Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity
Abstract
1. Background
2. Phylogenetic Inference and Divergence Time Estimation
3. Macaronesian Islands as Model Systems in Evolution
4. Phylogenetic Resolution and Divergence Time Estimation among Macaronesian Insular Groups–Case-Study Using A Meta-Analysis of Reptile Data
5. The Potential of Phylogenomics to Understand Evolutionary Relationships in Insular Lineages
6. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- López-Fernández, H.; Duque, P.; Henriques, S.; Vázquez, N.; dez-Riverola, F.; Vieira, C.P.; Reboiro-Jato, M.; Viera, J. Bioinformatics Protocols for Quickly Obtaining Large-Scale Data Sets for Phylogenetic Inferences. Interdiscip. Sci. Comput. Life Sci. 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, T.; Akhtar, R.; Aldebert, F.; Althorpe, N.; Andersson, M.; Baldwin, A.; Bates, K.; Bhattacharyya, S.; Bower, L.; Browne, P.; et al. EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Res. 2007, 35. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013, 41, D43–D47. [Google Scholar]
- Kodama, Y.; Mashima, J.; Kaminuma, E.; Gojobori, T.; Ogasawara, O.; Takagi, T.; Okubo, K.; Nakamura, Y. The DNA Data Bank of Japan Launches a New Resource, the DDBJ Omics Archive of Functional Genomics Experiments. Nucleic Acids Res. 2012, 40. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.R.; Campbell, P.J.; Andrew, P.F. The Cancer Genome. Nature 2009, 458, 719–724. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef]
- Vasconcelos, R.; Brito, J.C.; Carranza, S.; Harris, D.J. Review of the distribution and conservation status of the terrestrial reptiles of the Cape Verde Islands. Oryx 2013, 47, 77–87. [Google Scholar] [CrossRef]
- Romeiras, M.M.; Catarino, S.; Gomes, I.; Fernandes, C.; Costa, J.C.; Caujapé-Castells, J.; Duarte, M.C. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 2016, 180, 413–425. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Methods for Computing Wagner Trees. Syst. Biol. 1970, 19, 83–92. [Google Scholar] [CrossRef]
- Fitch, W.M. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Carine, M.A.; Francisco-Ortega, J.; Santos-Guerra, A.; Russell, S.J. Relationships of island and continental floras: Molecular evidence for multiple colonisations into Macaronesia and subsequent back-colonisation of the continent in Convolvulus L. Am. J. Bot. 2004, 91, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Francisco-Ortega, J.; Barber, J.; Santos-Guerra, A.; Febles-Hernández, R.; Jansen, R.K. Origin and evolution of the endemic genera of Gonosperminae (Asteraceae: Anthemideae) from the Canary Islands: Evidence from nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA. Am. J. Bot. 2001, 88, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Helfgott, D.M.; Franciso-Ortega, F.; Santos-Guerra, A.; Jansen, R.K.; Simpson, B.B. Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia based on ITS sequence data. Syst. Bot. 2000, 25, 82–97. [Google Scholar] [CrossRef]
- Panero, J.L.; Francisco-Ortega, J.; Jansen, R.K.; Santos-Guerra, A. Molecular evidence for multiple origins of woodiness and a New World biogeographic connection of the Macaronesian Island endemic Pericallis (Asteraceae: Senecioneae). Proc. Natl. Acad. Sci. USA 1999, 96, 13886–13891. [Google Scholar] [CrossRef]
