Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Animals
4.2. Peptide and Drug
4.3. Stereotaxic Surgery
4.4. Design and Procedure
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abtahi, S.; VanderJagt, H.L.; Currie, P.J. The Glucagon-Like Peptide-1 Analog Exendin-4 Antagonizes the effect of Acyl Ghrelin on the Respiratory Exchange Ratio. Neuroreport 2016, 27, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Cepko, L.C.S.; Selva, J.A.; Merfeld, E.B.; Fimmel, A.I.; Goldberg, S.A.; Currie, P.J. Ghrelin Alters the Stimulatory Effect of Cocaine on Ethanol Intake Following Mesolimbic or Systemic Administration. Neuropharmacology 2014, 85, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; et al. Ghrelin. Mol. Metab. 2015, 4, 437–460. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a Growth-Hormone-Releasing Acylated Peptide from Stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Edwards, A.; Abizaid, A. Clarifying the Ghrelin System’s Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int. J. Mol. Sci. 2017, 18, 859. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, S.; Howell, E.; Currie, P.J. Accumbal Ghrelin and Glucagon-Like Peptide 1 Signaling in Alcohol Reward in Female Rats. Neuroreport 2018, 29, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, V.; Watts, A.; Abizaid, A. Ghrelin Enhances Cue-Induced Bar Pressing for High Fat Food. Horm. Behav. 2016, 78, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Suchankova, P.; Steensland, P.; Fredriksson, I.; Engel, J.A.; Jerlhag, E. Ghrelin Receptor (GHS-R1A) Antagonism Suppresses Both Alcohol Consumption and the Alcohol Deprivation Effect in Rats following Long-Term Voluntary Alcohol Consumption. PLoS ONE 2013, 8, e71284. [Google Scholar] [CrossRef]
- Skibicka, K.P.; Hansson, C.; Alvarez-Crespo, M.; Friberg, P.A.; Dickson, S.L. Ghrelin Directly Targets the Ventral Tegmental Area to Increase Food Motivation. Neuroscience 2011, 180, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Skibicka, K.P.; Shirazi, R.H.; Rabasa-Papio, C.; Alvarez-Crespo, M.; Neuber, C.; Vogel, H.; Dickson, S.L. Divergent Circuitry Underlying Food Reward and Intake Effects of Ghrelin: Dopaminergic VTA-Accumbens Projection Mediates Ghrelin’s Effect on Food Reward but Not Food Intake. Neuropharmacology 2013, 73, 274–283. [Google Scholar] [CrossRef]
- Jerlhag, E.; Janson, A.C.; Waters, S.; Engel, J.A. Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats. PLoS ONE 2012, 7, e49557. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.A.; Nylander, I.; Jerlhag, E. A Ghrelin Receptor (GHS-R1A) Antagonist Attenuates the Rewarding Properties of Morphine and Increases Opioid Peptide Levels in Reward Areas in Mice. Eur. Neuropsychopharmacol. 2015, 25, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Zallar, L.J.; Beurmann, S.; Tunstall, B.J.; Fraser, C.M.; Koob, G.F.; Vendruscolo, L.F.; Leggio, L. Ghrelin Receptor Deletion Reduces Binge-Like Alcohol Drinking in Rats. J. Neuroendocrinol. 2018, e12663. [Google Scholar] [CrossRef] [PubMed]
