliana. Planta 2007, 225, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Albaqami, M.; Hammad, M.; Pooam, M.; Procopio, M.; Sameti, M.; Ritz, T.; Ahmad, M.; Martino, C.F. Arabidopsis cryptochrome is responsive to radiofrequency (rf) electromagnetic fields. Sci. Rep. 2020, 10, 11260. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.K.; Galland, P. Effects of weak static magnetic fields on the gene expression of seedlings of arabidopsis thaliana. J. Plant Physiol. 2018, 231, 9–18. [Google Scholar] [CrossRef]
- Izmaylov, A.F.; Tully, J.C.; Frisch, M.J. Relativistic interactions in the radical pair model of magnetic field sense in cry-1 protein of arabidopsis thaliana. J. Phys. Chem. A 2009, 113, 12276–12284. [Google Scholar] [CrossRef]
- Maeda, K.; Robinson, A.J.; Henbest, K.B.; Hogben, H.J.; Biskup, T.; Ahmad, M.; Schleicher, E.; Weber, S.; Timmel, C.R.; Hore, P. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl. Acad. Sci. USA 2012, 109, 4774–4779. [Google Scholar] [CrossRef] [PubMed]
- Pooam, M.; El-Esawi, M.; Aguida, B.; Ahmad, M. Arabidopsis cryptochrome and quantum biology: New insights for plant science and crop improvement. J. Plant Biochem. Biotechnol. 2020, 29, 636–651. [Google Scholar] [CrossRef]
- Solov’yov, I.A.; Chandler, D.E.; Schulten, K. Magnetic field effects in arabidopsis thaliana cryptochrome-1. Biophys. J. 2007, 92, 2711–2726. [Google Scholar] [CrossRef]
- Xu, C.X.; Yin, X.; Lv, Y.; Wu, C.Z.; Zhang, Y.X.; Song, T. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in arabidopsis. Adv. Space Res. 2012, 49, 834–840. [Google Scholar] [CrossRef]
- Hakala-Yatkin, M.; Sarvikas, P.; Paturi, P.; Mantysaari, M.; Mattila, H.; Tyystjarvi, T.; Nedbal, L.; Tyystjarvi, E. Magnetic field protects plants against high light by slowing down production of singlet oxygen. Physiol. Plant. 2011, 142, 26–34. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.B.; Lu, L.H.; Li, Y.Q. A mechanism of compass-free migratory navigation. J. Phys. D-Appl. Phys. 2022, 55, 9. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Chen, J.B.; Zhu, F.; Hong, Y.H. Identification of medaka magnetoreceptor and cryptochromes. Sci. China-Life Sci. 2017, 60, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Peng, X.Y.; Chen, J.B.; Wu, X.S.; Wang, Y.Q.; Hong, Y.H. Identification of zebrafish magnetoreceptor and cryptochrome homologs. Sci. China-Life Sci. 2016, 59, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Parmagnani, A.S.; D’Alessandro, S.; Maffei, M.E. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. Plant Sci. 2022, 325, 111483. [Google Scholar] [CrossRef]
- Vigani, G.; Islam, M.; Cavallaro, V.; Nocito, F.F.; Maffei, M.E. Geomagnetic field (gmf)-dependent modulation of iron-sulfur interplay in arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 10166. [Google Scholar] [CrossRef]
- Islam, M.; Maffei, M.E.; Vigani, G. The geomagnetic field is a contributing factor for an efficient iron uptake in arabidopsis thaliana. Front. Plant Sci. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Pilon, M.; Pilon-Smits, E.A.H. Cpnifs-dependent iron-sulfur cluster biogenesis in chloroplasts. New Phytol. 2006, 171, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Touraine, B.; Boutin, J.P.; Marion-Poll, A.; Briat, J.F.; Peltier, G.; Lobreaux, S. Nfu2: A scaffold protein required for 4fe-4s and ferredoxin iron-sulphur cluster assembly in arabidopsis chloroplasts. Plant J. 2004, 40, 101–111. [Google Scholar] [CrossRef]