- Dias, E.F.; Kilian, N.; Silva, L.; Schaefer, H.; Carine, M.; Rudall, P.J.; Santos-Guerra, A.; Moura, M. Phylogeography of the Macaronesian Lettuce Species Lactuca watsoniana and L. palmensis (Asteraceae). Biochem. Genet. 2018, 56, 315. [Google Scholar] [CrossRef]
- Fernández-Mazuecos, M.; Vargas, P. Genetically depauperate in the continent but rich in oceanic islands: Cistus monspeliensis (Cistaceae) in the Canary Islands. PLoS ONE 2011, 6, e17172. [Google Scholar] [CrossRef] [PubMed]
- Menezes, T.; Romeiras, M.M.; Sequeira, M.M.; Moura, M. Phylogenetic relationships and phylogeography of relevant lineages within the complex Campanulaceae family in Macaronesia. Ecol. Evol. 2017, 8, 88–108. [Google Scholar] [CrossRef]
- Cox, S.C.; Carranza, S.; Brown, R.P. Divergence Times and Colonization of the Canary Islands by Gallotia Lizards. Mol. Phylogenet. Evol. 2010, 56, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Carranza, S.; Arnold, E.N. review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa 2012, 3378, 1–95. [Google Scholar] [CrossRef]
- Aldrich, J.R.A. Fisher and the Making of Maximum Likelihood 1912–1922. Stat. Sci. 1997, 12, 162–176. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F.; Nielsen, R.; Bollback, J.P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Rannala, B. Molecular Phylogenetics: Principles and Practice. Nat. Rev. Genet. 2012, 13, 303–314. [Google Scholar] [CrossRef]
- Yang, Z.; Rannala, B. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo Method. Mol. Biol. Evol. 1997, 14, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pearl, D.; Doss, H. Phylogenetic tree reconstruction using Markov chain Monte Carlo. J. Am. Stat. Assoc. 2000, 95, 493–508. [Google Scholar] [CrossRef][Green Version]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony; Version 4; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Franzke, A.; Samani, B.S.; Neuffer, B.; Mummenhoff, K.; Hurka, H. Molecular evidence in Diplotaxis (Brassicaceae) suggests a Quaternary origin of the Cape Verdean flora. Plant Syst. Evol. 2017, 303, 467–479. [Google Scholar] [CrossRef]
- Romeiras, M.M.; Paulo, O.S.; Duarte, M.C.; Pina-Martins, F.; Cotrim, M.H.; Carine, M.A.; Pais, M.S. Origin and diversification of the genus Echium (Boraginaceae) in the Cape Verde archipelago. Taxon 2011, 60, 1375–1385. [Google Scholar] [CrossRef]
- Thiv, M.; Thulin, M.; Hjertson, M.; Kropf, M.; Linder, H.P. Evidence for a vicariant origin of Macaronesian-Eritreo/Arabian disjunctions in Campylanthus Roth (Plantaginaceae). Mol. Phylogenet. Evol. 2010, 54, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Vitales, D.; Garnatje, T.; Pellicer, J.; Vallès, J.; Santos-Guerra, A.; Sanmartín, I. The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia. BMC Evol. Biol. 2014, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Carranza, S.; Arnold, E.N.; Geniez, Ph.; Roca, J.; Mateo, J.A. Radiation, Multiple Dispersal and Parallelism in the Skinks, Chalcides and Sphenops (Squamata: Scincidae), with Comments on Scincus and Scincopus and the Age of the Sahara Desert. Mol. Phylogenet. Evol. 2008, 46, 1071–1094. [Google Scholar] [CrossRef] [PubMed]
- Crottini, A.; Madsen, O.; Poux, C.; Strauss, A.; Vieites, D.R.; Vences, M. Vertebrate Time-Tree Elucidates the Biogeographic Pattern of a Major Biotic Change around the K-T Boundary in Madagascar. Proc. Natl. Acad. Sci. USA 2012, 109, 5358–5363. [Google Scholar] [CrossRef] [PubMed]
