TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Compendium
2.2. Interactome Prediction Tool
2.3. BLAST Search
2.4. Advanced Search
2.5. Functional Annotations
2.6. Validation and Use Cases of TritiKBdb
HPIs of Experimentally Validated Karnal Bunt Virulence Proteins
3. Materials and Methods
3.1. TritiKBdb Interface
3.2. Dataset Collection and Processing
3.3. Working of the Interactomics Tool
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kataria, R.; Kaundal, R. Deciphering the Host-Pathogen Interactome of the Wheat-Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat. Int. J. Mol. Sci. 2022, 23, 2589. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Jones, D.R. Arguments for a Low Risk of Establishment of Karnal Bunt Disease of Wheat in Europe. Eur. J. Plant Pathol. 2007, 118, 93–104. [Google Scholar] [CrossRef]
- Bishnoi, S.K.; He, X.; Phuke, R.M.; Kashyap, P.L.; Alakonya, A.; Chhokar, V.; Singh, R.P.; Singh, P.K. Karnal Bunt: A Re-Emerging Old Foe of Wheat. Front. Plant Sci. 2020, 11, 569057. [Google Scholar] [CrossRef]
- Kumar, S.; Singroha, G.; Singh, G.P.; Sharma, P. Karnal Bunt of Wheat: Etiology, Breeding and Integrated Management. Crop Prot. 2021, 139, 105376. [Google Scholar] [CrossRef]
- Tan, M.K.; Brennan, J.P.; Wright, D.; Murray, G.M. A Review of the Methodology to Detect and Identify Karnal Bunt-a Serious Biosecurity Threat. Australas. Plant Pathol. 2013, 42, 95–102. [Google Scholar] [CrossRef]
- McNeil, M.; Roberts, A.M.I.; Cockerell, V.; Mulholland, V. Real-Time PCR Assay for Quantification of Tilletia Caries Contamination of UK Wheat Seed. Plant Pathol. 2004, 53, 741–750. [Google Scholar] [CrossRef]
- Kataria, R.; Kaundal, R. Deciphering the Crosstalk Mechanisms of Wheat-Stem Rust Pathosystem: Genome-Scale Prediction Unravels Novel Host Targets. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Kataria, R.; Kaundal, R. AlfaNET: A Database of Alfalfa-Bacterial Stem Blight Protein–Protein Interactions Revealing the Molecular Features of the Disease-Causing Bacteria. Int. J. Mol. Sci. 2021, 22, 8342. [Google Scholar] [CrossRef]
- Jo, E.K. Interplay between Host and Pathogen: Immune Defense and Beyond. Exp. Mol. Med. 2019, 51, 19–21. [Google Scholar] [CrossRef]
- Loaiza, C.D.; Duhan, N.; Lister, M.; Kaundal, R. In silico prediction of host–pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets. Brief. Bioinform. 2020. [Google Scholar] [CrossRef]
- Kataria, R.; Duhan, N.; Kaundal, R. Computational Systems Biology of Alfalfa–Bacterial Blight Host-Pathogen Interactions: Uncovering the Complex Molecular Networks for Developing Durable Disease Resistant Crop. Front. Plant Sci. 2022, 12, 807354. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M.S.; Hashem, A.; Abd_Allah, E.F.; Ansari, M.I. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. Front. Plant Sci. 2021, 12, 631810. [Google Scholar] [CrossRef]
- Pandey, V.; Singh, M.; Pandey, D.; Kumar, A. Integrated Proteomics, Genomics, Metabolomics Approaches Reveal Oxalic Acid as Pathogenicity Factor in Tilletia Indica Inciting Karnal Bunt Disease of Wheat. Sci. Rep. 2018, 8, 7826. [Google Scholar] [CrossRef]
- Kumar, V.; Baweja, M.; Singh, P.K.; Shukla, P. Recent Developments in Systems Biology and Metabolic Engineering of Plant–Microbe Interactions. Front. Plant Sci. 2016, 7, 1421. [Google Scholar] [CrossRef]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems Biology of Plant-Microbiome Interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef] [Green Version]
- Kataria, R.; Kaundal, R. WeCoNET: A host–pathogen interactome database for deciphering crucial molecular networks of wheat-common bunt cross-talk mechanisms. Plant Methods 2022, 18, 1–11. [Google Scholar] [CrossRef]
- Scott, M.S.; Calafell, S.J.; Thomas, D.Y.; Hallett, M.T. Refining Protein Subcellular Localization. PLoS Comput. Biol. 2005, 1, e66. [Google Scholar] [CrossRef]
- Mirzaei Mehrabad, E.; Hassanzadeh, R.; Eslahchi, C. PMLPR: A Novel Method for Predicting Subcellular Localization Based on Recommender Systems. Sci. Rep. 2018, 8, 12006. [Google Scholar] [CrossRef]