- Satyanarayan, M.B.; Zhao, J.; Zhang, J.; Yu, F.; Lu, Y. Functional relationships of three nfu proteins in the biogenesis of chloroplastic iron-sulfur clusters. Plant Direct. 2021, 5, 13. [Google Scholar] [CrossRef]
- Rodgers, C.T.; Hore, P.J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 353–360. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Kromdijk, J. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Voznyak, V.M.; Ganago, I.B.; Moskalenko, A.A.; Elfimov, E.I. Magnetic field-induced fluorescence changes in chlorophyll-proteins enriched with p-700. Biochim. Biophys. Acta 1980, 592, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Parmagnani, A.S.; Mannino, G.; Maffei, M.E. Transcriptomics and metabolomics of reactive oxygen species modulation in near-null magnetic field-induced arabidopsis thaliana. Biomolecules 2022, 12, 1824. [Google Scholar] [CrossRef] [PubMed]
- Agliassa, C.; Narayana, R.; Bertea, C.M.; Rodgers, C.T.; Maffei, M.E. Reduction of the geomagnetic field delays arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018, 39, 361–374. [Google Scholar] [CrossRef]
- Paponov, I.A.; Fliegmann, J.; Narayana, R.; Maffei, M.E. Differential root and shoot magnetoresponses in arabidopsis thaliana. Sci. Rep. 2021, 11, 9195. [Google Scholar] [CrossRef] [PubMed]
- Bertea, C.M.; Narayana, R.; Agliassa, C.; Rodgers, C.T.; Maffei, M.E. Geomagnetic field (gmf) and plant evolution: Investigating the effects of gmf reversal on arabidospis thaliana development and gene expression. J. Visual. Exp. 2015, 105, e53286. [Google Scholar]
- Agliassa, C.; Maffei, M.E. Reduction of geomagnetic field (gmf) to near null magnetic field (nnmf) affects some arabidopsis thaliana clock genes amplitude in a light independent manner. J. Plant Physiol. 2019, 232, 23–26. [Google Scholar] [CrossRef]
- Islam, M.; Vigani, G.; Maffei, M.E. The geomagnetic field (gmf) modulates nutrient status and lipid metabolism during arabidopsis thaliana plant development. Plants 2020, 9, 1729. [Google Scholar] [CrossRef]
- Farquhar, G.; Richards, R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Tikhonov, A.N. Ph-dependent regulation of electron transport and atp synthesis in chloroplasts. Photosynth. Res. 2013, 116, 511–534. [Google Scholar]
- Bailleul, B.; Cardol, P.; Breyton, C.; Finazzi, G. Electrochromism: A useful probe to study algal photosynthesis. Photosynth. Res. 2010, 106, 179. [Google Scholar] [CrossRef]
- de Bianchi, S.; Betterle, N.; Kouril, R.; Cazzaniga, S.; Boekema, E.; Bassi, R.; Dall’Osto, L. Arabidopsis mutants deleted in the light-harvesting protein lhcb4 have a disrupted photosystem ii macrostructure and are defective in photoprotection. Plant Cell 2011, 23, 2659–2679. [Google Scholar] [CrossRef] [PubMed]
- Betterle, N.; Poudyal, R.S.; Rosa, A.; Wu, G.; Bassi, R.; Lee, C.-H. The stn8 kinase-pbcp phosphatase system is responsible for high-light-induced reversible phosphorylation of the psii inner antenna subunit cp29 in rice. Plant J. 2017, 89, 681–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardi, M.T.; Rea, G.; Lambreva, M.D.; Antonacci, A.; Pastorelli, S.; Bertalan, I.; Johanningmeier, U.; Mattoo, A.K. Mutations of photosystem ii d1 protein that empower efficient phenotypes of chlamydomonas reinhardtii under extreme environment in space. PLoS ONE 2013, 8, e64352. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.B.; Zahra, N.; Ahmad, N.; Shi, Z.; Raza, A.; Wang, X.; Li, J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol. 2023, 25, 8–23. [Google Scholar] [CrossRef]
