Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Discussion
2.2.1. Cytotoxicity/Viability Assay for the Most Active Compounds
2.2.2. Cell Cycle Arrest and Apoptotic Cells Formation
Cell Cycle Arrest and Apoptosis Induction on MCF-7
Cell Cycle Arrest and Apoptotic Cells Formation on SKOV-3
2.2.3. RT PCR
2.3. Molecular Docking Study
3. Materials and Methods
3.1. Synthesis of Lead Compounds
3.2. Biological Assay
3.3. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar]
- Azim, H.A.; Elghazawy, H.; Ghazy, R.M.; Abdelaziz, A.H.; Abdelsalam, M.; Elzorkany, A.; Kassem, L. Clinicopathologic Features of Breast Cancer in Egypt-Contemporary Profile and Future Needs: A Systematic Review and Meta-Analysis. JCO Glob. Oncol. 2023, 9, e2200387. [Google Scholar] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Li, Y.; Upadhyay, S.; Bhuiyan, M.; Sarkar, F.H. Induction of Apoptosis in Breast Cancer Cells MDA-MB-231 by Genistein. Cancer Lett. 2004, 214, 113–119. [Google Scholar]
- Houston Methodist Web Site. Available online: https://www.houstonmethodist.org/blog/articles/2019/oct/breast-and-ovarian-cancer-is-there-a-connection/ (accessed on 15 February 2024).
- National Cancer Institute Dictionary of Cancer. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms (accessed on 15 February 2024).
- Yoshida, R. Hereditary Breast and Ovarian Cancer (HBOC): Review of Its Molecular Characteristics, Screening, Treatment, and Prognosis. Breast Cancer 2021, 28, 1167–1180. [Google Scholar] [PubMed]
- Welcsh, P.L.; King, M.-C. BRCA1 and BRCA2 and the Genetics of Breast and Ovarian Cancer; Oxford University Press: Oxford, UK, 2001; Volume 10, pp. 1–200. [Google Scholar]
- Couch, F.J.; Nathanson, K.L.; Offit, K. Two Decades after BRCA: Setting Paradigms in Personalized Cancer Care and Prevention. Science 2014, 343, 1466–1470. [Google Scholar] [PubMed]
- Fu, X.; Tan, W.; Song, Q.; Pei, H.; Li, J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 813457. [Google Scholar]
- Interactions Between BRCA1 and the Cell Cycle. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2000–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6004/ (accessed on 15 February 2024).
- Kennedy, R.D.; Quinn, J.E.; Mullan, P.B.; Johnston, P.G.; Harkin, D.P. The Role of BRCA1 in the Cellular Response to Chemotherapy. J. Natl. Cancer Inst. 2004, 96, 1659–1668. [Google Scholar]
- Torres-Martinez, Z.; Delgado, Y.; Ferrer-Acosta, Y.; Suarez-Arroyo, I.J.; Joaquín-Ovalle, F.M.; Delinois, L.J.; Griebenow, K. Key Genes and Drug Delivery Systems to Improve the Efficiency of Chemotherapy. Cancer Drug Resist. 2021, 4, 163–191. [Google Scholar]
- Widden, H.; Placzek, W.J. The Multiple Mechanisms of MCL1 in the Regulation of Cell Fate. Commun. Biol. 2021, 4, 1–11. [Google Scholar]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar]
- Lewis, A.; Hayashi, T.; Su, T.P.; Betenbaugh, M.J. Bcl-2 Family in Inter-Organelle Modulation of Calcium Signaling; Roles in Bioenergetics and Cell Survival. J. Bioenerg. Biomembr. 2014, 46, 1–15. [Google Scholar]
- Hockenbery, D.M.; Oltvai, Z.N.; Yin, X.-M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 Functions in an Antioxidant Pathway to Prevent Apoptosis. Cell 1993, 75, 241–251. [Google Scholar] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The Role of BCL-2 Family Proteins in Regulating Apoptosis and Cancer Therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar]
