Comparative Transcriptome Analysis between Resistant and Susceptible Pakchoi Cultivars in Response to Downy Mildew
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Identification of the Resistant Inbred Line (R) and the Susceptible Line (S)
2.2. Quality Evaluation and Analysis of RNA-Seq Data
2.3. Gene Ontology Analysis of the 1073 DEGs
2.4. Kyoto Encyclopedia of Genes and Genomes Pathway-Enrichment Analysis of the 1073 DEGs
2.5. Analysis of SA Biosynthesis and Signal Transduction after Inoculation of H. brassicae in Pakchoi
2.6. Analysis of the Differentially Expressed Genes Involved in Disease Resistance in the Plant–Pathogen Interaction Pathway
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Sample Preparation
4.2. RNA Extraction, Library Construction, and Sequencing
4.3. Transcriptome Data Analysis
4.4. Hormone-Content Detection
4.5. Exogenous Salicylic Acid Treatment
4.6. qRT-PCR Evaluation of Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, D.; Liu, S.-T.; Wei, Y.-P.; Zhou, D.-Y.; Hou, X.-L.; Li, Y.; Hu, C.-M. cDNA-AFLP Analysis Reveals Differential Gene Expression in Incompatible Interaction between Infected Non-Heading Chinese Cabbage and Hyaloperonospora Parasitica. Hortic. Res. 2016, 3, 16034. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.G.; Gunn, N.D.; Bailey, L.; Pink, D.A.C.; Holub, E.B. Genetics of Resistance to Downy Mildew in Brassica Oleracea and Breeding towards Durable Disease Control for UK Vegetable Production: Genetics of Downy Mildew Resistance in Brassica Oleracea. Plant Pathol. 2012, 61, 600–609. [Google Scholar] [CrossRef]
- Shaw, R.K.; Shen, Y.; Zhao, Z.; Sheng, X.; Wang, J.; Yu, H.; Gu, H. Molecular Breeding Strategy and Challenges towards Improvement of Downy Mildew Resistance in Cauliflower (Brassica oleracea var. botrytis L.). Front. Plant Sci. 2021, 12, 667757. [Google Scholar] [CrossRef] [PubMed]
- Brophy, T.F.; Laing, M.D. Screening of Fungicides for the Control of Downy Mildew on Container-Grown Cabbage Seedlings. Crop Prot. 1992, 11, 160–164. [Google Scholar] [CrossRef]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Zavaliev, R.; Mohan, R.; Chen, T.; Dong, X. Formation of NPR1 Condensates Promotes Cell Survival during the Plant Immune Response. Cell 2020, 182, 1093–1108.e18. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Meng, J.; Cui, Y.; Tian, M.; Shi, Z.; Wang, J. Transcriptome and Targeted Hormone Metabolome Reveal the Molecular Mechanisms of Flower Abscission in Camellia. Front. Plant Sci. 2022, 13, 1076037. [Google Scholar] [CrossRef]
- Backer, R.; Naidoo, S.; Van Den Berg, N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Front. Plant Sci. 2019, 10, 102. [Google Scholar] [CrossRef]
- Gao, T.; Yu, S.; Zhang, F.; Chen, X.; Yu, Y.; Zhang, D.; Zhao, X.; Wang, W. Expression Analysis of Major Genes Involved in Signaling Pathways during Infection of Chinese Cabbage with Hyaloperonospora Brassicae. Sci. Hortic. 2014, 167, 27–35. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Kariola, T.; Tapio Palva, E. WRKY70 Modulates the Selection of Signaling Pathways in Plant Defense. Plant J. 2006, 46, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Asai, S.; Furzer, O.J.; Cevik, V.; Kim, D.S.; Ishaque, N.; Goritschnig, S.; Staskawicz, B.J.; Shirasu, K.; Jones, J.D.G. A Downy Mildew Effector Evades Recognition by Polymorphism of Expression and Subcellular Localization. Nat. Commun. 2018, 9, 5192. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K.H.; Lei, R.; Nemri, A.; Jones, J.D.G. The Downy Mildew Effector Proteins ATR1 and ATR13 Promote Disease Susceptibility in Arabidopsis thaliana. Plant Cell 2008, 19, 4077–4090. [Google Scholar] [CrossRef] [PubMed]