- Karin, B.R.; Metallinou, M.; Weinell, J.L.; Jackman, T.R.; Bauer, A.M. Resolving the Higher-Order Phylogenetic Relationships of the Circumtropical Mabuya Group (Squamata: Scincidae): An out-of-Asia Diversification. Mol. Phylogenet. Evol. 2016, 102, 220–232. [Google Scholar] [CrossRef]
- Metallinou, M.; Weinell, J.L.; Karin, B.R.; Conradie, W.; Wagner, P.; Schmitz, A.; Jackman, T.R.; Bauer, A.M. A Single Origin of Extreme Matrotrophy in African Mabuyine Skinks. Biol. Lett. 2016, 12, 20160430. [Google Scholar] [CrossRef]
- Miralles, A.; Vasconcelos, R.; Perera, A.; Harris, D.J.; Carranza, S. An Integrative Taxonomic Revision of the Cape Verdean Skinks (Squamata, Scincidae). Zoologica Scripta 2011, 40, 16–44. [Google Scholar] [CrossRef]
- Carranza, S.; Harris, D.J.; Arnold, E.N.; Batista, V.; de La Vega, J.P.G. Phylogeography of the Lacertid Lizard, Psammodromus algirus, in Iberia and across the Strait of Gibraltar. J. Biogeogr. 2006, 33, 1279–1288. [Google Scholar] [CrossRef]
- Agarwal, I.; Bauer, A.M.; Jackman, T.R.; Karanth, K.P. Insights into Himalayan Biogeography from Geckos: A Molecular Phylogeny of Cyrtodactylus (Squamata: Gekkonidae). Mol. Phylogenet. Evol. 2014, 80, 145–155. [Google Scholar] [CrossRef]
- Bansal, R.; Karanth, K.P. Phylogenetic Analysis and Molecular Dating Suggest That Hemidactylus anamallensis Is Not a Member of the Hemidactylus Radiation and Has an Ancient Late Cretaceous Origin. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Carranza, S.; Arnold, E.N. Systematics, Biogeography, and Evolution of Hemidactylus Geckos (Reptilia: Gekkonidae) Elucidated Using Mitochondrial DNA Sequences. Mol. Phylogenet. Evol. 2006, 38, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Gamble, T.; Bauer, A.M.; Colli, G.R.; Greenbaum, E.; Jackman, T.R.; Vitt, L.J.; Simons, A.M. Coming to America: Multiple Origins of New World Geckos: Origins of New World Geckos. J. Evol. Biol. 2011, 24, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Porta, J.; Morales, H.E.; Gómez-Díaz, E.; Sindaco, R.; Carranza, S. Patterns of Diversification in Islands: A Comparative Study across Three Gecko Genera in the Socotra Archipelago. Mol. Phylogenet. Evol. 2016, 98, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Šmíd, J.; Carranza, S.; Kratochvíl, L.; Gvoždík, V.; Nasher, A.K.; Moravec, J. Out of Arabia: A Complex Biogeographic History of Multiple Vicariance and Dispersal Events in the Gecko Genus Hemidactylus (Reptilia: Gekkonidae). PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Carranza, S.; Arnold, E.N.; Mateo, J.A.; Geniez, P. Relationships and Evolution of the North African Geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), Based on Mitochondrial and Nuclear DNA Sequences. Mol. Phylogenet. Evol. 2002, 23, 244–256. [Google Scholar] [CrossRef]
- Rato, C.; Carranza, S.; Harris, D.J. Evolutionary History of the Genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, Estimated Using Multilocus Sequence Data. BMC Evol. Biol. 2012, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.; Carranza, S.; Harris, D.J. Insight into an Island Radiation: The Tarentola Geckos of the Cape Verde Archipelago. J. Biogeogr. 2010, 37, 1047–1060. [Google Scholar] [CrossRef]
- Posada, D. JModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016, msw260. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F.P. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Delsuc, F.; Dufayard, J.F.; Gascuel, O. Estimating Maximum Likelihood Phylogenies with PhyML. Methods Mol. Biol. 2009, 537, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Zwickl, D.J. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2006. [Google Scholar]
