Preparation and Improved Properties of Vanillin-Crosslinked Polyvinyl Alcohol/Chitosan Active Packaging Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Preparation of VPC Films
2.4. Characterization of the Films
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. X-Ray Diffraction (XRD)
2.4.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.4.4. Thermogravimetric Analysis (TGA)
2.5. Performance Testing
2.5.1. Water Content (MC)
2.5.2. Water Vapor Transmittance (WVTR)
2.5.3. Light Transmittance
2.5.4. Water Contact Angle (WCA)
2.5.5. Thickness and Mechanical Properties
2.6. Antioxidant Properties
2.7. pH Sensitivity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Films
3.1.1. SEM Analysis
3.1.2. XRD Analysis
3.1.3. FTIR Analysis
3.1.4. Thermal Stability
3.2. Analysis of Physical Properties
3.2.1. MC Analysis
3.2.2. WVTR Analysis
3.2.3. Light Transmittance Analysis
3.2.4. WCA Analysis
3.2.5. Analysis of Mechanical Properties
3.3. Analysis of Antioxidant Properties
3.4. pH Sensitivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Chi, H.; Weili, L.; Gao, X. Mechanical properties and test methods of food packaging plastic film. J. Food Saf. Qual. 2016, 7, 4382–4386. [Google Scholar]
- Jie, S.; Wang, X.; Xu, C. Research Progress of Chitosan Films for Food Packaging. Packag. Eng. 2022, 43, 42–50. [Google Scholar]
- Zhou, Q.; Xiao, W.; Hu, Y.; Liu, B.; Shi, Y. Application and Research Progress of Biodegradable Materials in Food Packaging. Plast. Packag. 2022, 32, 37–40. [Google Scholar]
- Firdaus, S.; Ahmad, F.; Zaidi, S. Preparation and characterization of biodegradable food packaging films using lemon peel pectin and chitosan incorporated with neem leaf extract and its application on apricot fruit. Int. J. Biol. Macromol. 2024, 263, 130358. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, X.; Wei, Y.; Li, F.; Huang, L. Research Progress on Polysaccharide-based Edible Films. Food Ind. 2021, 42, 311–315. [Google Scholar]
- Zhao, D.; Xia, Y.; He, M.; Song, Y.; Zhang, X. Research progress on chitosan-based polysaccharide composite film for food packaging. Mod. Chem. Ind. 2024, 44, 72–75+80. [Google Scholar]
- Gao, X.; Wang, X.; Du, X.; Zhao, Z.; Wang, X.; Yao, D.; Zhang, Y. Research Progress in Polysaccharide Natural Polymer/PVA Biodegradable Blend Films. Packag. Eng. 2016, 37, 74–79+88. [Google Scholar]
- Kong, D.; Liao, X.; Li, N.; Lei, J.; Liu, K.; Li, H.; Tang, W. Study on barrier and flame-retardant performance of chitosan/poly(vinyl alcohol)/gelatin composite films. China Plast. 2024, 38, 28–32. [Google Scholar]
- Zhao, B.; Fu, J.; Qiu, M. Research progress of chitosan nanocomposite antibacterial materials for food packaging. New Chem. Mater. 2024, 52, 77–82. [Google Scholar]
- Zong, L.; Chen, C.; Chen, Z.; Xie, J. Research Progress in Starch/Poly(vinyl alcohol)Active Packaging Film and Its Application in Food Packaging. China Plast. 2020, 34, 101–112. [Google Scholar]
- Rather, A.; Manna, U. Green and Rapid Synthesis of Durable and Super-Oil (under Water) and Water (in Air) Repellent Interfaces. ACS Appl. Mater. Interfaces 2018, 10, 23451–23457. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Z.; Li, B.; Zhang, X.; Li, Y.; Sun, J. Self-healing superhydrophobic conductive coatings for self-cleaning and humidity-insensitive hydrogen sensors. Chem. Eng. J. 2021, 410, 128353. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Zhang, S.; Guo, C.; Guo, H. Preparation and Properties of Vanillin/Poly(Vinyl Alcohol)/κ-carrageenan Cross-linked Films. Packag. Eng. 2023, 44, 36–43. [Google Scholar]