- Tör, M.; Wood, T.; Webb, A.; Göl, D.; McDowell, J.M. Recent Developments in Plant-Downy Mildew Interactions. Semin. Cell Dev. Biol. 2023, 148–149, 42–50. [Google Scholar] [CrossRef]
- Yan, S.; Ning, K.; Wang, Z.; Liu, X.; Zhong, Y.; Ding, L.; Zi, H.; Cheng, Z.; Li, X.; Shan, H.; et al. CsIVP Functions in Vasculature Development and Downy Mildew Resistance in Cucumber. PLoS Biol. 2020, 18, e3000671. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cheng, X.; Wang, X.; Li, G.; Wang, B.; Wang, W.; Zhang, N.; Han, Y.; Jiao, B.; Wang, Y.; et al. Glyoxalase I-4 Functions Downstream of NAC72 to Modulate Downy Mildew Resistance in Grapevine. Plant J. 2021, 108, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Su, T.; Xin, X.; Li, P.; Wang, J.; Wang, W.; Yu, Y.; Zhao, X.; Zhang, D.; Li, D.; et al. Wall-associated Kinase BrWAK1 Confers Resistance to Downy Mildew in Brassica rapa. Plant Biotechnol. J. 2023, 21, 2125–2139. [Google Scholar] [CrossRef]
- Casagrande, K.; Falginella, L.; Castellarin, S.D.; Testolin, R.; Di Gaspero, G. Defence Responses in Rpv3-Dependent Resistance to Grapevine Downy Mildew. Planta 2011, 234, 1097–1109. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.-F.; Ma, L.-M.; Liu, T.-K.; Zhang, C.-W.; Xiao, D.; Zheng, H.-K.; Chen, F.; Hou, X.-L. A Chromosome-Level Reference Genome of Non-Heading Chinese Cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Hortic. Res. 2020, 7, 212. [Google Scholar] [CrossRef]
- Dinolfo, M.I.; Castañares, E.; Stenglein, S.A. Resistance of Fusarium Poae in Arabidopsis Leaves Requires Mainly Functional JA and ET Signaling Pathways. Fungal Biol. 2017, 121, 841–848. [Google Scholar] [CrossRef]
- Zhang, B.; Li, P.; Su, T.; Li, P.; Xin, X.; Wang, W.; Zhao, X.; Yu, Y.; Zhang, D.; Yu, S.; et al. BrRLP48, Encoding a Receptor-like Protein, Involved in Downy Mildew Resistance in Brassica Rapa. Front. Plant Sci. 2018, 9, 1708. [Google Scholar] [CrossRef] [PubMed]
- Mohr, T.J.; Mammarella, N.D.; Hoff, T.; Woffenden, B.J.; Jelesko, J.G.; McDowell, J.M. The Arabidopsis Downy Mildew Resistance Gene RPP8 Is Induced by Pathogens and Salicylic Acid and Is Regulated by W Box Cis Elements. Mol. Plant Microbe Interact. 2010, 23, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, H.; Zhi, C.; Chen, B.; Zheng, Y.; Qiao, L.; Gao, J.; Pan, Y.; Cheng, Z. Garlic Volatile Diallyl Disulfide Induced Cucumber Resistance to Downy Mildew. Int. J. Mol. Sci. 2021, 22, 12328. [Google Scholar] [CrossRef] [PubMed]