- Koutroumpa, K.; Theodoridis, S.; Warren, B.H.; Jiménez, A.; Celep, F.; Doğan, M.; Romeiras, M.M.; Santos-Guerra, A.; Fernández-Palacios, J.M.; Caujapé-Castells, J.; et al. An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecol. Evol. 2018, 8, 12397–12424. [Google Scholar] [CrossRef] [PubMed]
- Bromham, L.; Duchêne, S.; Hua, X.; Ritchie, A.M.; Duchêne, D.A.; Ho, S.Y. Bayesian molecular dating: Opening up the black box. Biol. Rev. 2018, 93, 1165–1191. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Bouckaert, R.R. Bayesian Evolutionary Analysis with BEAST; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.G.; Wu, C.-H.; Xie, D.; Suchard, M.; Rambaut, A.; Drummond, A.J. Beast2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2013, 10, 1003537. [Google Scholar] [CrossRef]
- Ogilvie, H.A.; Bouckaert, R.R.; Drummond, A.J. StarBEAST2 Brings Faster Species Tree Inference and Accurate Estimates of Substitution Rates. Mol. Biol. Evol. 2017, 34, 2101–2114. [Google Scholar] [CrossRef]
- Belfiore, N.M.; Liu, L.; Moritz, C. Multilocus Phylogenetics of a Rapid Radiation in the Genus Thomomys (Rodentia: Geomyidae). Syst. Biol. 2008, 57, 294–310. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A Computer Program to Estimate Gene Genealogies. Mol. Ecol. 2010, 9, 1657–1659. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Romeiras, M.M.; Monteiro, F.; Duarte, M.C.; Schaefer, H.; Carine, M. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands. AoB Plants 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.; Moura, M.; Belo Maciel, M.G.; Silva, L.; Rumsey, F.J.; Carine, M.A. The Linnean shortfall in oceanic island biogeography: A case study in the Azores. J. Biogeogr. 2011, 38, 1345–1355. [Google Scholar] [CrossRef]
- Romeiras, M.M.; Vieira, A.; Silva, D.N.; Moura, M.; Santos-Guerra, A.; Batista, D.; Duarte, M.C.; Paulo, O. Evolutionary and Biogeographic Insights on the Macaronesian Beta-Patellifolia Species (Amaranthaceae) from a Time-Scaled Molecular Phylogeny. PLoS ONE 2016, 11, e0152456. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J.; Borregaard, M.K.; Triantis, K.A. Island biogeography: Taking the long view of nature’s laboratories. Science 2017, 357, eaam8326. [Google Scholar] [CrossRef]
- Warren, B.H.; Simberloff, D.; Ricklefs, R.E.; Aguilee, R.; Condamine, F.L.; Gravel, D.; Morlon, H.; Mouquet, N.; Rosindell, J.; Casquet, J.; et al. Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecol. Lett. 2015, 18, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Price, J.P.; Otto, R.; Menezes de Sequeira, M.; Kueffer, C.; Schaefer, H.; Caujapé-Castells, J.; Fernández-Palacios, J.M. Colonization and diversification shape species–area relationships in three Macaronesian archipelagos. J. Biogeogr. 2018, 45, 2027–2039. [Google Scholar] [CrossRef]
- Alarcón, M.; Roquet, C.; García-Fernández, A.; Vargas, P.; Aldasoro, J.J. Phylogenetic and phylogeographic evidence for a Pleistocene disjunction between Campanula jacobaea (Cape Verde Islands) and C. balfourii (Socotra). Mol. Phylogen. Evol. 2013, 69, 828–836. [Google Scholar] [CrossRef]
- Ojeda, D.I.; Santos-Guerra, A.; Oliva-Tejera, F.; Jaen-Molina, R.; Caujapé-Castells, J.; Marrero-Rodríguez, Á.; Cronk, Q. DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa. AoB Plants 2014, 6, plu050. [Google Scholar] [CrossRef][Green Version]
