Comparison of the Degree of Hydrolytic and Cytolytic Modification in Wheat Malts Obtained from Grain of Selected Wheat Cultivars Produced at Different Levels of Nitrogen Fertilisation
Abstract
:1. Introduction
2. Results
2.1. Extract Content in Wheat Malts
2.2. Diastatic Power in Wheat Malts
2.3. Degree of Final Attenuation of Wheat Malts
2.4. Viscosity of Worts
2.5. Amylolytic Modification in Wheat Malts from Commodity Fields Experiment
2.6. Cytolytic Modification in Wheat Malts from Commodity Fields Experiment
3. Discussion
3.1. Extractivity in Wheat Malts
3.2. Diastatic Power in Wheat Malts
3.3. Degree of Final Attenuation of Wheat Malts
3.4. Viscosity of Worts
4. Materials and Methods
4.1. Materials
4.2. Qualitative Analysis of the Malts Obtained
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobolewska, M.; Wenda-Piesik, A.; Jaroszewska, A.; Stankowski, S. Effect of Habitat and Foliar Fertilization with K, Zn and Mn on Winter Wheat Grain and Baking Qualities. Agronomy 2020, 10, 276. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending of Sulfur Fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Bobrecka-Jamro, D.; Kruczek, G.; Romaniak, M.; Jarecki, W.; Buczek, J. Effect of the dose and method of top-dressing with nitrogen on the yield and quality of winter wheat grain. Acta Sci. Pol. Agric. 2013, 12, 19–30. [Google Scholar]
- Sztuder, H.; Kaus, A. Costs of different methods of fertilizer application in winter wheat cultivation. Agric. Eng. 2007, 3, 173–178. (In Polish) [Google Scholar]
- Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Common wheat (Triticum aestivum L.) and its use as a brewing cereal—A review. J. Inst. Brew. 2014, 120, 1–15. [Google Scholar] [CrossRef]
- Gorzelany, J.; Belcar, J.; Matłok, N. Assessment of the quality of malt obtained from spring malting barley delivered to the SAN Farmer’s Cooperative in 2018. Agric. Eng. 2019, 23, 51–60. [Google Scholar] [CrossRef]
- Jin, Y.-H.; Du, J.-H.; Zhang, K.-L.; Zhang, X.-C. Effect of Wheat Starch Contents on Malt Qualities. J. Inst. Brew. 2011, 117, 534–540. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Ribani, M.; De Martos Jorge, L.M.; Martos Jorge, R.M. Effect of steeping time and temperature on malting process. J. Food Process. Eng. 2017, 40, e12519. [Google Scholar] [CrossRef]
- Boros, D.; Gołębiewski, D.; Myszka, K. Preliminary studies of grain of selected wheat breeding lines as a raw material for malting. Food Sci. Technol. Qual. 2014, 3, 151–164. (In Polish) [Google Scholar]
- Krstanović, V.; Mastanjević, K.; Nedović, V.; Mastanjević, K. The influence of Wheat Malt Quality on Final Attenuation Limit of Wort. Fermentation 2019, 5, 89. [Google Scholar] [CrossRef]
- Li, J.; Du, J.; Wu, X.; Zhang, Z.; Zhang, K. Changes in crude arabinoxylan during cloud wheat beer brewing on a production scale. J. Inst. Brew. 2017, 123, 192–198. [Google Scholar] [CrossRef]
- Szwajgier, D.; Targoński, Z. Arabinoxylans from malt as a source of natural antioxidant—Ferulic acid and dietary fiber in beer. Food Sci. Technol. Qual. 2005, 4, 27–41. (In Polish) [Google Scholar]
- Guo, M.; Xu, K.; Wang, Z. Effect of kilning on the composition of protein and arabinoxylan in wheat malt. J. Inst. Brew. 2019, 125, 288–293. [Google Scholar] [CrossRef]
- Titze, J.; Faltenmaier, A.; Schmitzenbaumer, B.; Gastl, M.; Becker, T.; Ilberg, V.; Arendt, E. Theoretical Study on a Statistical Method for the Simple and Reliable Pre-Selection of Wheat Malt Types for Brewing Purposes based on Generally Accepted Quality Characteristics. J. Am. Soc. Brew. Chem. 2013, 71, 67–75. [Google Scholar] [CrossRef]
- Psota, V.; Musilová, M. System for the evaluation of malting quality of wheat varieties. Kvasný Průmysl. 2020, 66, 232–238. [Google Scholar] [CrossRef]
