Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest
Abstract
:1. Introduction
2. Results and Discussion
3. Materials
Measurement and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Wang, Y.; Song, Y.; Zhao, S.; Zhang, M.; Li, G.; Guo, Q.; Tong, Z.; Li, Z.; Jin, S.; et al. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat. Commun. 2024, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Wanie, V.; Bloch, E.; Månsson, E.P.; Colaizzi, L.; Ryabchuk, S.; Saraswathula, K.; Ordonez, A.F.; Ayuso, D.; Smirnova, O.; Trabattoni, A.; et al. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 2024, 630, 109. [Google Scholar] [CrossRef] [PubMed]
- Furlan, F.; Moreno-Naranjo, J.M.; Gasparini, N.; Feldmann, S.; Wade, J.; Fuchter, M.J. Chiral materials and mechanisms for circularly polarized light-emitting diodes. Nat. Photonics 2024, 18, 658. [Google Scholar] [CrossRef]
- Yang, B.; Yan, S.; Zhang, Y.; Ban, S.; Ma, H.; Feng, F.; Huang, W. Double-model decay strategy integrating persistent photogenic radicaloids with dynamic circularly polarized doublet radiance and triplet afterglow. J. Am. Chem. Soc. 2024, 146, 7668. [Google Scholar] [CrossRef]
- Guo, G.; Li, H.; Yan, Y.; Zhao, W.; Gao, Z.; Cao, H.; Yan, X.; Li, H.; Xie, G.; Chen, R.; et al. A Dynamic H-Bonding Network Enables Stimuli-Responsive Color-Tunable Chiral Afterglow Polymer for 4D Encryption. Adv. Mater. 2024, 36, 2412100. [Google Scholar] [CrossRef]
- Qiao, W.G.; Yao, M.; Xu, J.W.; Peng, H.Y.; Xia, J.L.; Xie, X.L.; Li, Z.A. Naphthyl Substituted Impurities Induce Efficient Room Temperature Phosphorescence. Angew. Chem. 2023, 135, e202315911. [Google Scholar] [CrossRef]
- Nidhankar, A.D.; Goudappagouda; Wakchaure, V.C.; Babu, S.S. Efficient metal-free organic room temperature phosphors. Chem. Sci. 2021, 12, 4216–4236. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, C.; Zhang, H.; Wu, S.; Li, J.A.; Yang, Y.; Mao, Z.; Luo, S.; Liu, C.; Shi, G.; et al. Color-Tunable Dual-Mode Organic Afterglow from Classical Aggregation-Caused Quenching Compounds for White-Light-Manipulated Anti-Counterfeiting. Angew. Chem. Int. Ed. 2023, 135, e202217616. [Google Scholar] [CrossRef]
- Li, J.A.; Zhang, L.; Wu, C.; Huang, Z.; Li, S.; Zhang, H.; Yang, Q.; Mao, Z.; Luo, S.; Liu, C.; et al. Switchable and Highly Robust Ultralong Room-Temperature Phosphorescence from Polymer-Based Transparent Films with Three-Dimensional Covalent Networks for Erasable Light Printing. Angew. Chem. Int. Ed. 2023, 62, e202217284. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Zeng, L.; Dong, G.; Guo, X.; Sun, M.; Liu, H.; Dong, Y.; Zhang, C.; Li, W. Temperature-dependent reversible afterglow between green, orange, and red in dual-delay organic doped material. Adv. Opt. Mater. 2024, 12, 2401660. [Google Scholar] [CrossRef]
- Gao, M.; Tian, Y.; Li, X.; Gong, Y.; Fang, M.; Yang, J.; Li, Z. The Effect of Molecular Conformations and Simulated “Self-Doping”in Phenothiazine Derivatives on Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 2023, 62, e202214908. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Z.; Mo, W.; Deng, H.; Hong, W.; Chi, Z. Hierarchical Dual-Mode Efficient Tunable Afterglow via J-Aggregates in Single-Phosphor-Doped Polymer. Angew. Chem. Int. Ed. 2024, 63, e202410974. [Google Scholar]
- Xiong, T.; Chen, Y.; Peng, Q.; Lu, S.; Long, S.; Li, M.; Wang, H.; Lu, S.; Chen, X.; Fan, J.; et al. Lipid droplet targeting type I photosensitizer for ferroptosis via lipid peroxidation accumulation. Adv. Mater. 2024, 36, 2309711. [Google Scholar] [CrossRef]