- Ávila, S.P.; Melo, C.; Berning, B.; Cordeiro, R.; Landau, B.; Marques, C. Persististrombus Coronatus (Mollusca: Strombidae) in the Lower Pliocene of Santa Maria Island (Azores, NE Atlantic): Paleoecology, Paleoclimatology and Paleobiogeographic Implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 912–923. [Google Scholar] [CrossRef]
- Ramalho, R.S. Building the Cape Verde Islands, 1st ed.; Springer: Berlin, Germany, 2011; p. 207. [Google Scholar] [CrossRef]
- Torres, P.; Silva, L.; Serralheiro, A.; Tassinari, C.; Munhá, J. Enquadramento geocronológico pelo método K/Ar das principais sequências vulcano-estratigráficas da Ilha do Sal—Cabo Verde. Garcia de Orta Serviços Geológicos 2002, 18, 9–13. [Google Scholar]
- Fernández-Palacios, J.M.; Rijsdijk, K.F.; Norder, S.J.; Otto, R.; de Nascimento, L.; Fernández-Lugo, S.; Tjørve, E.; Whittaker, R.J. Towards a glacial-sensitive model of island biogeography. Global Ecol. Biogeogr. 2016, 25, 817–830. [Google Scholar] [CrossRef]
- Weigelt, P.; Steinbauer, M.J.; Cabral, J.S.; Kreft, H. Late Quaternary climate change shapes island biodiversity. Nature 2016, 532, 99. [Google Scholar] [CrossRef] [PubMed]
- Ávila, S.P.; Cordeiro, R.; Madeira, P.; Silva, L.; Medeiros, A.; Rebelo, A.C.; Melo, C.; Neto, A.I.; Haroun, R.; Monteiro, A.; et al. Global Change Impacts on Large-Scale Biogeographic Patterns of Marine Organisms on Atlantic Oceanic Islands. Mar. Pollut. Bull. 2018, 126, 101–112. [Google Scholar] [CrossRef]
- Shaffer, H.B.; Pauly, G.B.; Oliver, J.C.; Trenham, P.C. The molecular phylogenetics of endangerment: Cryptic variation and historical phylogeography of the California tiger salamander, Ambystoma californiense. Mol. Ecol. 2004, 13, 3033–3049. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, Z.; Brown, R.P.; Liao, P.; Liu, N. Intraspecific lineages of the lizard Phrynocephalus putjatia from the Qinghai-Tibetan Plateau: Impact of physical events on divergence and discordance between morphology and molecular markers. Mol. Phylog. Evol. 2014, 71, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, N.; Brown, R.P. The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Sci. Rep. 2017, 7, 2281. [Google Scholar] [CrossRef]
- Arnold, E.N.; Vasconcelos, R.; Harris, D.J.; Mateo, J.A.; Carranza, S. Systematics, biogeography and evolution of the endemic Hemidactylus geckos (Reptilia, Squamata, Gekkonidae) of the Cape Verde Islands: Based on morphology and mitochondrial and nuclear DNA sequences. Zool. Scr. 2008, 37, 619–636. [Google Scholar] [CrossRef]
- Vasconcelos, R.; Perera, A.; Geniez, P.; Harris, D.J.; Carranza, S. An integrative taxonomic revision of the Tarentola geckos (Squamata, Phyllodactylidae) of the Cape Verde Islands. Zool. J. Linn. Soc. 2002, 164, 328–360. [Google Scholar] [CrossRef]
- Pinho, C.; Santos, B.; Mata, V.; Seguro, M.; Romeiras, M.M.; Lopes, R.; Vasconcelos, R. What Is the Giant Wall Gecko Having for Dinner? Conservation Genetics for Guiding Reserve Management in Cabo Verde. Genes 2018, 9, 599. [Google Scholar] [CrossRef]
- Carranza, S.; Arnold, E.N. Lizards (Reptilia, Scincidae) crossed the Atlantic twice. Syst. Biol. 2003, 1, 275–282. [Google Scholar] [CrossRef]