- Wolff, S.A.; Coelho, L.H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.I. Plant mineral nutrition, gas exchange and photosynthesis in space: A review. Adv. Space Res. 2013, 51, 465–475. [Google Scholar] [CrossRef]
- Anand, A.; Nagarajan, S.; Verma, A.; Joshi, D.; Pathak, P.; Bhardwaj, J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (zea mays L.). Indian J. Biochem. Biophys. 2012, 49, 63–70. [Google Scholar]
- Baghel, L.; Kataria, S.; Guruprasad, K.N. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 2018, 56, 718–730. [Google Scholar] [CrossRef]
- Dobrota, C.; Butiuc-Keul, A.; Yamashita, M.; Craciun, C. Enzymatic activity and ultrastructural aspects of non-differentiated tissues and of plantlets maintained in shielded magnetic field. In Proceedings of the 3rd European Workshop on Exo/Astrobiology, Ctr Astrobiol, Madrid, Spain, 18–20 November 2003; Esa Publications Division C/O Estec: Ctr Astrobiol, Madrid, Spain, 2004; pp. 199–200. [Google Scholar]
- Chen, Y.p.; Li, R.; He, J.M. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology 2011, 20, 760–769. [Google Scholar] [CrossRef]
- De Souza-Torres, A.; Sueiro-Pelegrin, L.; Zambrano-Reyes, M.; Macias-Socarras, I.; Gonzalez-Posada, M.; Garcia-Fernandez, D. Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. Int. J. Radiat. Biol. 2020, 96, 951–957. [Google Scholar] [CrossRef]
- Kataria, S.; Baghel, L.; Guruprasad, K.N. Alleviation of adverse effects of ambient uv stress on growth and some potential physiological attributes in soybean (glycine max) by seed pre-treatment with static magnetic field. J. Plant Growth Regul. 2017, 36, 550–565. [Google Scholar] [CrossRef]
- Kataria, S.; Jain, M.; Rastogi, A.; Brestic, M. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-b radiation. Photosynth. Res. 2021, 150, 263–278. [Google Scholar] [CrossRef]
- Menestrino, B.D.; Sala, L.; Costa, J.A.V.; Buffon, J.G.; Santos, L.O. Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp. Bioprocess Biosyst. Eng. 2021, 44, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Narayana, R.; Fliegmann, J.; Paponov, I.; Maffei, M.E. Reduction of geomagnetic field (gmf) to near null magnetic field (nnmf) affects arabidopsis thaliana root mineral nutrition. Life Sci. Space Res. 2018, 19, 43–50. [Google Scholar] [CrossRef]
- Seibt, U.; Rajabi, A.; Griffiths, H.; Berry, J.A. Carbon isotopes and water use efficiency: Sense and sensitivity. Oecologia 2008, 155, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, F.; Dreyer, E.; Richard, B.; Brignolas, F.; Montpied, P.; Le Thiec, D. Genotype differences in c-13 discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid populus deltoides × nigra. Plant Cell Environ. 2013, 36, 87–102. [Google Scholar] [CrossRef]
- Racuciu, M.; Creanga, D.; Amoraritei, C. Biochemical changes induced by low frequency magnetic field exposure of vegetal organisms. Rom. J. Phys. 2007, 52, 645–651. [Google Scholar]
- Shine, M.B.; Guruprasad, K.N. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol. Plant. 2012, 34, 255–265. [Google Scholar] [CrossRef]
- Shine, M.; Guruprasad, K.; Anand, A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 2011, 32, 474–484. [Google Scholar] [CrossRef]
- Sarraf, M.; Deamici, K.M.; Taimourya, H.; Islam, M.; Kataria, S.; Raipuria, R.K.; Abdi, G.; Brestic, M. Effect of magnetopriming on photosynthetic performance of plants. Int. J. Mol. Sci. 2021, 22, 79353. [Google Scholar] [CrossRef]