- Psota, V.; Musilová, M.; Sachambula, L.; Horáková, V.; Přinosil, A.; Šmíd, F.; Adámková, K.; Adam, M. Malting quality of winter wheat (Triticum aestivum L.). Kvasný Průmysl. 2018, 64, 302–313. [Google Scholar] [CrossRef]
- Krstanović, V.; Habschied, K.; Dvojković, K.; Mastanjević, K. Research on the Malting Properties of Domestic Wheat Varieties. Fermentation 2021, 7, 1. [Google Scholar] [CrossRef]
- Gonu, H.; Withayagiat, U. Congress mashing of malted wheat cultivars from Thailand provide adequate malt extract physicochemical properties suitable for brewing purposes. Cereal Chem. 2023, 100, 1–12. [Google Scholar] [CrossRef]
- Krstanović, V.; Habschied, K.; Košir, I.J.; Mastanjević, K. The Influence of Texture Type and Grain Milling Degree on the Attenuation Limit, Protein Content, and Degradation in Wheat Wort. Appl. Sci. 2023, 13, 10626. [Google Scholar] [CrossRef]
- Belcar, J.; Sekutowski, T.R.; Zardzewiały, M.; Gorzelany, J. Effect of malting process duration on malting losses and quality of wheat malts. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 221–232. [Google Scholar] [CrossRef]
- Jin, Y.; Du, J.; Zhang, K.; Xie, L.; Li, P. Relationship between Kolbach index and other quality parameters of wheat malt. J. Inst. Brew. 2012, 118, 57–62. [Google Scholar] [CrossRef]
- Depraetere, S.; Delvaux, F.; Coghe, S.; Delvaux, F.R. Wheat Variety and Barley Malt Properties: Influence on Haze Intensity and Foam Stability of Wheat Beer. J. Inst. Brew. 2004, 110, 200–206. [Google Scholar] [CrossRef]
- Hu, X.; Jin, Y.; Du, J. Differences in protein content and foaming properties of cloudy beers based on wheat malt content. J. Inst. Brew. 2019, 125, 235–241. [Google Scholar] [CrossRef]
- Blšáková, L.; Gregor, T.; Mešťánek, M.; Hřivna, L.; Kumbár, V. The Use of Unconventional Malts in Beer Production and Their Effect on the Wort Viscosity. Foods 2022, 11, 31. [Google Scholar] [CrossRef]
- Gugino, I.M.; Alfeo, V.; Ashkezary, M.R.; Marconi, O.; Pirrone, A.; Francesca, N.; Cincotta, F.; Verzera, A.; Todaro, A. Maiorca wheat malt: A comprehensive analysis of physicochemical properties, volatile compounds, and sensory evaluation in brewing process and final product quality. Food Chem. 2024, 435, 137517. [Google Scholar] [CrossRef]
- Weiner, W.; Gozdecka, G.; Kopral, W. Research on the possibilities of obtaining malt from selected cereal grains. Acta Agrophys. 2008, 12, 813–823. (In Polish) [Google Scholar]
- Gastl, M.; Kupetz, M.; Becker, T. Determination of Cytolytic Malt Modification—Part I: Influence of Variety Characteristics. J. Am. Soc. Brew. Chem. 2021, 79, 53–65. [Google Scholar] [CrossRef]
- Almaguer, C.; Kollmannsberger, H.; Gastl, M.; Becker, T. Influence of the malting conditions on the modification and variation in the physicochemical properties and volatile composition of barley (Hordeum vulgare L.), rye (Secale cereale L.), and quinoa (Chenopodium quinoa Willd.) malts. Int. Food Res. 2024, 196, 114965. [Google Scholar] [CrossRef]
- Zhuang, S.; Shetty, R.; Hansen, M.; Fromberg, A.; Hansen, P.B.; Habley, T.J. Brewing with 100% unmalted grains: Barley, wheat, oat and rye. Eur. Food Res. Technol. 2017, 243, 447–454. [Google Scholar] [CrossRef]
- Belcar, J.; Gorzelany, J. Comparison of the Degree of Proteolytic Modification in Wheat Malts Obtained from Wheat Grain Produced at Different Nitrogen Fertilization Rates. Appl. Sci. 2024, 14, 11388. [Google Scholar] [CrossRef]
- EBC Analytica. 4.5.1 Extract of Malt: Congress Mash, 2004, 22 October 2018. Available online: https://brewup.eu/ebc-analytica/malt/extract-of-malt-congress-mash/4.5.1 (accessed on 11 January 2024).