- Zou, R.; Jin, L.; Zheng, Y.; Shao, G.; Hong, W. Chromatically polarized Afterglow: Photo-controlled and anisotropic persistent luminescence from doped polymeric systems. Chem. Eng. J. 2024, 479, 147792. [Google Scholar] [CrossRef]
- Wu, M.; Li, J.; Huang, J.; Wang, X.; Wang, G.; Chen, X.; Li, X.; Chen, X.; Ding, S.; Zhang, H.; et al. The Unexpected Mechanism of Transformation from Conventional Room-Temperature Phosphorescence to TADF-Type Organic Afterglow Triggered by Simple Chemical Modification. J. Mater. Chem. C 2023, 11, 2291–2301. [Google Scholar] [CrossRef]
- Cui, J.Y.; Ali, S.H.; Shen, Z.Y.; Xu, W.S.; Liu, J.Y.; Li, P.X.; Li, Y.; Chen, L.G.; Wang, B.W. 3-Polylysine organic ultra-long room-temperature phosphorescent materials based on phosphorescent molecule doping. Chem. Sci. 2024, 15, 4171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Chong, K.C.; Xie, Z.L.; Liu, B. Color-Tunable Dual-Mode Organic Afterglow for White-Light Emission and Information Encryption Based on Carbazole Doping. Angew. Chem. Int. Ed. 2023, 62, e202310335. [Google Scholar] [CrossRef]
- Guo, W.-J.; Yan, S.R.; Chen, L.; Qiao, L.; Xu, S.H.; Qi, T.F.; Liu, B.; Peng, H.Q. Isomeric Engineering of Organic Luminophores for Multicolor Room Temperature Phosphorescence Including Red Afterglow. Adv. Funct. Mater. 2024, 34, 2406888. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Xie, X.; Zhang, J.; Li, Y.; Tang, B. Advances in Polymer-Based Organic Room-Temperature Phosphorescence Materials. Adv. Funct. Mater. 2024, 34, 2314069. [Google Scholar] [CrossRef]
- Xiong, S.; Xiong, Y.; Wang, D.; Pan, Y.; Chen, K.; Zhao, Z.; Wang, D.; Tang, B.Z. Achieving Tunable Organic Afterglow and UV-Irradiation-Responsive Ultralong Room-Temperature Phosphorescence from Pyridine-Substituted Triphenylamine Derivatives. Adv. Mater. 2023, 35, 2301874. [Google Scholar] [CrossRef]
- Tian, R.; Gao, S.; Li, K.; Lu, C. Design of mechanical-robust phosphorescence materials through covalent click reaction. Nat. Commun. 2023, 14, 4720. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Wang, W.; Zhang, S.; Gao, Z.; Yan, Y.; Liu, Y.; Qi, Y.; Yan, X.; Zhao, W.; Zhang, X.; et al. Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore. Nat. Commun. 2024, 15, 3053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yan, X.; Gao, Z.; Cheng, H.; Zhang, X.; Li, H.; Chen, R.; Li, H.; Xie, G.; Tao, Y. Self-confining isolated chiral chromophore for circularly polarized organic afterglow from amorphous polymer systems. Chem. Eng. J. 2024, 485, 149886. [Google Scholar] [CrossRef]
- Guang, L.; Lu, Y.; Zhang, Y.; Liao, R.; Wang, F. Circularly polarized phosphorescence of benzils achieved by chiral supramolecular polymerization. Angew. Chem. Int. Ed. 2024, 63, 202315362. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhou, S.; Zhang, Y.; Wang, Y.; Guo, R.; Xiao, H.; Sun, X. Chiral Phosphorescent Carbonized Polymer Dots Relayed Light-Harvesting System for Color-Tunable Circularly Polarized Room Temperature Phosphorescence. Small 2024, 20, 2306969. [Google Scholar] [CrossRef]
- Nie, F.; Zhou, B.; Yan, D. Ultralong room temperature phosphorescence and reversible mechanochromic luminescence in ionic crystals with structural isomerism. Chem. Eng. J. 2023, 453, 139806. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Ma, D.; Mao, Z.; Zhao, J.; Chi, Z. Synergetic conformational regulations in ground and excited states for realizing stimulus-responsive and wide-tuning room-temperature phosphorescence. J. Am. Chem. Soc. 2023, 145, 16748. [Google Scholar] [CrossRef]