- Mayrovitz, H.N. Breast Cancer. J. Cancer Res. 2022, 65, 123–130. [Google Scholar]
- Albratty, M.; Alhazmi, H.A. Novel Pyridine and Pyrimidine Derivatives as Promising Anticancer Agents: A Review. Arab. J. Chem. 2022, 15, 103846. [Google Scholar]
- Zinkel, S.; Gross, A.; Yang, E. BCL2 Family in DNA Damage and Cell Cycle Control. Cell Death Differ. 2006, 13, 1351–1359. [Google Scholar]
- Zhu, J.; Wang, Z.; Guo, Z.; Zhang, X.; Song, T.; Guo, Y.; Ji, T.; Zhang, Z. Structure-Based Design, Synthesis, and Evaluation of Bcl-2/Mcl-1 Dual Inhibitors. Arch. Pharm. 2020, 353, e2000005. [Google Scholar]
- Zhang, Z.; Hou, L.; Bai, L.; Pei, J.; Zhao, S.; Luan, S.; Liu, D.; Huang, M.; Zhao, L. Discovery and Structure-Activity Relationship Studies of Novel Bcl-2/Mcl-1 Dual Inhibitors with Indole Scaffold. Bioorg Chem. 2022, 125, 105845. [Google Scholar]
- Xu, J.; Dong, X.; Huang, D.C.S.; Xu, P.; Zhao, Q.; Chen, B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers 2023, 15, 4957. [Google Scholar] [CrossRef]
- Vogler, M.; Dinsdale, D.; Dyer, M.J.S.; Cohen, G.M. Bcl-2 Inhibitors: Small Molecules with a Big Impact on Cancer Therapy. Cell Death Differ. 2009, 16, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Kvansakul, M.; Hinds, M.G. The Bcl-2 Family: Structures, Interactions and Targets for Drug Discovery. Apoptosis 2015, 20, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Upadhayay, S.; Kumar, P.; Kumar, P.; Kumar, R. Design, Synthesis and Anticancer Evaluation of 4-Substituted 5,6,7,8-Tetrahydrobenzo[4,5]Thieno[2,3-d]Pyrimidines as Dual Topoisomerase I and II Inhibitors. Bioorg Chem. 2025, 154, 108043. [Google Scholar] [CrossRef]
- Sigmond, J.; Peters, G.J. Pyrimidine and Purine Analogues, Effects on Cell Cycle Regulation and the Role of Cell Cycle Inhibitors to Enhance Their Cytotoxicity. Nucleosides Nucleotides Nucleic Acids 2005, 24, 1997–2022. [Google Scholar] [CrossRef]
- Bonnefoy-Berard, N.; Aouacheria, A.; Verschelde, C.; Quemeneur, L.; Marçais, A.; Marvel, J. Control of Proliferation by Bcl-2 Family Members. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1644, 159–168. [Google Scholar]
- Jamil, S.; Sobouti, R.; Hojabrpour, P.; Raj, M.; Kast, J.; Duronio, V. A Proteolytic Fragment of Mcl-1 Exhibits Nuclear Localization and Regulates Cell Growth by Interaction with Cdk1. Biochem. J. 2005, 387, 144–150. [Google Scholar]
- Sheth, C.; Patel, P.; Shah, U. Design, Synthesis, Computational Studies and Evaluation of Novel 2, 4, 5-Trisubstituted Pyrimidine Derivatives for Anticancer Activity against MCF-7 and A549 Cell Lines. J. Mol. Struct. 2025, 1325, 140987. [Google Scholar] [CrossRef]
- de Almeida, L.C.; Calil, F.A.; Machado-Neto, J.A.; Costa-Lotufo, L.V. DNA Damaging Agents and DNA Repair: From Carcinogenesis to Cancer Therapy. Cancer Genet. 2021, 252–253, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, D.H.; Mohamed, S.F.; Abd-Elghaffar, H.S.; Elsayed, M.A.; Amr, A.E.G.E.; Abou-Amra, E.S.; Hosny, H.M.; Awad, H.M. Novel Indeno-Pyrazole and Indeno-Pyrimidine Conjugates: Synthesis, DFT, Anticancer Screening and in Silico Studies as Potent Tubulin Inhibitors. J. Mol. Struct. 2025, 1321, 140175. [Google Scholar] [CrossRef]