- EBC Analytica. 4.11.1 Fermentability, Final Attenuation of Laboratory Wort from Malt: Reference Method, 1997, 22 October 2018. Available online: https://brewup.eu/ebc-analytica/malt/fermentability-final-attenuation-of-laboratory-wort-from-malt-reference-method/4.11.1 (accessed on 11 January 2024).
- EBC Analytica. 4.12.1 Diastatic Power of Malt by Spectrophotometry, 2018, 22 October 2018. Available online: https://brewup.eu/ebc-analytica/malt/diastatic-power-of-malt-by-spectrophotometry-manual-method/4.12.1 (accessed on 11 January 2024).
- EBC Analytica, 4.6.1 Hot Water Extract of Malt: Constant Temperature Mash, 1997, 22 October 2018. Available online: https://brewup.eu/ebc-analytica/malt/hot-water-extract-of-malt-constant-temperature-mash/4.6.1 (accessed on 11 January 2024).
Growing Season | Cultivar | Control | Variant I | Variant II | Variant III |
---|---|---|---|---|---|
2020/21 | Elixer | 77.01Cb ± 0.25 | 71.55Aa ± 0.44 | 80.39Ab ± 0.36 | 68.51Aa ± 0.28 |
Lawina | 82.59Da ± 0.18 | 86.12Cb ± 0.21 | 88.03Cb ± 0.25 | 88.08Db ± 0.20 | |
Gimantis | 81.39Da ± 0.39 | 84.96BCbc ± 0.27 | 85.67BCc ± 0.25 | 83.71Cab ± 0.27 | |
Rockefeller | 77.60Ca ± 0.18 | 87.89Cc ± 0.17 | 86.75Cc ± 0.23 | 84.78Cb ± 0. 20 | |
2021/22 | Elixer | 66.67Aa ± 0.16 | 77.32Bb ± 0.32 | 80.14Ac ± 0.34 | 79.56Bb ± 0.38 |
Lawina | 78.28Ca ± 0.25 | 76.91Ba ± 0.22 | 79.09Aa ± 0.27 | 78.61Ba ± 0.34 | |
Gimantis | 82.07Da ± 0.18 | 86.16Cb ± 0.24 | 86.95Cb ± 0.18 | 83.31Cab ± 0.23 | |
Rockefeller | 72.02Ba ± 0.18 | 84.34BCb ± 0.26 | 83.17ABb ± 0.22 | 82.74BCb ± 0.29 | |
2022/23 | Elixer | 88.21Eb ± 0.35 | 80.72Ba ± 0.26 | 85.66BCb ± 0.13 | 85.51CDb ± 0.27 |
Lawina | 83.67Da ± 0.24 | 88.68Cb ± 0.13 | 89.3Cb ± 0.16 | 85.57CDa ± 0.22 | |
Gimantis | 78.85Ca ± 0.15 | 85.97Cb ± 0.15 | 88.95Cb ± 0.21 | 80.74Ba ± 0.25 | |
Rockefeller | 87.70Eb ± 0.10 | 85.85Cb ± 0.15 | 80.02Aa ± 0.15 | 87.80Db ± 0.09 | |
Average for the years | 2020/21 | 82.191,2 ± 5.88 | |||
2021/22 | 79.831 ± 5.17 | ||||
2022/23 | 85.202 ± 3.43 | ||||
Average for the cultivation | Elixer | 78.44A ± 6.73 | |||
Lawina | 83.75B ± 4.55 | ||||
Gimantis | 84.06B ± 2.92 | ||||
Rockefeller | 83.39B ± 4.80 | ||||
Average for the fertilisation | Control | 79.67a ± 6.12 | |||
Variant I | 83.04ab ± 5.26 | ||||
Variant II | 84.51b ± 3.77 | ||||
