Abstract
Cardiovascular diseases (CVDs) represent a leading global health crisis, significantly impairing patients’ quality of life and posing substantial risks to their survival. Conventional therapies for CVDs often grapple with challenges such as inadequate targeting precision, suboptimal therapeutic efficacy, and potential adverse side effects. To address these shortcomings, researchers are intensively developing advanced drug delivery systems characterized by high specificity and selectivity, excellent biodegradability, superior biocompatibility, and minimal toxicity. These innovative systems enable the precise delivery of pharmaceuticals with high drug-loading capacities, minimal leakage, and expansive specific surface areas, thereby enhancing therapeutic outcomes. In this review, we summarize and classify various drug delivery materials targeting CVDs and application values. We also evaluate the feasibility and efficacy of viral and non-viral vectors for the treatment of CVDs, the existing limitations and application prospects are also discussed. We hope that this review will provide new perspectives for the future development of drug delivery systems for the treatment of CVDs, ultimately contributing to improved patient care and outcomes.