- Kandel, S.L.; Hulse-Kemp, A.M.; Stoffel, K.; Koike, S.T.; Shi, A.; Mou, B.; Van Deynze, A.; Klosterman, S.J. Transcriptional Analyses of Differential Cultivars during Resistant and Susceptible Interactions with Peronospora Effusa, the Causal Agent of Spinach Downy Mildew. Sci. Rep. 2020, 10, 6719. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Xie, L.; Wu, Y.; Qu, H.; Yang, B.; Gong, L.; Jiang, Y.; Li, T. Involvement of miRNAs-Mediated Senescence and Salicylic Acid Defense in Postharvest Litchi Downy Blight. Food Chem. 2023, 404, 134662. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, J.; Zhang, P.; Hasi, G.; Huang, Y.; Lu, J.; Zhang, Y. Response of Phytohormones and Correlation of SAR Signal Pathway Genes to the Different Resistance Levels of Grapevine against Plasmopara Viticola Infection. Plant Physiol. Biochem. 2016, 107, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Niderman, T.; Fritig, B.; Mosinger, E. Pathogenesis-Related PR-1 Proteins Are Antifungal. Plant Physiol. 1995, 108, 17–27. [Google Scholar] [CrossRef]
- Wangorsch, A.; Scheurer, S.; Blanca, M.; Blanca-Lopez, N.; Somoza, M.L.; Martín-Pedraza, L. Allergenic Properties and Molecular Characteristics of PR-1 Proteins. Front. Allergy 2022, 3, 824717. [Google Scholar] [CrossRef]
- Li, Z.T.; Dhekney, S.A.; Gray, D.J. PR-1 Gene Family of Grapevine: A Uniquely Duplicated PR-1 Gene from a Vitis Interspecific Hybrid Confers High Level Resistance to Bacterial Disease in Transgenic Tobacco. Plant Cell Rep. 2011, 30, 1–11. [Google Scholar] [CrossRef]
- Chandrashekar, N.; Ali, S.; Grover, A. Exploring Expression Patterns of PR-1, PR-2, PR-3, and PR-12 like Genes in Arabidopsis Thaliana upon Alternaria Brassicae Inoculation. 3 Biotech 2018, 8, 230. [Google Scholar] [CrossRef]
- Sarowar, S.; Kim, Y.J.; Kim, E.N.; Kim, K.D.; Hwang, B.K.; Islam, R.; Shin, J.S. Overexpression of a Pepper Basic Pathogenesis-Related Protein 1 Gene in Tobacco Plants Enhances Resistance to Heavy Metal and Pathogen Stresses. Plant Cell Rep. 2005, 24, 216–224. [Google Scholar] [CrossRef]
- Zaynab, M.; Peng, J.; Sharif, Y.; Al-Yahyai, R.; Jamil, A.; Hussain, A.; Khan, K.A.; Alotaibi, S.S.; Li, S. Expression Profiling of Pathogenesis-Related Protein-1 (PR-1) Genes from Solanum Tuberosum Reveals Its Critical Role in Phytophthora Infestans Infection. Microb. Pathog. 2021, 161, 105290. [Google Scholar] [CrossRef]
- Gamir, J.; Darwiche, R.; van’t Hof, P.; Choudhary, V.; Stumpe, M.; Schneiter, R.; Mauch, F. The Sterol-Binding Activity of PATHOGENESIS-RELATED PROTEIN 1 Reveals the Mode of Action of an Antimicrobial Protein. Plant J. 2017, 89, 502–509. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, J.; Bai, Y.; Ban, L.; Ren, J.; Shang, Q.; Li, W. Identification of CNGCs in Glycine Max and Screening of Related Resistance Genes after Fusarium Solani Infection. Biology 2023, 12, 439. [Google Scholar] [CrossRef]
- Meena, M.K.; Prajapati, R.; Krishna, D.; Divakaran, K.; Pandey, Y.; Reichelt, M.; Mathew, M.K.; Boland, W.; Mithöfer, A.; Vadassery, J. The Ca2+ Channel CNGC19 Regulates Arabidopsis Defense Against Spodoptera Herbivory. Plant Cell 2019, 31, 1539–1562. [Google Scholar] [CrossRef]
- Yoshioka, K.; Kachroo, P.; Tsui, F.; Sharma, S.B.; Shah, J.; Klessig, D.F. Environmentally Sensitive, SA-Dependent Defense Responses in the Cpr22 Mutant of Arabidopsis. Plant J. 2001, 26, 447–459. [Google Scholar] [CrossRef]
- Yoshioka, K.; Moeder, W.; Kang, H.-G.; Kachroo, P.; Masmoudi, K.; Berkowitz, G.; Klessig, D.F. The Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen Resistance Responses. Plant Cell 2006, 18, 747–763. [Google Scholar] [CrossRef]