Variant III | 82.41ab ± 5.29 | ||||
Average | 82.41 ± 2.19 |
Growing Season | Cultivar | Control | Variant I | Variant II | Variant III |
---|---|---|---|---|---|
2020/21 | Elixer | 475Fa ± 6 | 466Fa ± 1 | 476Ea ± 5 | 489Ea ± 5 |
Lawina | 357Ca ± 0 | 365Da ± 5 | 359Ca ± 7 | 358BCa ± 8 | |
Gimantis | 387Da ± 7 | 407Eb ± 0 | 390Dab ± 5 | 386Ca ± 4 | |
Rockefeller | 469Fb ± 1 | 427Ea ± 3 | 483Eb ± 9 | 477DEb ± 10 | |
2021/22 | Elixer | 366Ca ± 18 | 353CDa ± 2 | 354Ca ± 4 | 355BCa ± 3 |
Lawina | 369Ca ± 0 | 374Da ± 4 | 372CDa ± 2 | 372Ca ± 9 | |
Gimantis | 317Bb ± 6 | 306Ba ± 10 | 308Aa ± 4 | 305Aa ± 14 | |
Rockefeller | 444Ea ± 2 | 452Fa ± 2 | 451Ea ± 5 | 464Da ± 8 | |
2022/23 | Elixer | 332Ba ± 4 | 336Ca ± 4 | 338Ba ± 2 | 331Ba ± 5 |
Lawina | 256Aa ± 0 | 267Aa ± 2 | 318Ac ± 10 | 302Ab ± 6 | |
Gimantis | 260Aa ± 9 | 270Aa ± 4 | 323ABb ± 4 | 353BCc ± 7 | |
Rockefeller | 248Aa ± 4 | 319BCb ± 11 | 365Cc ± 4 | 369Cc ± 0 | |
Average for the years | 2020/21 | 4233 ± 52 | |||
2021/22 | 3732 ± 54 | ||||
2022/23 | 3121 ± 40 | ||||
Average for the cultivation | Elixer | 389B ± 65 | |||
Lawina | 339A ± 43 | ||||
Gimantis | 334A ± 49 | ||||
Rockefeller | 414C ± 73 | ||||
Average for the fertilisation | Control | 357a ± 79 | |||
Variant I | 362ab ± 66 | ||||
Variant II | 378b ± 61 | ||||
Variant III | 380b ± 64 | ||||
Average | 369 ± 33 |
Growing Season | Cultivar | Control | Variant I | Variant II | Variant III |
---|---|---|---|---|---|
2020/21 | Elixer | 74.8Bc ± 0.5 | 59.6Ba ± 0.4 | 64.9Ab ± 0.6 | 62.2Ab ± 0.1 |
Lawina | 68.1Ab ± 0.4 | 56.3Aa ± 0.3 | 65.5Ab ± 0.3 | 75.7Cc ± 0.7 | |
Gimantis | 80.2Db ± 0.6 | 74.4Da ± 0.4 | 76.2Bab ± 0.1 | 77.7CDab ± 0.2 | |
Rockefeller | 80.1Db ± 0.1 | 72.5Ca ± 0.2 | 75.3Ba ± 0.3 | 80.4Db ± 0.3 | |
2021/22 | Elixer | 80.0CDa ± 0.4 | 82.3Fab ± 0.3 | 88.3Dc ± 0.5 | 85.5Ebc ± 0.6 |
Lawina | 77.7Cab ± 0.3 | 80.1Eab ± 0.5 | 81.7Cb ± 0.0 | 76.6Ca ± 0.4 | |
Gimantis | 79.3Ca ± 0.6 | 83.1Fab ± 0.1 | 85.5Db ± 0.4 | 84.4Eb ± 0.2 | |
Rockefeller | 82.8Db ± 0.0 | 72.2Ca ± 0.1 | 80.5Cb ± 0.3 | 81.1Db ± 0.3 | |
2022/23 | Elixer | 77.6Cb ± 0.4 | 70.9Ca ± 0.2 | 85.2Dc ± 0.0 | 82.9DEc ± 0.5 |
Lawina | 83.1Dc ± 0.1 | 79.8Ebc ± 0.0 | 75.5Bb ± 0.5 | 70.3Ba ± 0.2 | |
Gimantis | 78.8Cb ± 0.3 | 80.6EFb ± 0.3 | 77.4Bab ± 0.4 | 80.0Db ± 0.1 | |