- Hu, X.Y.; Kato, Y.; Sumida, A.; Tanaka, A.; Tanaka, R. The sufbc2d complex is required for the biogenesis of all major classes of plastid fe-s proteins. Plant J. 2017, 90, 235–248. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Ye, H.; Garifullina, G.F.; Zhang, L.H.; Pilon- Smits, E.A.H.; Pilon, M. Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein cpisca. Plant Physiol. 2005, 138, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bai, Z.C.; Ouyang, M.; Xu, X.M.; Xiong, H.B.; Wang, Q.; Grimm, B.; Rochaix, J.D.; Zhang, L.X. The dnaj proteins dja6 and dja5 are essential for chloroplast iron-sulfur cluster biogenesis. EMBO J. 2021, 40, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Xiang, Y.C.; Zhang, Y.G. The proceedings of isca that functions as a biomagnetic receptor protein (magr). Prog. Biochem. Biophys. 2016, 43, 1115–1128. [Google Scholar]
- Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R. A quantum protective mechanism in photosynthesis. Sci. Rep. 2015, 5, 8. [Google Scholar] [CrossRef]
- Liu, Y.; Edge, R.; Henbest, K.; Timmel, C.R.; Hore, P.J.; Gast, P. Magnetic field effect on singlet oxygen production in a biochemical system. Chem. Commun. 2005, 2, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Kiss, J.G.; Garab, G.I.; Tóth, Z.M.; Faludi-Dániel, Á. The light-harvesting chlorophyll a/b protein acts as a torque aligning chloroplasts in a magnetic field. Photosynth. Res. 1986, 10, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Chakraborty, M.; Raja, S.O.; Ghosh, A.; Dasgupta, M.; Dasgupta, A.K. Static magnetic field (smf) sensing of the p-723/p-689 photosynthetic complex. Photochem. Photobiol. Sci. 2014, 13, 1719–1729. [Google Scholar] [CrossRef]
- Wood, W.H.J.; Barnett, S.F.H.; Flannery, S.; Hunter, C.N.; Johnson, M.P. Dynamic thylakoid stacking is regulated by lhcii phosphorylation but not its interaction with psi. Plant Physiol. 2019, 180, 2152–2166. [Google Scholar] [CrossRef]
- Zadeh-Haghighi, H.; Simon, C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface 2022, 19, 39. [Google Scholar] [CrossRef]
- Barnes, F.; Greenebaum, B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ. Res. 2018, 163, 165–170. [Google Scholar] [CrossRef]
- Pooam, M.; Jourdan, N.; El Esawi, M.; Sherrard, R.M.; Ahmad, M. Hek293 cell response to static magnetic fields via the radical pair mechanism may explain therapeutic effects of pulsed electromagnetic fields. PLoS ONE 2020, 15, e0243038. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.P.; Singh, H.P.; Kohli, R.K.; Batish, D.R. Mobile phone radiation inhibits vigna radiata (mung bean) root growth by inducing oxidative stress. Sci. Total Environ. 2009, 407, 5543–5547. [Google Scholar] [CrossRef]
- Hoff, A.J. Magnetic field effects on photosynthetic reactions. Q. Rev. Biophys 1981, 14, 599–665. [Google Scholar] [CrossRef]
- González, L.; González-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Reigosa Roger, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar]
- Pumilia, G.; Cichon, M.J.; Cooperstone, J.L.; Giuffrida, D.; Dugo, G.; Schwartz, S.J. Changes in chlorophylls, chlorophyll degradation products and lutein in pistachio kernels (Pistacia vera L.) during roasting. Food Res. Int. 2014, 65, 193–198. [Google Scholar] [CrossRef]
- Bononi, M.; Nocito, F.F.; Tateo, F. Zeolite reduces losses and minimizes fractionation of various flavor compounds during ea-irms analysis. Food Chem. 2022, 380, 132172. [Google Scholar] [CrossRef]