- Schuette, L.M.; Gray, C.C.; Currie, P.J. Microinjection of Ghrelin into the Ventral Tegmental Area Potentiates Cocaine-Induced Conditioned Place Preference. J. Behav. Brain Sci. 2013, 3, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, S.; Howell, E.; Salvucci, J.T.; Bastacky, J.M.R.; Dunn, D.P.; Currie, P.J. Exendin-4 Antagonizes the Metabolic Action of Acylated Ghrelinergic Signaling in the Hypothalamic Paraventricular Nucleus. Gen. Comp. Endocrinol. 2019, 270, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.J.; John, C.S.; Nicholson, M.L.; Chapman, C.D.; Loera, K.E. Hypothalamic Paraventricular 5-Hydroxytryptamine Inhibits the Effects of Ghrelin on Eating and Energy Substrate Utilization. Pharmacol. Biochem. Behav. 2010, 97, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Alhadeff, A.L.; Rupprecht, L.E.; Hayes, M.R. GLP-1 Neurons in the Nucleus of the Solitary Tract Project Directly to the Ventral Tegmental Area and Nucleus Accumbens to Control for Food Intake. Endocrinology 2012, 153, 647–658. [Google Scholar] [CrossRef]
- Merchenthaler, I.; Lane, M.; Shughrue, P. Distribution of Pre-Pro-Glucagon and Glucagon-Like Peptide-1 Receptor Messenger RNAs in the Rat Central Nervous System. J. Comp. Neurol. 1999, 403, 261–280. [Google Scholar] [CrossRef]
- Egecioglu, E.; Steensland, P.; Fredriksson, I.; Feltmann, K.; Engel, J.A.; Jerlhag, E. The Glucagon-Like Peptide 1 Analogue Exendin-4 Attenuates Alcohol Mediated behaviors in Rodents. Psychoneuroendocrinology 2013, 38, 1259–1270. [Google Scholar] [CrossRef]
- Sirohi, S.; Schurdak, J.D.; Seeley, R.J.; Benoit, S.C.; Davis, J.F. Central & Peripheral Glucagon-Like Peptide-1 Receptor Signaling Differentially Regulate Addictive Behaviors. Physiol. Behav. 2016, 161, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, N.S.; Ige, K.Y.; Mietlicki-Baase, E.G.; Molina-Castro, G.C.; Turner, C.A.; Hayes, M.R.; Schmidt, H.D. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Attenuates Cocaine Seeking in Rats. Neuropsychopharmacology 2018, 10, 2000–2008. [Google Scholar] [CrossRef] [PubMed]
- Browne, C.J.; Fletcher, P.J. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor. Neuropsychopharmacology 2016, 41, 2566–2576. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, P.J.; Chintoh, A.F.; Sinyard, J.; Higgins, G.A. Injection of the 5-HT2C Receptor Agonist Ro60-0175 into the Ventral Tegmental Area Reduces Cocaine-Induced Locomotor Activity and Cocaine Self-Administration. Neuropsychopharmacology 2004, 29, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Price, A.E.; Anastasio, N.C.; Stutz, S.J.; Hommel, J.D.; Cunningham, K.A. Serotonin 5-HT2C Receptor Activation Suppresses Binge Intake and the Reinforcing and Motivational Properties of High-Fat Food. Front. Pharmacol. 2018, 9, 821. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; He, Y.; Cao, X.; Valencia-Torres, L.; Yan, X.; Saito, K.; Wang, C.; Yang, Y.; Hinton, A., Jr.; Zhu, L.; et al. Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice. Biol. Psychiatry 2017, 81, 737–747. [Google Scholar] [CrossRef]
- Valencia-Torres, L.; Olarte-Sánchez, C.M.; Lyons, D.J.; Georgescu, T.; Greenwald-Yarnell, M.; Myers, M.G.; Bradshaw, C.M.; Heisler, L.K. Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation. Neuropsychopharmacology 2017, 42, 1511–1521. [Google Scholar] [CrossRef]
- Bubar, M.J.; Stutz, S.J.; Cunningham, K.A. 5-HT2C Receptors Localize to Dopamine and GABA Neurons in the Rat Mesoaccumbens Pathway. PLoS ONE 2011, 6, e20508. [Google Scholar] [CrossRef]
- Browne, C.J.; Abela, A.R.; Chu, D.; Li, Z.; Ji, X.; Lambe, E.K.; Fletcher, P.J. Dorsal Raphe Serotonin Neurons Inhibit Operant Responding for Reward via Inputs to the Ventral Tegmental Area but Not the Nucleus Accumbens: Evidence From Studies Combining Optogenetic Stimulation and Serotonin Reuptake Inhibition. Neuropsychopharmacology 2018, 1–12. [Google Scholar] [CrossRef]