- Scully, R.; Panday, A.; Elango, R.; Willis, N.A. DNA Double-Strand Break Repair-Pathway Choice in Somatic Mammalian Cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-Approved Pyrimidine-Fused Bicyclic Heterocycles for Cancer Therapy: Synthesis and Clinical Application. Eur. J. Med. Chem. 2021, 214, 113218. [Google Scholar] [PubMed]
- Jamil, S.; Mojtabavi, S.; Hojabrpour, P.; Cheah, S.; Duronio, V. An Essential Role for MCL-1 in ATR-Mediated CHK1 Phosphorylation. Mol. Biol. Cell 2008, 19, 3212–3220. [Google Scholar]
- Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of Thiazole-Based-Chalcones and 4-Hetarylthiazoles as Potent Anticancer Agents: Synthesis, Docking Study and Anticancer Activity. Bioorg Chem. 2020, 98, 103709. [Google Scholar]
- Doshi, J.M.; Tian, D.; Xing, C. Structure-Activity Relationship Studies of Ethyl 2-Amino-6-Bromo-4-(1- Cyano-2-Ethoxy-2-Oxoethyl)-4H-Chromene-3-Carboxylate (HA 14-1), an Antagonist for Antiapoptotic Bcl-2 Proteins to Overcome Drug Resistance in Cancer. J. Med. Chem. 2006, 49, 7731–7739. [Google Scholar]
- Bhosle, M.R.; Wahul, D.B.; Bondle, G.M.; Sarkate, A.; Tiwari, S.V. An Efficient Multicomponent Synthesis and in Vitro Anticancer Activity of Dihydropyranochromene and Chromenopyrimidine-2,5-Diones. Synth. Commun. 2018, 48, 2046–2060. [Google Scholar]
- Tylińska, B.; Wiatrak, B.; Czyżnikowska, Ż.; Cieśla-Niechwiadowicz, A.; Gębarowska, E.; Janicka-Kłos, A. Novel Pyrimidine Derivatives as Potential Anticancer Agents: Synthesis, Biological Evaluation and Molecular Docking Study. Int. J. Mol. Sci. 2021, 22, 6789. [Google Scholar] [CrossRef]
- Nammalwar, B.; Bunce, R.A. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals 2024, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.; Abdelmoniem, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. DNA Fragmentation, Cell Cycle Arrest, and Docking Study of Novel Bis Spiro-Cyclic 2-Oxindole of Pyrimido[4,5-b]Quinoline-4,6-Dione Derivatives Against Breast Carcinoma. Curr. Cancer Drug Targets 2018, 18, 372–381. [Google Scholar]
- Elnagar, H.A.; Sakr, H.; Mahdy, H.A. Recent advances on pyrimidine derivatives as anticancer agents. Al-Azhar J. Pharm. Sci. 2023, 67, 45–55. [Google Scholar]
- Karoui, S.; Dhiabi, M.; Fakhfakh, M.; Abid, S.; Limanton, E.; Le Guével, R.; Charlier, T.D.; Mainguy, A.; Mignen, O.; Paquin, L.; et al. Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-Imino-3,5-Dihydro-4H-Chromeno[2,3-d]Pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity. Pharmaceuticals 2024, 17, 458. [Google Scholar] [CrossRef]
- Kassab, A.E.; Gedawy, E.M.; El-Malah, A.A.; Abdelghany, T.M.; Sadek, M.; Bakky, A. Synthesis, Anticancer Activity, Effect on Cell Cycle Profile, and Apoptosis-Inducing Ability of Novel Hexahydrocyclooctathieno[2,3-d]-Pyrimidine Derivatives. Chem. Pharm. Bull. 2016, 64, 490–496. [Google Scholar]
- El-Saidi, M.M.T.; El-Sayed, A.A.; Pedersen, E.B.; Tantawy, M.A.; Mohamed, N.R.; Gad, W.A. Synthesis, Characterization and Docking Study of Novel Pyrimidine Derivatives as Anticancer Agents. Indones. J. Chem. 2020, 20, 1163–1177. [Google Scholar]
- Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 Pathway Inhibition in Solid Tumors: A Review of Clinical Trials. Clin. Transl. Oncol. 2023, 25, 1554–1578. [Google Scholar]
- Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; et al. Discovery of Mcl-1-Specific Inhibitor AZD5991 and Preclinical Activity in Multiple Myeloma and Acute Myeloid Leukemia. Nat. Commun. 2018, 9, 5341. [Google Scholar]
- Chen, L.; Fletcher, S. Mcl-1 Inhibitors: A Patent Review. Expert. Opin. Ther. Pat. 2017, 27, 163–178. [Google Scholar] [PubMed]
- Yuda, J.; Will, C.; Phillips, D.C.; Abraham, L.; Alvey, C.; Avigdor, A.; Buck, W.; Besenhofer, L.; Boghaert, E.; Cheng, D.; et al. Selective MCL-1 Inhibitor ABBV-467 Is Efficacious in Tumor Models but Is Associated with Cardiac Troponin Increases in Patients. Commun. Med. 2023, 3, 85. [Google Scholar]
- Louvel, J.; Guo, D.; Agliardi, M.; Mocking, T.A.M.; Kars, R.; Pham, T.P.; Xia, L.; De Vries, H.; Brussee, J.; Heitman, L.H.; et al. Agonists for the Adenosine A1 Receptor with Tunable Residence Time. a Case for Nonribose 4-Amino-6-Aryl-5-Cyano-2-Thiopyrimidines. J. Med. Chem. 2014, 57, 3213–3222. [Google Scholar]
- Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Novel Indolyl-Pyrimidine Derivatives: Synthesis, Antimicrobial, and Antioxidant Evaluations. Med. Chem. Res. 2014, 23, 3374–3388. [Google Scholar]
- Khodair, A.I.; Ibrahim, E.E.; El Ashry, E.S.H. Glycosylation of 2-Thiouracil Derivatives. a Synthetic Approach to 3-Glycosyl-2, 4-Dioxypyrimidines. Nucleosides Nucleotides 1997, 16, 433–444. [Google Scholar]
- Dave, C.G.; Desai, N.D. Synthesis and Reactions of Fluoroaryl Substituted 2-Amino-3- Cyanopyrroles and Pyrrolo[2,3-d]Pyrimidines. J. Heterocycl. Chem. 1999, 36, 729–733. [Google Scholar]
- Riad, J.Y.; Mohamed, M.S.; Fatahala, S.S.; Mansour, Y.E. Design and Synthesis of N-4-Substituted Pyrrolopyrimidines with Promising Anticancer Effects. Egypt. J. Chem. 2023, 66, 11–20. [Google Scholar]
- Young, A.I.J.; Law, A.M.K.; Castillo, L.; Chong, S.; Cullen, H.D.; Koehler, M.; Herzog, S.; Brummer, T.; Lee, E.F.; Fairlie, W.D.; et al. MCL-1 Inhibition Provides a New Way to Suppress Breast Cancer Metastasis and Increase Sensitivity to Dasatinib. Breast Cancer Res. 2016, 18, 129. [Google Scholar]
- Maarouf, R.E.; Azab, K.S.; El Fatih, N.M.; Helal, H.; Rashed, L. Withania Somnifera Alters BCL2/Bax Signaling and Triggers Apoptosis of MCF-7 and MDA-MB231 Breast Cancer Cells Exposed to γ-Radiation. Hum. Exp. Toxicol. 2023, 42, 1234–1245. [Google Scholar]
- Garner, T.P.; Lopez, A.; Reyna, D.E.; Spitz, A.Z.; Gavathiotis, E. Progress in Targeting the BCL-2 Family of Proteins. Curr. Opin. Chem. Biol. 2017, 39, 133–142. [Google Scholar]
- Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-Based Discovery of an Organic Compound That Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells. Cancer Res. 2000, 60, 6241–6248. [Google Scholar]
- Bolomsky, A.; Vogler, M.; Köse, M.C.; Heckman, C.A.; Ehx, G.; Ludwig, H.; Caers, J. MCL-1 Inhibitors, Fast-Lane Development of a New Class of Anti-Cancer Agents. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar]
- Negi, A.; Murphy, P.V. Development of Mcl-1 Inhibitors for Cancer Therapy. Eur. J. Med. Chem. 2021, 210, 113021. [Google Scholar]
- De Dominici, M.T.; Benet, K.; Modugno, M.; Gautier, F.; Mellick-Simon, I.; Lokker, A.; Drouet, E.; Berthelet, J.; Tavernier, M.; Vautier, M.; et al. Discovery of S64315, a Potent and Selective Mcl-1 Inhibitor. J. Med. Chem. 2020, 63, 16166–16185. [Google Scholar]