- Datta-Roy, A.; Singh, M.; Srinivasulu, C.; Karanth, K.P. Phylogeny of the Asian Eutropis (Squamata: Scincidae) reveals an “into India” endemic Indian radiation. Mol. Phylog. Evol. 2012, 63, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Mausfeld, P.; Schmitz, A.; Böhme, W.; Misof, B.; Vrcibradic, D.; Rocha, C.F.D. Phylogenetic affinities of Mabuya atlantica Schmidt, 1945, endemic to the Atlantic Ocean archipelago of Fernando de Noronha (Brazil): Necessity of partitioning the genus Mabuya Fitzinger, 1826 (Scincidae: Lygosominae). Zool. Anz. 2002, 241, 281–293. [Google Scholar] [CrossRef]
- Ho, S.Y.W.; Phillips, M.J. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst. Biol. 2009, 58, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Parham, J.F.; Donoghue, P.C.; Bell, C.J.; Calway, T.D.; Head, J.J.; Holroyd, P.A.; Inoue, J.G.; Irmis, R.B.; Jouce, W.G.; Ksepka, D.T.; et al. Best practices for justifying fossil calibrations. Syst. Biol. 2011, 61, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Walker, J.F.; Brown, J.; Walker-Hale, N. Nested phylogenetic conflicts, combinability, and deep phylogenomics in plants. bioRxiv 2018, 371930. [Google Scholar] [CrossRef]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, N. Phylotranscriptomic Analysis of the Origin and Early Diversification of Land Plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef] [PubMed]
- Nater, A.; Burri, R.; Kawakami, T.; Smeds, L.; Ellegren, H. Resolving evolutionary relationships in closely related species with whole-genome sequencing data. Syst. Biol. 2015, 64, 1000–1017. [Google Scholar] [CrossRef] [PubMed]
- Mort, M.E.; Crawford, D.J.; Kelly, J.K.; Santos-Guerra, A.; Menezes de Sequeira, M.; Moura, M.; Caujapé-Castells, J. Multiplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineage. Am. J. Bot. 2015, 102, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wiens, J.J. Combining Phylogenomic and Supermatrix Approaches, and a Time-Calibrated Phylogeny for Squamate Reptiles (Lizards and Snakes) Based on 52 Genes and 4162 Species. Mol. Phylogenet. Evol. 2016, 94, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Zong, D.; Gan, P.; Zhou, A.; Zhang, Y.; Zou, X.; Duan, A.; Song, Y.; He, C. Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae. Front. Plant Sci. 2019, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Twyford, A.D.; Ness, R.W. Strategies for complete plastid genome sequencing. Mol. Ecol. Resour. 2017, 17, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-J.; Hinsinger, D.D.; Elias, R.B.; Strijk, J.S. The plastome sequence of Laurus azorica (Seub.) Franco, an endemic tree species of the Azores islands. Mitochondrial DNA Part B 2019, 4, 363–365. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the Power of RADseq for Ecological and Evolutionary Genomics. Nat. Rev. Genet. 2016, 2, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Catchen, J.M.; Hohenlohe, P.A.; Bernatchez, L.; Funk, W.C.; Andrews, K.R.; Allendorf, F.W. Unbroken: RADseq Remains a Powerful Tool for Understanding the Genetics of Adaptation in Natural Populations. Mol. Ecol. Resour. 2017, 17, 362–365. [Google Scholar] [CrossRef] [PubMed]
- McKinney, G.J.; Larson, W.A.; Seeb, L.W.; Seeb, J.E. RAD seq provides unprecedented insights into molecular ecology and evolutionary genetics: Comment on Breaking RAD by Lowry et al. Mol. Ecol. Resour. 2017, 17, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Ree, R.H.; Hipp, A.L. Inferring Phylogenetic History from Restriction Site Associated DNA (RADseq). In Next-Generation Sequencing in Plant Systematics, 1st ed.; Hörandl, E., Appelhans, M.S., Eds.; Koeltz Scientific Books: Oberreifenberg, Germany, 2015; p. 298. [Google Scholar] [CrossRef]