- Bake, T.; Edvardsson, C.E.; Cummings, C.J.; Dickson, S.L. Ghrelin’s Effects on Food Motivation in Rats Are Not Limited to Palatable Foods. J. Neuroendocrinol. 2018, e12665. [Google Scholar] [CrossRef]
- King, S.J.; Isaacs, A.M.; O’Farrell, E.; Abizaid, A. Motivation to Obtain Preferred Foods is Enhanced by Ghrelin in the Ventral Tegmental Area. Horm. Behav. 2011, 60, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Skov, L.J.; Jensen, M.; Christiansen, S.H.; Ratner, C.; Woldbye, D.P.D.; Holst, B. Exploring the Behavioral and Metabolic Phenotype Generated by Re-Introduction of the Ghrelin Receptor in the Ventral Tegmental Area. Int. J. Mol. Sci. 2017, 18, 914. [Google Scholar] [CrossRef] [PubMed]
- Dailey, M.J.; Moran, T.H.; Holland, P.C.; Johnson, A.W. The Antagonism of Ghrelin Alters the Appetitive Response to Learned Cues Associated with Food. Behav. Brain Res. 2016, 303, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, R.H.; Hansson, C.; Fenander, M.; Richard, J.E.; Dickson, S.L.; Nissbrandt, H.; Bergquist, F.; Skibicka, K.P. The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior. Neuropsychopharmacology 2016, 41, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, M.P.; Barrile, F.; De Francesco, P.N.; Portiansky, E.L.; Reynaldo, M.; Perello, M. Ghrelin Recruits Specific Subsets of Dopamine and GABA Neurons of Different Ventral Tegmental Area Sub-nuclei. Neuroscience 2018, 392, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Jerlhag, E. GLP-1 Signaling and Alcohol-Mediated Behaviors; Preclinical and Clinical Evidence. Neuropharmacology 2018, 136, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Mietlicki-Baase, E.G.; Ige, K.Y.; Maurer, J.J.; Reiner, D.J.; Zimmer, D.J.; Van Nest, D.S.; Guercio, L.A.; Wimmer, M.E.; Olivos, D.R.; et al. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine. Neuropsychopharmacology 2016, 41, 1917–1928. [Google Scholar] [CrossRef]
- Gagnon, J.; Baggio, L.L.; Drucker, D.J.; Brubaker, P.L. Ghrelin Is a Novel Regulator of GLP-1 Secretion. Diabetes 2015, 64, 1513–1521. [Google Scholar] [CrossRef]
- Lindqvist, A.; Shcherbina, L.; Fischer, A.-H.T.; Wierup, N. Ghrelin Is a Regulator of Glucagon-Like Peptide 1 Secretion and Transcription in Mice. Front. Endocrinol. 2017, 8, 135. [Google Scholar] [CrossRef]
- Dalvi, P.S.; Nazarians-Armavil, A.; Purser, M.J.; Belsham, D.D. Glucagon-Like Peptide-1 Receptor Agonist, Exendin-4, Regulates Feeding-Associated Neuropeptides in Hypothalamic Neurons in Vivo and in Vitro. Endocrinology 2012, 153, 2208–2222. [Google Scholar] [CrossRef]
- Fletcher, P.J.; Sinyard, J.; Higgins, G.A. Genetic and Pharmacological Evidence That 5-HT2C Receptor Activation, but Not Inhibition, Affects Motivation to Feed Under a Progressive Ratio Schedule of Reinforcement. Pharmacol. Biochem. Behav. 2010, 97, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, R.H.; Richard, J.E.; Eerola, K.; Ferreras, L.L.; Nordbeck, E.B.; Hansson, C.; Nissbrandt, H.; Bergquist, F.; Gribble, F.M.; Reimann, F.; et al. Glucagon-Like Peptide-1 and its Analogues Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight. Diabetes 2017, 66, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, Z.Y.; Nicholson, M.L.; Currie, P.J. 6-Hydroxydopamine Lesions of the Ventral Tegmental Area Suppress Ghrelin’s Ability to Elicit Food-Reinforced Behavior. Neurosci. Lett. 2011, 499, 70–73. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Gao, Y.; Alhadeff, A.L.; Castorena, C.M.; Huang, Y.; Lieu, L.; Afrin, S.; Sun, J.; Betley, J.N.; Guo, H.; et al. Cellular and Synaptic Reorganization of Arcuate NPY/AgRP and POMC Neurons after Exercise. Mol. Metab. 2018, 18, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Zagmutt, S.; Mera, P.; Soler-Vázquez, M.C.; Herrero, L.; Serra, D. Targeting AgRP Neurons to Maintain Energy Balance: Lessons from Animal Models. Biochem. Pharmacol. 2018, 155, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-R.; Chen, H.; Zhou, J.-J.; Pradhan, G.; Sun, Y.; Pan, H.-L.; Li, D.-P. Ghrelin Receptors Mediate Ghrelin-Induced Excitation of Agouti-Related Protein/Neuropeptide Y but Not pro-Opiomelanocortin Neurons. J. Neurochem. 2017, 142, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Cowley, M.A.; Smith, R.G.; Diano, S.; Tschöp, M.; Pronchuk, N.; Grove, K.L.; Strasburger, C.J.; Bidlingmaier, M.; Esterman, M.; Heiman, M.L.; et al. The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron 2003, 37, 649–661. [Google Scholar] [CrossRef]
- Hashiguchi, H.; Sheng, Z.; Routh, V.; Gerzanich, V.; Simard, J.M.; Bryan, J. Direct versus Indirect Actions of Ghrelin on Hypothalamic NPY Neurons. PLoS ONE 2017, 12, e0184261. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a Gastrointestinal Hormone, Regulates Energy Balance and Lipid Metabolism. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gronert, M.S.; Stocker, C.J.; Wargent, E.T.; Cripps, R.L.; Garfield, A.S.; Jovanovic, Z.; D’Agostino, G.; Yeo, G.S.H.; Cawthorne, M.A.; Arch, J.R.S.; et al. 5-HT2A and 5-HT2C Receptors as Hypothalamic Targets of Developmental Programming in Male Rats. Dis. Models Mech. 2016, 9, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Romanova, I.V.; Derkach, K.V.; Mikhrina, A.L.; Sukhov, I.B.; Mikhailova, E.V.; Shpakov, A.O. The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem. Res. 2018, 43, 821–837. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.R.; Baik, J.-H. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake. Endocrinol. Metab. 2015, 30, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C. POMC Neurons: Feeding, Energy Metabolism, and Beyond. Adv. Exp. Med. Biol. 2018, 1090, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.J.; Coiro, C.D.; Niyomchai, T.; Lira, A.; Farahmand, F. Hypothalamic Paraventricular 5-Hydroxytryptamine: Receptor-Specific Inhibition of NPY-Stimulated Eating and Energy Metabolism. Pharmacol. Biochem. Behav. 2002, 71, 709–716. [Google Scholar] [CrossRef]
- Currie, P.J.; Saxena, N.; Tu, A.Y. 5-HT(2A/2C) Receptor Antagonists in the Paraventricular Nucleus Attenuate the Action of DOI on NPY-Stimulated Eating. Neuroreport 1999, 10, 3033–3036. [Google Scholar] [CrossRef] [PubMed]
- Borkar, C.D.; Upadhya, M.A.; Shelkar, G.P.; Subhedar, N.K.; Kokare, D.M. Neuropeptide Y System in Accumbens Shell Mediates Ethanol Self-Administration in Posterior Ventral Tegmental Area. Addict. Biol. 2016, 21, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.J.; Upadhya, M.A.; Subhedar, N.K.; Kokare, D.M. NPY Mediates Reward Activity of Morphine, via NPY Y1 Receptors, in the Nucleus Accumbens Shell. Behav. Brain Res. 2013, 247, 79–91. [Google Scholar] [CrossRef]