- Szlávik, Z.; Ondi, L.; Csékei, M.; Paczal, A.; Szabó, Z.B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; et al. Structure-Guided Discovery of a Selective Mcl-1 Inhibitor with Cellular Activity. J. Med. Chem. 2019, 62, 6913–6924. [Google Scholar] [CrossRef] [PubMed]
- Khoder, Z.M.; Mohamed, M.S.; Awad, S.M.; Gharib, A.F.; Aly, O.; Khodair, M.A.E.F.; Fatahala, S.S.; El-Hameed, R.H.A. Synthesis, Anti-Cancer Activity, Cell Cycle Arrest, Apoptosis Induction, and Docking Study of Fused Benzo[h]Chromeno[2,3-d]Pyrimidine on Human Breast Cancer Cell Line MCF-7. Molecules 2024, 29, 4697. [Google Scholar] [CrossRef]
- Carrington, E.M.; Zhan, Y.; Brady, J.L.; Zhang, J.G.; Sutherland, R.M.; Anstee, N.S.; Schenk, R.L.; Vikstrom, I.B.; Delconte, R.B.; Segal, D.; et al. Anti-Apoptotic Proteins BCL-2, MCL-1 and A1 Summate Collectively to Maintain Survival of Immune Cell Populations Both in Vitro and in Vivo. Cell Death Differ. 2017, 24, 878–888. [Google Scholar] [PubMed]
- Krishna, S.; Kumar, S.B.; Murthy, T.P.K.; Murahari, M. Structure-Based Design Approach of Potential BCL-2 Inhibitors for Cancer Chemotherapy. Comput. Biol. Med. 2021, 134, 104537. [Google Scholar]
- Sayed, A.I.; Mansour, Y.E.; Ali, M.A.; Aly, O.; Khoder, Z.M.; Said, A.M.; Fatahala, S.S.; Abd El-Hameed, R.H. Novel Pyrrolopyrimidine Derivatives: Design, Synthesis, Molecular Docking, Molecular Simulations and Biological Evaluations as Antioxidant and Anti-Inflammatory Agents. J. Enzyme Inhib. Med. Chem. 2022, 37, 1821–1837. [Google Scholar] [PubMed]
- Mahgoub, S.; Kotb El-Sayed, M.I.; El-Shehry, M.F.; Mohamed Awad, S.; Mansour, Y.E.; Fatahala, S.S. Synthesis of Novel Calcium Channel Blockers with ACE2 Inhibition and Dual Antihypertensive/Anti-Inflammatory Effects: A Possible Therapeutic Tool for COVID-19. Bioorg Chem. 2021, 116, 104602. [Google Scholar]
- Nope, E.; Sathicq, Á.G.; Martínez, J.J.; Rojas, H.; Romanelli, G. Hydrotalcites as Catalyst in Suitable Multicomponent Synthesis of Uracil Derivatives. Catal. Today 2021, 372, 126–135. [Google Scholar]
- Mahmoud, N.F.H.; Ghareeb, E.A. Synthesis of Novel Substituted Tetrahydropyrimidine Derivatives and Evaluation of Their Pharmacological and Antimicrobial Activities. J. Heterocycl. Chem. 2019, 56, 81–91. [Google Scholar]
- El-Agrody, A.M.; Ali, F.M.; Eid, F.A.; El-Nassag, M.A.A.; El-Sherbeny, G.; Bedair, A.H. Synthesis and Antimicrobial Activity of Thioxopyrimidines and Related Derivatives. Phosphorus Sulfur. Silicon Relat. Elem. 2006, 181, 839–864. [Google Scholar]
- Meng, Y.; Gu, C.; Wu, Z.; Zhao, Y.; Si, Y.; Fu, X.; Han, W. Id2 Promotes the Invasive Growth of MCF-7 and SKOV-3 Cells by a Novel Mechanism Independent of Dimerization to Basic Helix-Loop-Helix Factors. BMC Cancer 2009, 9, 85. [Google Scholar]
- Bashi, M.; Madanchi, H.; Yousefi, B. Investigation of Cytotoxic Effect and Action Mechanism of a Synthetic Peptide Derivative of Rabbit Cathelicidin against MDA-MB-231 Breast Cancer Cell Line. Sci. Rep. 2024, 14, 13497. [Google Scholar]
- Su, M.; Li, Y.; Chung, H.Y.; Ye, W. 2β-(Isobutyryloxy)Florilenalin, a Sesquiterpene Lactone Isolated from the Medicinal Plant Centipeda Minima, Induces Apoptosis in Human Nasopharyngeal Carcinoma CNE Cells. Molecules 2009, 14, 2135–2146. [Google Scholar] [CrossRef]