- Wang, T.; Gupta, A.K.; Wu, S.; Slawin, A.M.Z.; Zysman-Colman, E. Conjugation-modulated excitonic coupling brightens multiple triplet excited states. J. Am. Chem. Soc. 2023, 145, 1945–1954. [Google Scholar] [CrossRef]
- Deng, H.; Li, G.; Xie, H.; Yang, Z.; Mao, Z.; Zhao, J.; Yang, Z.; Zhang, Y.; Chi, Z. Dynamic Ultra-long Room Temperature Phosphorescence Enabled by Amorphous Molecular “Triplet Exciton Pump” for Encryption with Temporospatial Resolution. Angew. Chem. Int. Ed. 2024, 63, e202317631. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Wang, Z.; Xue, P.; Wang, W.; Zhang, L.; Shi, Y.; Huang, W.; Chen, R. Stimuli-Responsive Deep-Blue Organic Ultralong Phosphorescence with Lifetime over 5 s for Reversible Water-Jet Anti-Counterfeiting Printing. Angew. Chem. Int. Ed. 2021, 60, 17094. [Google Scholar] [CrossRef]
- Ye, W.; Ma, H.; Shi, H.; Wang, H.; Lv, A.; Bian, L.; Zhang, M.; Ma, C.; Ling, K.; Gu, M.; et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 2021, 20, 1539–1544. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, X.; Wang, H.; Huang, C.; Sun, H.; Dong, M.; Ji, L.; Yu, T.; Huang, W. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nat. Commun. 2021, 12, 3522. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, Z.; Chen, J. Morphological and compositional characterization of nanostructured materials using SEM-EDX analysis. J. Mater. Sci. 2020, 55, 5123–5135. [Google Scholar]
- Smith, J.A.; Brown, R.C.; Johnson, L.M. Structural characterization of organic crystals using single-crystal X-ray diffraction. J. Appl. Crystallogr. 2019, 52, 678–685. [Google Scholar]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996, 100, 6107–6110. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Wei, T.; Ren, Y.; Li, Z.; Zhang, X.; Ji, D.; Hu, L. Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from −20 to 60 °C. Chem. Eng. J. 2022, 434, 134646. [Google Scholar] [CrossRef]
- Muleta, D.Y.; Song, J.; Feng, W.; Wu, R.; Zhou, X.; Li, W.; Wang, L.; Liu, D.; Wang, T.; Hu, W. Small molecule-doped organic crystals towards long-persistent luminescence in water and air. J. Mater. Chem. C 2021, 9, 5093. [Google Scholar] [CrossRef]
- Mao, J.; Feng, W.; Wang, T. Effect of Guest Isomerism on Afterglow Color of Organic Host-guest Crystals. Chem. J. Chin. Univ. 2023, 44, 20220771. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Wang, B.; Zhao, X.; Ke, F.; Feng, W.; Wang, L.; Yang, J.; Wen, G.; Ji, D. Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest. Molecules 2025, 30, 1203. https://doi.org/10.3390/molecules30061203
He X, Wang B, Zhao X, Ke F, Feng W, Wang L, Yang J, Wen G, Ji D. Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest. Molecules. 2025; 30(6):1203. https://doi.org/10.3390/molecules30061203
Chicago/Turabian StyleHe, Xiao, Bo Wang, Xiaoqiang Zhao, Fengqin Ke, Wenhui Feng, Liwen Wang, Jiameng Yang, Guangyu Wen, and Denghui Ji. 2025. "Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest" Molecules 30, no. 6: 1203. https://doi.org/10.3390/molecules30061203
APA StyleHe, X., Wang, B., Zhao, X., Ke, F., Feng, W., Wang, L., Yang, J., Wen, G., & Ji, D. (2025). Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest. Molecules, 30(6), 1203. https://doi.org/10.3390/molecules30061203