- Lowry, D.B.; Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Reed, L.K.; Antolin, M.F.; Storfer, A. Breaking RAD: An Evaluation of the Utility of Restriction Site-Associated DNA Sequencing for Genome Scans of Adaptation. Mol. Ecol. Resour. 2017, 17, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.B.; Silva, S.E.; Pina-Martins, F.; Loureiro, J.; Castro, M.; Gharbi, K.; Johnson, K.P.; Dietrich, C.H.; Borges, P.A.V.; Quartau, J.A.; et al. Assessing Genotype-Phenotype Associations in Three Dorsal Colour Morphs in the Meadow Spittlebug Philaenus Spumarius (L.) (Hemiptera: Aphrophoridae) Using Genomic and Transcriptomic Resources. BMC Genet. 2016, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Grewe, F.; Huang, J.-P.; Leavitt, S.D.; Lumbsch, H.T. Reference-Based RADseq Resolves Robust Relationships among Closely Related Species of Lichen-Forming Fungi Using Metagenomic DNA. Sci. Rep. 2017, 7, 9884. [Google Scholar] [CrossRef]
- Hohenlohe, P.A.; Bassham, S.; Etter, P.D.; Stiffler, N.; Johnson, E.A.; Cresko, W.A. Population Genomics of Parallel Adaptation in Threespine Stickleback Using Sequenced RAD Tags. PLoS Genet. 2010, 6, e1000862. [Google Scholar] [CrossRef]
- McCluskey, B.M.; Postlethwait, J.H. Phylogeny of Zebrafish, a “Model Species,” within Danio, a ‘Model Genus. Mol. Biol. Evol. 2015, 32, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Tripp, E.A.; Tsai, Y.H.E.; Zhuang, Y.; Dexter, K.G. RADseq Dataset with 90% Missing Data Fully Resolves Recent Radiation of Petalidium (Acanthaceae) in the Ultra-Arid Deserts of Namibia. Ecol. Evol. 2017, 7, 7920–7936. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.P.; Paterson, S.; Risse, J. Genomic Signatures of Historical Allopatry and Ecological Divergence in an Island Lizard. Genome Biol. Evol. 2016, 8, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H. Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol. 2014, 29, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Barley, A.J.; Monnahan, P.J.; Thomson, R.C.; Grismer, L.L.; Brown, R.M. Sun skink landscape genomics: Assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol. Ecol. 2015, 24, 1696–1712. [Google Scholar] [CrossRef] [PubMed]
- Wessinger, C.A.; Freeman, C.C.; Mort, M.E.; Rausher, M.D.; Hileman, L.C. Multiplexed Shotgun Genotyping Resolves Species Relationships within the North American Genus Penstemon. Am. J. Bot. 2016, 103, 912–922. [Google Scholar] [CrossRef]
- Eaton, D.A.R.; Ree, R.H. Inferring Phylogeny and Introgression Using RADseq Data: An Example from Flowering Plants (Pedicularis: Orobanchaceae). Syst. Biol. 2013, 62, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Curto, M.; Schachtler, C.; Puppo, P.; Meimberg, H. Using a new RAD-sequencing approach to study the evolution of Micromeria in the Canary Islands. Mol. Phylogenet. Evol. 2018, 119, 160–169. [Google Scholar] [CrossRef]
- Peñalba, J.V.; Smith, L.L.; Tonione, M.A.; Sass, C.; Hykin, S.M.; Skipwith, P.L.; Mcguire, J.A.; Bowie, R.C.K.; Moritz, C. Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol. Ecol. Resour. 2014, 14, 1000–1010. [Google Scholar] [CrossRef]
- Bragg, J.G.; Potter, S.; Bi, K.; Moritz, C. Exon capture phylogenomics: Efficacy across scales of divergence. Mol. Ecol. Resour. 2016, 16, 1059–1068. [Google Scholar] [CrossRef]