- Brand, W.A.; Coplen, T.B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (iupac technical report). Pure Appl. Chem. 2014, 86, 425–467. [Google Scholar] [CrossRef]
- Sales, C.R.G.; Degen, G.E.; da Silva, A.B.; Carmo-Silva, E. Spectrophotometric determination of rubisco activity and activation state in leaf extracts. Meth. Mol. Biol. 2018, 1770, 239–250. [Google Scholar]
- Bonente, G.; Howes, B.D.; Caffarri, S.; Smulevich, G.; Bassi, R. Interactions between the photosystem ii subunit psbs and xanthophylls studied in vivo and in vitro. J. Biol. Chem. 2008, 283, 8434–8445. [Google Scholar] [CrossRef]
- Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kda. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
- Peter, G.F.; Takeuchi, T.; Philip Thornber, J. Solubilization and two-dimensional electrophoretic procedures for studying the organization and composition of photosynthetic membrane polypeptides. Methods 1991, 3, 115–124. [Google Scholar] [CrossRef]
- Kuhlgert, S.; Austic, G.; Zegarac, R.; Osei-Bonsu, I.; Hoh, D.; Chilvers, M.I.; Roth, M.G.; Bi, K.; TerAvest, D.; Weebadde, P.; et al. Multispeq beta: A tool for large-scale plant phenotyping connected to the open photosynq network. R. Soc. Open Sci. 2016, 3, 160592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | RT | GMF | NNMF | p Value |
---|---|---|---|---|
Chlorophyll a | 15.2 | 37.62 (1.65) | 25.83 (0.12) | <0.001 |
Chlorophyll b | 17.2 | 9.52 (0.52) | 7.31 (0.89) | <0.001 |
Chlorophyll a′ | 15.8 | 0.55 (0.02) | 1.79 (0.05) | <0.001 |
Chlorophyll b′ | 17.7 | 0.11 (0.01) | 0.22 (0.01) | <0.001 |
Pheophytin a | 22.7 | 0.64 (0.05) | 1.35 (0.02) | <0.001 |
Pheophytin a′ | 22.3 | 0.03 (0.01) | 0.03 (0.01) | >0.050 |
Compound | RT | GMF | NNMF | p Value |
---|---|---|---|---|
Lutein | 15.3 | 5.12 (0.05) | 3.15 (0.12) | <0.001 |
Putative xanthophyll | 18.6 | 5.12 (0.16) | 5.23 (0.09) | >0.05 |
15-cis-β-carotene | 20.8 | 3.2 (0.15) | 3.51 (0.04) | >0.05 |
13-cis-β-carotene | 21.5 | 7.63 (0.14) | 7.72 (0.25) | >0.05 |
Trans-α-carotene | 21.8 | 7.85 (0.22) | 5.78 (0.19) | <0.001 |
cis-α-carotene | 22.6 | 19.68 (0.17) | 4.54 (0.05) | <0.001 |
Trans-β-carotene | 23.1 | 108.84 (1.4) | 66.06 (1.97) | <0.001 |
9-cis-β-carotene | 23.5 | 19.21 (0.41) | 12.42 (0.39) | <0.001 |
γ-carotene | 24.2 | 4.85 (0.07) | 4.21 (0.13) | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmagnani, A.S.; Betterle, N.; Mannino, G.; D’Alessandro, S.; Nocito, F.F.; Ljumovic, K.; Vigani, G.; Ballottari, M.; Maffei, M.E. The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. Int. J. Mol. Sci. 2023, 24, 2896. https://doi.org/10.3390/ijms24032896
Parmagnani AS, Betterle N, Mannino G, D’Alessandro S, Nocito FF, Ljumovic K, Vigani G, Ballottari M, Maffei ME. The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. International Journal of Molecular Sciences. 2023; 24(3):2896. https://doi.org/10.3390/ijms24032896
Chicago/Turabian StyleParmagnani, Ambra S., Nico Betterle, Giuseppe Mannino, Stefano D’Alessandro, Fabio F. Nocito, Kristina Ljumovic, Gianpiero Vigani, Matteo Ballottari, and Massimo E. Maffei. 2023. "The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production" International Journal of Molecular Sciences 24, no. 3: 2896. https://doi.org/10.3390/ijms24032896
APA StyleParmagnani, A. S., Betterle, N., Mannino, G., D’Alessandro, S., Nocito, F. F., Ljumovic, K., Vigani, G., Ballottari, M., & Maffei, M. E. (2023). The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. International Journal of Molecular Sciences, 24(3), 2896. https://doi.org/10.3390/ijms24032896