- Lou, M.; Li, S.; Jin, F.; Yang, T.; Song, R.; Song, B. Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective. Engineering 2024, 43, 241–257. [Google Scholar] [CrossRef]
- Jin, M.; Teng, F.; Liu, J.; Zhang, P.; Mao, H. Study on Thermal Stability and Thermal Decomposition Mechanism of Vanillin. J. Technol. 2022, 22, 225–230. [Google Scholar]
- Yu, H.; Ge, Y.; Ding, H.; Yan, Y.; Wang, L. Vanillin cross-linked chitosan/gelatin bio-polymer film with antioxidant, water resistance and ultraviolet-proof properties. Int. J. Biol. Macromol. 2023, 253, 126726. [Google Scholar] [CrossRef]
- Kurabetta, L.K.; Masti, S.P.; Eelager, M.P.; Gunaki, M.N.; Madihalli, S.; Hunashyal, A.A.; Chougale, R.B.; Kumar, S.K.P.; Kadapure, A.J. Physicochemical and antioxidant properties of tannic acid crosslinked cationic starch/chitosan based active films for ladyfinger packaging application. Int. J. Biol. Macromol. 2023, 253, 127552. [Google Scholar] [CrossRef]
- Vanjeri, V.; Goudar, N.; Kasai, D.; Masti, S.; Chougale, R. Thermal and Tensile Properties Study of 4-Hydroxycoumarin Doped Polyvinyl alcohol/Chitosan Blend Films. Chem. Data Collect. 2019, 23, 100257. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Qin, W.; Dai, J.; Zhang, Q.; Lee, K.; Liu, Y. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater. Des. 2019, 185, 108277. [Google Scholar] [CrossRef]
- Zhang, Q.; Pi, Y.; Xu, H.; Li, P.; Li, X.; Yang, Y.; Chen, L. Preparation of Polyvinyl Alcohol Packaging Films and Its Antibacterial Properties. Print. Digit. Media Technol. Study 2024, 156–163. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; Yu, D.; Regenstein, J.; Dong, J.; Chen, W.; Xia, W. Chitosan/zein bilayer films with one-way water barrier characteristic: Physical, structural and thermal properties. Int. J. Biol. Macromol. 2022, 200, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Su, J.; Chen, Y.; Xu, D.; Cheng, L.; Mao, L.; Gao, Y.; Yuan, F. Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chem. 2022, 373, 131414. [Google Scholar] [CrossRef] [PubMed]
- Kuchaiyaphum, P.; Chotichayapong, C.; Kajsanthia, K.; Saengsuwan, N. Carboxymethyl cellulose/poly(vinyl alcohol) based active film incorporated with tamarind seed coat waste extract for food packaging application. Int. J. Biol. Macromol. 2024, 255, 128203. [Google Scholar] [CrossRef]
- Lin, L.; Mei, C.; Shi, C.; Li, C.-Z.; Abdel-Samie, M.; Cui, H. Preparation and characterization of gelatin active packaging film loaded with eugenol nanoparticles and its application in chicken preservation. Food Biosci. 2023, 53, 102778. [Google Scholar] [CrossRef]
- Fu, M.; Li, D.; Li, Y.; Xiu, J.; Wang, J. Optimization of the preparation process of hawthorn pectin composite fresh-keeping film by response surface methodology. China Food Addit. 2023, 34, 45–51. [Google Scholar]
- Wang, J.; Ran, L.; Zhu, Z.; Liu, P.; Cheng, C.; Zhu, B. Study on preparation and properties of citrus peel/chitosan composite film. Food Ferment. Ind. 2024, 50, 149–156. [Google Scholar]
- Tripathi, S.; Kumar, L.; Deshmukh, R.K.; Gaikwad, K.K. Ultraviolet Blocking Films for Food Packaging Applications. Food Bioprocess Technol. 2024, 17, 1563–1582. [Google Scholar] [CrossRef]
- Pizarro, G.; Marambio, O.; Jeria-Orell, M.; Sánchez, J.; Oyarzún, D.; Martín Trasancos, R.; Novio, F. Morphological, optical and wettability characterization of honeycomb patterned films based on self-assembling copolymer under thermal annealing. Chem. Phys. 2020, 533, 110715. [Google Scholar] [CrossRef]