- Brandley, M.C.; Bragg, J.G.; Singhal, S.; Chapple, D.G.; Jennings, C.K.; Lemmon, A.R.; Lemmon, E.M.; Thompson, M.B.; Moritz, C. Evaluating the performance of anchored hybrid enrichment at the tips of the tree of life: A phylogenetic analysis of Australian Eugongylus group scincid lizards. BMC Evol. Biol. 2015, 15, 62. [Google Scholar] [CrossRef] [PubMed]
Family/Genus | Markers | Analyses | Software | Dating | Year | Ref. |
---|---|---|---|---|---|---|
Scincidae | ||||||
Chalcides | cyt b, 12S, 16S | ML+BI | ModelTest, MrBayes, PhyML | Mutation rate (12S, cyt b) + Geological | 2008 | [35] |
Chalcides | RAG1, BDNF | BI | MrBayes, BEAST | Mutation rate + Geological | 2012 | [36] |
Chioninia | 16S, ND2, BDNF, BRCA1, BRCA2, CMOS, EXPH5, KIF24, MC1R, MXRA5, RAG1 | ML+BI | PartitionFinder, RAxML, MrBayes | Mutation rate (16S, ND2) | 2016 | [37] |
Chioninia | 16S, ND2, BDNF, BRCA1, BRCA2, CMOS, EXPH5, KIF24, MC1R, MXRA5, RAG1 | BI | BEAST | Mutation rate (previous works) | 2016 | [38] |
Chioninia | cyt b, COI, 12S | ML+BI | jModelTest, PhyML, MrBayes | Mutation rate (12S, cyt b) | 2011 | [39] |
Lacertidae | ||||||
Gallotia | cyt b, 12S, 16S | ML, MP | ModelTest, PhyML, PAUP | Mutation rate (12S, cyt b) + Geological | 2006 | [40] |
Gallotia | cyt b, 12S, 16S, COI | BI, MP | MrBayes, TNT, BEAST | Geological | 2010 | [22] |
Gekkonidae | ||||||
Hemidactylus | ND2, RAG1, PDC | ML+BI | PartitionFinder, RAxML, MrBayes, BEAST | Fossils | 2014 | [41] |
Hemidactylus | Cmos, 12S, RAG1, PDC | ML+BI | ModelTest, Paup, BEAST | Fossils + Mutation rate | 2013 | [42] |
Hemidactylus | cyt b, 12S | ML | ModelTest, Paup, PhyML, MrBayes | Mutation rate | 2006 | [43] |
Hemidactylus | 12S, cyt b, cmos, ND4, MC1R, RAG2 | ML+BI | RAxML, MrBayes | Mutation rate (12S, cyt b) | 2012 | [23] |
Hemidactylus | RAG1, RAG2, Cmos, ACM4, PDC | ML | RAxML | Fossils | 2011 | [44] |
Hemidactylus | 12S, ACM4, cmos, RAG1, RAG2, PDC | BI | PartitionFinder, BEAST | Fossils + Geological | 2016 | [45] |
Hemidactylus | 12S, cyt b, MC1R, cmos, RAG1, RAG2 | ML+BI | jModelTest, BEAST, RAxML, MrBayes | Mutation rate (12S, cyt b) | 2013 | [46] |
Phyllodactylidae | ||||||
Tarentola | cyt b, 12S, cmos | ML, MP | Paup | Geological | 2002 | [47] |
Tarentola | 12S, 16S, PDC, ACM4, MC1R, RAG2 | ML+BI | jModelTest, RAxML, MrBayes | Mutation rate | 2012 | [48] |
Tarentola | cyt b, 12S | ML+BI | jModelTest, MrBayes, PhyML | Mutation rate (previous works) | 2010 | [49] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeiras, M.M.; Pena, A.R.; Menezes, T.; Vasconcelos, R.; Monteiro, F.; Paulo, O.S.; Moura, M. Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. Int. J. Mol. Sci. 2019, 20, 2782. https://doi.org/10.3390/ijms20112782
Romeiras MM, Pena AR, Menezes T, Vasconcelos R, Monteiro F, Paulo OS, Moura M. Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. International Journal of Molecular Sciences. 2019; 20(11):2782. https://doi.org/10.3390/ijms20112782
Chicago/Turabian StyleRomeiras, Maria M., Ana Rita Pena, Tiago Menezes, Raquel Vasconcelos, Filipa Monteiro, Octávio S. Paulo, and Mónica Moura. 2019. "Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity" International Journal of Molecular Sciences 20, no. 11: 2782. https://doi.org/10.3390/ijms20112782
APA StyleRomeiras, M. M., Pena, A. R., Menezes, T., Vasconcelos, R., Monteiro, F., Paulo, O. S., & Moura, M. (2019). Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. International Journal of Molecular Sciences, 20(11), 2782. https://doi.org/10.3390/ijms20112782