- Basu, M.K.; Poliakov, E.; Rogozin, I.B. Domain Mobility in Proteins: Functional and Evolutionary Implications. Brief. Bioinform. 2009, 10, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, R.; Jamil, S.; Ahmad, S.; Nisar, A.; Amina, Z.; Saleem, S.; Zaffar Iqbal, M.; Muhammad Atif, R.; Wang, X. Harnessing the Potential of Plant Transcription Factors in Developing Climate Resilient Crops to Improve Global Food Security: Current and Future Perspectives. Saudi J. Biol. Sci. 2021, 28, 2323–2341. [Google Scholar] [CrossRef]
- Snelders, N.C.; Kettles, G.J.; Rudd, J.J.; Thomma, B.P.H.J. Plant Pathogen Effector Proteins as Manipulators of Host Microbiomes? Mol. Plant Pathol. 2018, 19, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sehgal, D.; Kumar, S.; Arif, M.A.R.; Vikram, P.; Sansaloni, C.P.; Fuentes-Dávila, G.; Ortiz, C. GWAS Revealed a Novel Resistance Locus on Chromosome 4D for the Quarantine Disease Karnal Bunt in Diverse Wheat Pre-Breeding Germplasm. Sci. Rep. 2020, 10, 5999. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.C.; Autrique, J.E.; Fuentes-Dávila, G.; Sorrells, M.E. Chromosomal Location of Genes for Resistance to Karnal Bunt in Wheat. Crop Sci. 1998, 38, 231–236. [Google Scholar] [CrossRef]
- Emebiri, L.; Singh, S.; Tan, M.K.; Singh, P.K.; Fuentes-Dávila, G.; Ogbonnaya, F. Unravelling the Complex Genetics of Karnal Bunt (Tilletia Indica) Resistance in Common Wheat (Triticum Aestivum) by Genetic Linkage and Genome-Wide Association Analyses. G3 Genes Genomes Genet. 2019, 9, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; He, X.; Kumar, N.; Fuentes-Davila, G.; Sharma, R.K.; Dreisigacker, S.; Juliana, P.; Ataei, N.; Singh, P.K. Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan. Int. J. Mol. Sci. 2019, 20, 3124. [Google Scholar] [CrossRef] [Green Version]
- Jan, R.; Asaf, S.; Numan, M.; Lubna, N.M.; Kim, K.M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968–975. [Google Scholar] [CrossRef]
- Huang, C.; Verrillo, F.; Renzone, G.; Arena, S.; Rocco, M.; Scaloni, A.; Marra, M. Response to Biotic and Oxidative Stress in Arabidopsis Thaliana: Analysis of Variably Phosphorylated Proteins. J. Proteom. 2011, 74, 1934–1949. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Nedo, A.; Caplan, J.L.; Dinesh-Kumar, S.P. Plant–Microbe Interactions: Organelles and the Cytoskeleton in Action. New Phytol. 2018, 217, 1012–1028. [Google Scholar] [CrossRef] [Green Version]
- Fox, E.M.; Howlett, B.J. Secondary Metabolism: Regulation and Role in Fungal Biology. Curr. Opin. Microbiol. 2008, 11, 481–487. [Google Scholar] [CrossRef]
- Pandey, V.; Gupta, A.K.; Singh, M. Complementary Proteomics, Genomics approaches identifies potential pathogenicity/virulence factors in Tilletia indica induced under the influence of host factor. Sci. Rep. 2019, 9, 553. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Sahu, S.S.; Loaiza, C.D.; Kaundal, R. Plant-MSubP: A Computational Framework for the Prediction of Single- And Multi-Target Protein Subcellular Localization Using Integrated Machine-Learning Approaches. AoB PLANTS 2021, 12, plz068. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P.N. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. Mol. Plant-Microbe Interact. MPMI 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Tian, F.; Yang, D.C.; Meng, Y.Q.; Jin, J.; Gao, G. PlantRegMap: Charting Functional Regulatory Maps in Plants. Nucleic Acids Res. 2020, 48, D1104–D1113. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Chatr-Aryamontri, A.; Oughtred, R.; Boucher, L.; Rust, J.; Chang, C.; Kolas, N.K.; O’Donnell, L.; Oster, S.; Theesfeld, C.; Sellam, A.; et al. The BioGRID Interaction Database: 2017 Update. Nucleic Acids Res. 2017, 45, D369–D379. [Google Scholar] [CrossRef]
- Salwinski, L.; Miller, C.S.; Smith, A.J.; Pettit, F.K.; Bowie, J.U.; Eisenberg, D. The Database of Interacting Proteins: 2004 Update. Nucleic Acids Res. 2004, 32, 449–451. [Google Scholar] [CrossRef] [Green Version]