- Haffez, H.; Osman, S.; Ebrahim, H.Y.; Hassan, Z.A. Growth Inhibition and Apoptotic Effect of Pine Extract and Abietic Acid on MCF-7 Breast Cancer Cells via Alteration of Multiple Gene Expressions Using In Vitro Approach. Molecules 2022, 27, 293. [Google Scholar] [CrossRef] [PubMed]
Compounds | IC50 (μg/mL) (SKOV-3) | IC50 (μg/mL) (MCF-7) |
---|---|---|
Compound 2 | 78.79 | 260.97 |
Compound 4a | 96.78 | - |
Compound 4b | 76.19 | - |
Compound 4c | - | 577.97 |
Compound 5 | 90.83 | - |
Doxorubicin | 19.37 ± 0.7 | 38.75 ± 1.4 |
MCF-7 Cell Line | SKOV-3 Cell Line | |||
---|---|---|---|---|
Groups | Bcl-2 | Mcl-1 | Bcl-2 | Mcl-1 |
Control | 1 ± 0.00 | 1 ± 0.00 | 1 ± 0.00 | 1 ± 0.00 |
Compound 2 | 0.36 ± 0.03 a, c | 0.38 ± 0.02 a, c | 0.43 ± 0.05 a, c, d, e | 0.79 ± 0.04 a, c, e |
Compound 4a | - | - | 0.17 ± 0.02 a, b, d | 0.47 ± 0.02 a, b, d |
Compound 4b | - | - | 0.61 ± 0.04 a, b, c, e | 0.95 ± 0.12 c, e |
Compound 4c | 0.89 ± 0.04 b | 0.87 ± 0.05 b | - | - |
Compound 5 | - | - | 0.21 ± 0.04a, b, d | 0.34 ± 0.05 a, b, d |
Compounds | Docking Score (S) | RMSD | E-Score 1 | E-Score 2 | Binding Interactions |
---|---|---|---|---|---|
Ligand JLH | −6.9102 | 1.4881 | −9.9729 | −6.9102 | (O-Arg263)(H-b) |
Compound 2 | −5.56651 | 2.57258 | −8.31193 | −5.56651 | (N-Arg263)(H-b) |
Compound 4c | −6.37276 | 1.51069 | −8.44352 | −6.37276 | (S-Arg263)(H-b) (N-Arg263)(H-b) (pyrrole-Arg263)(H-Pi-) (N-Phe270)(H-b) |
Compound | Docking Score (S) | RMSD | E-Score 1 | E-Score 2 | Binding Interactions |
---|---|---|---|---|---|
Ligand 1XJ | −8.7886 | 2.0588 | −8.8739 | −8.7886 | (S-Asp100) (H-b) (O-Gly142) (H-b) (Benzene-Asn140) (H-Pi) |
Compound 2 | −5.7703 | 2.3114 | −9.2490 | −5.7703 | (N-Arg1430 (H-b) (Benzene-Phe101) (H-Pi) |
Compound 4c | −6.2246 | 1.6794 | −8.9713 | −6.2246 | (Benzene-Arg143)(Pi-cation) (Benzene-Asn140) (H-Pi) (Benzene-Asp108) (H-Pi) |
Target | Sequence |
---|---|
Bcl-2 | F 5′-ATCGCCCTGTGGATGACTGAGT-3′ R 5′-GCCAGGAGAAATCAAACAGAGGC-3′ |
Mcl-1 | F 5′-CCAAGAAAGCTGCATCGAACCAT-3′ R 5′-CAGCACATTCCTGATGCCACCT-3′ |
GAPDH | F 5′-GTCTCCTCTGACTTCAACAGCG-3′ R 5′-ACCACCCTGTTGCTGTAGCCAA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Hameed, R.H.; Aly, O.; Mohamed, M.E.; Gharib, A.F.; Mohamed, M.S.; Ali, A.; Khoder, Z.M.; Taha, H.; Fatahala, S.S. Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents. Molecules 2025, 30, 1453. https://doi.org/10.3390/molecules30071453
Abd El-Hameed RH, Aly O, Mohamed ME, Gharib AF, Mohamed MS, Ali A, Khoder ZM, Taha H, Fatahala SS. Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents. Molecules. 2025; 30(7):1453. https://doi.org/10.3390/molecules30071453
Chicago/Turabian StyleAbd El-Hameed, Rania H., Omnia Aly, Mariem E. Mohamed, Amal F. Gharib, Mosaad S. Mohamed, Ashraf Ali, Zainab M. Khoder, Heba Taha, and Samar S. Fatahala. 2025. "Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents" Molecules 30, no. 7: 1453. https://doi.org/10.3390/molecules30071453
APA StyleAbd El-Hameed, R. H., Aly, O., Mohamed, M. E., Gharib, A. F., Mohamed, M. S., Ali, A., Khoder, Z. M., Taha, H., & Fatahala, S. S. (2025). Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents. Molecules, 30(7), 1453. https://doi.org/10.3390/molecules30071453