Rockefeller | 76.1BCa ± 0.6 | 77.9DEab ± 0.4 | 81.2Cb ± 0.5 | 80.5Db ± 0.4 | |
Average for the years | 2020/21 | 71.51 ± 7.7 | |||
2021/22 | 81.32 ± 3.9 | ||||
2022/23 | 78.62 ± 4.1 | ||||
Average for the cultivation | Elixer | 76.2AB ± 9.7 | |||
Lawina | 74.2A ± 7.8 | ||||
Gimantis | 79.8B ± 3.3 | ||||
Rockefeller | 78.4B ± 3.5 | ||||
Average for the fertilisation | Control | 78.2b ± 4.0 | |||
Variant I | 74.1a ± 8.6 | ||||
Variant II | 78.1b ± 7.3 | ||||
Variant III | 78.1b ± 6.5 | ||||
Average | 77.1 ± 2.9 |
Growing Season | Cultivar | Control | Variant I | Variant II | Variant III |
---|---|---|---|---|---|
2020/21 | Elixer | 1.85Cc ± 0.07 | 1.73ABb ± 0.07 | 1.55Aa ± 0.05 | 1.96Bd ± 0.10 |
Lawina | 1.83BCb ± 0.21 | 1.66Aa ± 0.23 | 1.82Bb ± 0.17 | 2.00BCc ± 0.11 | |
Gimantis | 2.29Ec ± 0.19 | 2.07Db ± 0.11 | 2.25DEc ± 0.05 | 1.75Aa ± 0.08 | |
Rockefeller | 2.24Ec ± 0.20 | 1.75Ba ± 0.08 | 2.26DEc ± 0.10 | 1.91Bb ± 0.09 | |
2021/22 | Elixer | 1.40Aa ± 0.10 | 1.98CDb ± 0.14 | 2.09Cc ± 0.08 | 2.11CDc ± 0.04 |
Lawina | 1.98Da ± 0.14 | 1.97CDa ± 0.14 | 2.15CDb ± 0.15 | 2.18Db ± 0.16 | |
Gimantis | 2.17Ea ± 0.15 | 2.10Da ± 0.10 | 2.31Eb ± 0.13 | 2.10CDa ± 0.05 | |
Rockefeller | 1.37Aa ± 0.18 | 1.91Cc ± 0.13 | 1.89Bc ± 0.13 | 1.73Ab ± 0.24 | |
2022/23 | Elixer | 1.87Ca ± 0.14 | 2.21Dc ± 0.29 | 2.06Cb ± 0.12 | 2.00BCb ± 0.10 |
Lawina | 1.76BCa ± 0.17 | 2.11Db ± 0.11 | 2.68Fc ± 0.08 | 2.03BCb ± 0.13 | |
Gimantis | 1.44Aa ± 0.12 | 1.67Ab ± 0.12 | 1.94Bc ± 0.06 | 2.09CDd ± 0.09 | |
Rockefeller | 1.74Bb ± 0.19 | 1.97CDc ± 0.12 | 1.63Aa ± 0.24 | 1.75Ab ± 0.09 | |
Average for the years | 2020/21 | 1.931 ± 0.23 | |||
2021/22 | 1.971 ± 0.26 | ||||
2022/23 | 1.931 ± 0.29 | ||||
Average for the cultivation | Elixer | 1.90A ± 0.24 | |||
Lawina | 2.01B ± 0.26 | ||||
Gimantis | 2.02B ± 0.27 | ||||
Rockefeller | 1.85A ± 0.25 | ||||
Average for the fertilisation | Control | 1.83a ± 0.32 | |||
Variant I | 1.93b ± 0.19 | ||||
Variant II | 2.05c ± 0.31 | ||||
Variant III | 1.97b ± 0.15 | ||||
Average | 1.94 ± 0.07 |
Farm | Cultivar | Year of Research | Extractivity (% d.m.) | Diastatic Power (Units W-K) | Degree of Attenuation (%) |
---|---|---|---|---|---|
B | Elixer | I | 78.14a ± 0.36 | 389b ± 12 | 76.6ab ± 0.4 |
B | II | 75.50a ± 0.60 | 346a ± 7 | 80.4b ± 0.3 | |