- Skibicka, K.P.; Hansson, C.; Egecioglu, E.; Dickson, S.L. Role of Ghrelin in Food Reward: Impact of Ghrelin on Sucrose Self-Administration and Mesolimbic Dopamine and Acetylcholine Receptor Gene Expression. Addict. Biol. 2012, 17, 95–107. [Google Scholar] [CrossRef]
- Skibicka, K.P.; Shirazi, R.H.; Hansson, C.; Dickson, S.L. Ghrelin Interacts with Neuropeptide Y Y1 and Opioid Receptors to Increase Food Reward. Endocrinology 2012, 153, 1194–1205. [Google Scholar] [CrossRef]
- Sørensen, G.; Jensen, M.; Weikop, P.; Dencker, D.; Christiansen, S.H.; Loland, C.J.; Bengtsen, C.H.; Petersen, J.H.; Fink-Jensen, A.; Wörtwein, G.; et al. Neuropeptide Y Y5 Receptor Antagonism Attenuates Cocaine-Induced Effects in Mice. Psychopharmacology 2012, 222, 565–577. [Google Scholar] [CrossRef]
- West, K.S.; Roseberry, A.G. Neuropeptide-Y alters VTA Dopamine Neuron Activity Through Both Pre- and Post-Synaptic Mechanisms. J. Neurophysiol. 2017, 118, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Sustkova-Fiserova, M.; Charalambous, C.; Havlickova, T.; Lapka, M.; Jerabek, P.; Puskina, N.; Syslova, K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Jiang, C.; Liu, P.; Wang, F.; Ma, L. Mesolimbic Leptin Signaling Negatively Regulates Cocaine-Conditioned Reward. Transl. Psychiatry 2016, 6, e972. [Google Scholar] [CrossRef] [PubMed]
- Van der Plasse, G.; van Zessen, R.; Luijendijk, M.C.M.; Erkan, H.; Stuber, G.D.; Ramakers, G.M.J.; Adan, R.A.H. Modulation of Cue-Induced Firing of Ventral Tegmental Area Dopamine Neurons by Leptin and Ghrelin. Int. J. Obes. 2015, 39, 1742–1749. [Google Scholar] [CrossRef]
- You, Z.-B.; Wang, B.; Liu, Q.-R.; Wu, Y.; Otvos, L.; Wise, R.A. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology 2016, 41, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Omrani, A.; Luijendijk, M.C.M.; de Vrind, V.A.J.; Van Rozen, A.J.; Ophuis, R.J.O.; Garner, K.; Kallo, I.; Ghanem, A.; Liposits, Z.; et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology 2016, 41, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.; Taylor, J.R.; Newton, S.S.; Alvaro, J.D.; Haile, C.; Han, G.; Hruby, V.J.; Nestler, E.J.; Duman, R.S. Blockade of Melanocortin Transmission Inhibits Cocaine Reward. Eur. J. Neurosci. 2005, 21, 2233–2242. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 7th ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howell, E.; Baumgartner, H.M.; Zallar, L.J.; Selva, J.A.; Engel, L.; Currie, P.J. Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. Int. J. Mol. Sci. 2019, 20, 889. https://doi.org/10.3390/ijms20040889
Howell E, Baumgartner HM, Zallar LJ, Selva JA, Engel L, Currie PJ. Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. International Journal of Molecular Sciences. 2019; 20(4):889. https://doi.org/10.3390/ijms20040889
Chicago/Turabian StyleHowell, Erin, Hannah M. Baumgartner, Lia J. Zallar, Joaquín A. Selva, Liv Engel, and Paul J. Currie. 2019. "Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward" International Journal of Molecular Sciences 20, no. 4: 889. https://doi.org/10.3390/ijms20040889
APA StyleHowell, E., Baumgartner, H. M., Zallar, L. J., Selva, J. A., Engel, L., & Currie, P. J. (2019). Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. International Journal of Molecular Sciences, 20(4), 889. https://doi.org/10.3390/ijms20040889