- Nian, L.; Xie, Y.; Sun, X.; Wang, M.; Cao, C. Chitosan quaternary ammonium salt/gelatin-based biopolymer film with multifunctional preservation for perishable products. Int. J. Biol. Macromol. 2023, 228, 286–298. [Google Scholar] [CrossRef]
- Li, X.J.; Yue, R.K.; Hou, H.B.; Zhang, J.L.; Song, Z.J. Preparation and Properties of Two pH-sensitive Dendrobium Anthocyanin/Chitosan Composite Films. Packag. Eng. 2024, 45, 128–139. [Google Scholar]
- Zhou, M.; Han, Y.; McClements, D.; Cheng, C.; Chen, S. Co-encapsulation of anthocyanin and cinnamaldehyde in nanoparticle-filled carrageenan films: Fabrication, characterization, and active packaging applications. Food Hydrocoll. 2024, 149, 109609. [Google Scholar] [CrossRef]
- Rusli, A.; Mulyati, M.T.; Metusalach, M.; Salengke, S. Physical and mechanical properties of agar based edible film with glycerol plasticizer. Int. Food Res. J. 2016, 23, 1669–1675. [Google Scholar]
- Araújo, A.; Galvão, A.; Filho, C.S.; Mendes, F.; Oliveira, M.; Barbosa, F.; Filho, M.S.; Bastos, M. Okra mucilage and corn starch bio-based film to be applied in food. Polym. Test. 2018, 71, 352–361. [Google Scholar] [CrossRef]
- Tao, H.Y.; Zhao, L.F.; Chen, G.; Xia, N.; Jia, S.P.; Li, S.B. Preparation of chitosan-PVA composite membranes containing phloretin and used as antioxidant film. J. Cent. China Norm. Univ. (Nat. Sci.) 2022, 56, 648–655. [Google Scholar]
- Chen, C.W.; Duan, H.; He, X.X.; Xie, J.; Yang, F.X.; Yu, J.; Zhao, Y.N. Effect of Tea Polyphenols on Moisture Absorption and Antioxidant Activity of Poly-(vinyl alcohol)-Based Film. Food Sci. 2016, 37, 40–44. [Google Scholar]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar]
- Wu, K.; Zhu, D.D.; Zeng, Y.; Cheng, J.J.; Wang, R.; Peng, B.; Chen, K.; Deng, P.P.; Jiang, F.T.; Zhao, X.J. Impact of Anthocyanin Extract Sources on the Physical Properties and pH Sensitivity of Konjac Glucomannan/Zein Composite Film. Food Bioprocess Technol. 2024, 17, 3912–3925. [Google Scholar] [CrossRef]
- Bao, Y.W.; Cui, H.J.; Tian, J.L.; Ding, Y.M.; Tian, Q.L.; Zhang, W.J.; Wang, M.S.; Zang, Z.H.; Sun, X.Y.; Li, D.N.; et al. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control 2022, 131, 108441. [Google Scholar] [CrossRef]
Sample | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
VPC0 | 0.15 ± 0.021 a | 22.25 ± 2.27 a | 597.19 ± 75.02 a |
VPC1 | 0.20 ± 0.032 b | 17.98 ± 2.25 b | 453.34 ± 68.20 b |
VPC3 | 0.15 ± 0.012 a | 19.91 ± 2.99 c | 489.25 ± 82.04 c |
VPC5 | 0.12 ±0.031 c | 20.18 ± 4.23 d | 398.14 ± 118.70 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhang, X.; Zhang, Z.; Lin, B.; Yu, H. Preparation and Improved Properties of Vanillin-Crosslinked Polyvinyl Alcohol/Chitosan Active Packaging Films. Molecules 2025, 30, 1334. https://doi.org/10.3390/molecules30061334
He Y, Zhang X, Zhang Z, Lin B, Yu H. Preparation and Improved Properties of Vanillin-Crosslinked Polyvinyl Alcohol/Chitosan Active Packaging Films. Molecules. 2025; 30(6):1334. https://doi.org/10.3390/molecules30061334
Chicago/Turabian StyleHe, Yina, Xiaojun Zhang, Zhan Zhang, Bing Lin, and Haitao Yu. 2025. "Preparation and Improved Properties of Vanillin-Crosslinked Polyvinyl Alcohol/Chitosan Active Packaging Films" Molecules 30, no. 6: 1334. https://doi.org/10.3390/molecules30061334
APA StyleHe, Y., Zhang, X., Zhang, Z., Lin, B., & Yu, H. (2025). Preparation and Improved Properties of Vanillin-Crosslinked Polyvinyl Alcohol/Chitosan Active Packaging Films. Molecules, 30(6), 1334. https://doi.org/10.3390/molecules30061334