E | I | 82.53b ± 0.47 | 371b ± 23 | 78.2ab ± 0.5 | |
G | I | 82.74b ± 0.53 | 348a ± 14 | 80.1b ± 0.1 | |
D | II | 75.49a ± 0.34 | 371b ± 13 | 75.1a ± 0.6 | |
Average | 78.88 ± 3.59 | 365 ± 18 | 78.1 ± 2.3 | ||
E | Lawina | I | 88.67d ± 0.33 | 323b ± 9 | 80.0d ± 0.3 |
E | II | 83.41c ± 0.65 | 308ab ± 10 | 78.1cd ± 0.5 | |
C | I | 78.82ab ± 0.45 | 301a ± 11 | 70.3a ± 0.7 | |
F | I | 77.33a ± 0.68 | 321b ± 14 | 73.4ab ± 0.2 | |
A | II | 82.22bc ± 0.78 | 318b ± 5 | 75.5bc ± 0.4 | |
Average | 82.09 ± 4.43 | 314 ± 9 | 75.5 ± 4.4 | ||
D | Gimantis | I | 87.84b ± 0.16 | 305a ± 6 | 65.7a ± 0.3 |
D | II | 82.14a ± 0.44 | 300a ± 5 | 80.2b ± 0.4 | |
E | II | 78.75a ± 0.38 | 302a ± 3 | 82.5b ± 0.1 | |
Average | 82.91 ± 4.59 | 302 ± 3 | 76.1 ± 9.1 | ||
E | Rockefeller | I | 83.11b ± 0.62 | 367a ± 12 | 78.3b ± 0.4 |
E | II | 85.66b ± 0.35 | 367a ± 10 | 75.1b ± 0.2 | |
A | I | 86.06b ± 0.60 | 387b ± 11 | 78.7b ± 0.3 | |
D | I | 82.23b ± 0.30 | 394b ± 8 | 70.3a ± 0.1 | |
C | II | 73.34a ± 0.67 | 380ab ± 11 | 85.5c ± 0.5 | |
Average | 82.08 ± 5.15 | 379 ± 12 | 77.6 ± 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelany, J.; Belcar, J. Comparison of the Degree of Hydrolytic and Cytolytic Modification in Wheat Malts Obtained from Grain of Selected Wheat Cultivars Produced at Different Levels of Nitrogen Fertilisation. Molecules 2025, 30, 1921. https://doi.org/10.3390/molecules30091921
Gorzelany J, Belcar J. Comparison of the Degree of Hydrolytic and Cytolytic Modification in Wheat Malts Obtained from Grain of Selected Wheat Cultivars Produced at Different Levels of Nitrogen Fertilisation. Molecules. 2025; 30(9):1921. https://doi.org/10.3390/molecules30091921
Chicago/Turabian StyleGorzelany, Józef, and Justyna Belcar. 2025. "Comparison of the Degree of Hydrolytic and Cytolytic Modification in Wheat Malts Obtained from Grain of Selected Wheat Cultivars Produced at Different Levels of Nitrogen Fertilisation" Molecules 30, no. 9: 1921. https://doi.org/10.3390/molecules30091921
APA StyleGorzelany, J., & Belcar, J. (2025). Comparison of the Degree of Hydrolytic and Cytolytic Modification in Wheat Malts Obtained from Grain of Selected Wheat Cultivars Produced at Different Levels of Nitrogen Fertilisation. Molecules, 30(9), 1921. https://doi.org/10.3390/molecules30091921