- Ammari, M.G.; Gresham, C.R.; McCarthy, F.M.; Nanduri, B. HPIDB 2.0: A Curated Database for Host-Pathogen Interactions. Database J. Biol. Databases Curation 2016, 2016, baw103. [Google Scholar] [CrossRef]
- Kerrien, S.; Aranda, B.; Breuza, L.; Bridge, A.; Broackes-Carter, F.; Chen, C.; Duesbury, M.; Dumousseau, M.; Feuermann, M.; Hinz, U.; et al. The IntAct Molecular Interaction Database in 2012. Nucleic Acids Res. 2012, 40, 841–846. [Google Scholar] [CrossRef]
- Licata, L.; Briganti, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma, A.; Nardozza, A.P.; Santonico, E.; et al. MINT, the Molecular Interaction Database: 2012 Update. Nucleic Acids Res. 2012, 40, 857–861. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Mosca, R.; Céol, A.; Stein, A.; Olivella, R.; Aloy, P. 3did: A Catalog of Domain-Based Interactions of Known Three-Dimensional Structure. Nucleic Acids Res. 2014, 42, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Raghavachari, B.; Tasneem, A.; Przytycka, T.M.; Jothi, R. DOMINE: A Database of Protein Domain Interactions. Nucleic Acids Res. 2008, 36, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Min, B.; Yi, G.S. IDDI: Integrated Domain-Domain Interaction and Protein Interaction Analysis System. Proteome Sci. 2012, 10, S9. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models. Genome Res. 1971, 13, 426. [Google Scholar] [CrossRef]
Species | Source | Number of Proteins | |
---|---|---|---|
Downloaded | CD-HIT | ||
Triticum aestivum | Ensembl Plants (https://plants.ensembl.org/index.html, accessed on 8 April 2022) | 133,346 | 104,701 |
Triticum turgidum | Ensembl Plants (https://plants.ensembl.org/index.html, accessed on 8 April 2022) | 196,105 | 65,409 |
Tilletia indica | Ensembl Fungi (https://fungi.ensembl.org/index.html, accessed on 8 April 2022) | 9548 | 9533 |
Functional Annotation | Tool | Link | Reference |
---|---|---|---|
Subcellular localization | Plant-mSubP (Host) | http://bioinfo.usu.edu/Plant-mSubP/ (Accessed on 14 April 2022) | [34] |
DeepLoc 1.0 (Pathogen) | https://services.healthtech.dtu.dk/service.php?DeepLoc-1.0 (Accessed on 15 April 2022) | [35] | |
Effector proteins | EffectorP 3.0 | https://effectorp.csiro.au/ (Accessed on 11 April 2022) | [36] |
Secretory proteins | SignalP 6.0 | https://services.healthtech.dtu.dk/service.php?SignalP (Accessed on 11 April 2022) | [37] |
Transcription factors | PlantTFDB v5.0 | http://planttfdb.gao-lab.org/ (Accessed on 11 April 2022) | [38] |
Functional domains | InterProScan | https://www.ebi.ac.uk/interpro/ (Accessed on 15 April 2022) | [39] |
Database | Total Interactions | Link to Database |
---|---|---|
BioGRID | 2,381,484 | https://thebiogrid.org/ (accessed on 27 April 2022) |
DIP | 76,882 | http://dip.doe-mbi.ucla.edu/ (accessed on 27 April 2022) |
HPIDB | 69,365 | https://hpidb.igbb.msstate.edu/ (accessed on 27 April 2022) |
IntAct | 1,184,057 | http://www.ebi.ac.uk/intact/ (accessed on 27 April 2022) |
MINT | 132,249 | http://mint.bio.uniroma2.it/ (accessed on 27 April 2022) |
ArabiHPI | 983 | Manually curated |
STRING | 4,313,229 | https://string-db.org/ (accessed on 27 April 2022) |
3did | 11,200 | https://3did.irbbarcelona.org/ (accessed on 27 April 2022) |
DOMINE | 26,219 | https://manticore.niehs.nih.gov/cgi-bin/Domine (accessed on 27 April 2022) |
IDDI | 204,716 | http://pcode.kaist.ac.kr/iddi/ (accessed on 27 April 2022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duhan, N.; Kataria, R.; Kaundal, R. TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. Int. J. Mol. Sci. 2022, 23, 7455. https://doi.org/10.3390/ijms23137455
Duhan N, Kataria R, Kaundal R. TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. International Journal of Molecular Sciences. 2022; 23(13):7455. https://doi.org/10.3390/ijms23137455
Chicago/Turabian StyleDuhan, Naveen, Raghav Kataria, and Rakesh Kaundal. 2022. "TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem" International Journal of Molecular Sciences 23, no. 13: 7455. https://doi.org/10.3390/ijms23137455