- Urquhart, W.; Gunawardena, A.H.L.A.N.; Moeder, W.; Ali, R.; Berkowitz, G.A.; Yoshioka, K. The Chimeric Cyclic Nucleotide-Gated Ion Channel ATCNGC11/12 Constitutively Induces Programmed Cell Death in a Ca2+ Dependent Manner. Plant Mol. Biol. 2007, 65, 747–761. [Google Scholar] [CrossRef]
- Gao, X.; Cox, K., Jr.; He, P. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity. Plants 2014, 3, 160–176. [Google Scholar] [CrossRef]
- Chiasson, D.; Ekengren, S.K.; Martin, G.B.; Dobney, S.L.; Snedden, W.A. Calmodulin-like Proteins from Arabidopsis and Tomato Are Involved in Host Defense against Pseudomonas syringae pv. tomato. Plant Mol. Biol. 2005, 58, 887–897. [Google Scholar] [CrossRef]
- Midhat, U.; Ting, M.K.Y.; Teresinski, H.J.; Snedden, W.A. The Calmodulin-like Protein, CML39, Is Involved in Regulating Seed Development, Germination, and Fruit Development in Arabidopsis. Plant Mol. Biol. 2018, 96, 375–392. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY Transcription Factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef]
- Merz, P.R.; Moser, T.; Höll, J.; Kortekamp, A.; Buchholz, G.; Zyprian, E.; Bogs, J. The Transcription Factor VvWRKY33 Is Involved in the Regulation of Grapevine (Vitis vinifera) Defense against the Oomycete Pathogen Plasmopara viticola. Physiol. Plantarum. 2015, 153, 365–380. [Google Scholar] [CrossRef]
- Marchive, C.; Léon, C.; Kappel, C.; Coutos-Thévenot, P.; Corio-Costet, M.-F.; Delrot, S.; Lauvergeat, V. Over-Expression of VvWRKY1 in Grapevines Induces Expression of Jasmonic Acid Pathway-Related Genes and Confers Higher Tolerance to the Downy Mildew. PLoS ONE 2013, 8, e54185. [Google Scholar] [CrossRef]
- Li, C.; Bai, Y.; Jacobsen, E.; Visser, R.; Lindhout, P.; Bonnema, G. Tomato Defense to the Powdery Mildew Fungus: Differences in Expression of Genes in Susceptible, Monogenic- and Polygenic Resistance Responses Are Mainly in Timing. Plant Mol. Biol. 2006, 62, 127–140. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell 2004, 16, 319–331. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Miao, L.; Li, X.; Liu, Y.; Xi, D.; Zhang, D.; Gao, L.; Zhu, Y.; Dai, S.; Zhu, H. Comparative Transcriptome Analysis between Resistant and Susceptible Pakchoi Cultivars in Response to Downy Mildew. Int. J. Mol. Sci. 2023, 24, 15710. https://doi.org/10.3390/ijms242115710
Chen Y, Miao L, Li X, Liu Y, Xi D, Zhang D, Gao L, Zhu Y, Dai S, Zhu H. Comparative Transcriptome Analysis between Resistant and Susceptible Pakchoi Cultivars in Response to Downy Mildew. International Journal of Molecular Sciences. 2023; 24(21):15710. https://doi.org/10.3390/ijms242115710
Chicago/Turabian StyleChen, Yaosong, Liming Miao, Xiaofeng Li, Yiwen Liu, Dandan Xi, Dingyu Zhang, Lu Gao, Yuying Zhu, Shaojun Dai, and Hongfang Zhu. 2023. "Comparative Transcriptome Analysis between Resistant and Susceptible Pakchoi Cultivars in Response to Downy Mildew" International Journal of Molecular Sciences 24, no. 21: 15710. https://doi.org/10.3390/ijms242115710
APA StyleChen, Y., Miao, L., Li, X., Liu, Y., Xi, D., Zhang, D., Gao, L., Zhu, Y., Dai, S., & Zhu, H. (2023). Comparative Transcriptome Analysis between Resistant and Susceptible Pakchoi Cultivars in Response to Downy Mildew. International Journal of Molecular Sciences, 24(21), 15710. https://doi.org/10.3390/ijms242115710