Effects of Different Drying Methods on Volatile Flavor Compounds in Idesia Polycarpa Maxim Fruit and Oil
Abstract
:1. Introduction
2. Results
2.1. Appearance Analysis of I. polycarpa Fruit and Oil Treated with Different Drying Methods
2.2. Profile Analysis by GC-IMS
2.3. Volatile Compounds as Analyzed by GC-IMS
2.4. Unsupervised Assessment of Volatile Compounds in I. polycarpa Fruit and Oil via Different Drying Methods
2.5. Analysis of Key Differential Volatile Compounds in I. polycarpa Fruit and Oil via Different Drying Methods
2.6. OAV Analysis of Differential Volatile Compounds
3. Materials and Methods
3.1. Chemical Reagents and Plant Materials Preparation
3.2. Drying Methods
3.3. Extraction Method for I. polycarpa Oil
3.4. GC-IMS Analysis Conditions
3.5. Odor Activity Value (OAV) Calculation
3.6. Statistical Analysis
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, X.; Wen, L.; Wang, Z.; Yang, G.; Mao, J.; An, X.; Kan, J. A Comprehensive Study on Physicochemical Properties, Bioactive Compounds, and Emulsified Lipid Digestion Characteristics of I. polycarpa Var. Vestita Diels Fruits Oil. Food Chem. 2023, 404, 134634. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, X.; Shi, Q.; Pan, J.; Zhan, H.; Ge, F. High-Pressure Supercritical Carbon Dioxide Extraction of I. polycarpa Oil: Evaluation the Influence of Process Parameters on the Extraction Yield and Oil Quality. Ind. Crops Prod. 2022, 188, 115586. [Google Scholar] [CrossRef]
- Wen, L.; Xiang, X.; Wang, Z.; Yang, Q.; Guo, Z.; Huang, P.; Mao, J.; An, X.; Kan, J. Evaluation of Cultivars Diversity and Lipid Composition Properties of I. polycarpa Var. Vestita Diels. J. Food Sci. 2022, 87, 3841–3855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, C.; Karrar, E.; Du, M.; Jin, Q.; Wang, X. Analysis of Chemical Composition and Antioxidant Activity of I. polycarpa Pulp Oil from Five Regions in China. Foods 2023, 12, 1251. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Yang, S.; Yang, M.; Wang, Y.; Yang, T.; Zhang, J. Effects on Volatile Oil and Volatile Compounds of Amomum Tsao-Ko with Different Pre-Drying and Drying Methods. Ind. Crops Prod. 2021, 174, 114168. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Peng, T.; Qiu, J.; Rao, Q.; Song, J.; Xiao, S.; Li, Y.; Tang, L. Drying Methods and Structure–Activity Relationships of Hydroxycinnamic Acid Derivatives in I. polycarpa Maxim. Leaves. Food Funct. 2021, 12, 1651–1661. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, X.; Liu, H.; Wu, C.; Ma, L. Effects of different processing methods on beneficial lipid concomitants in I. polycarpa Maxim oil. China Oils Fats 2024, 12, 1–12. [Google Scholar] [CrossRef]
- Shang, Z.; Xu, T.; Zou, K.; Ma, L. Effect of drying method of I. polycarpa fresh fruit on the quality of I. polycarpa oil. China Oils Fats 2022, 49, 11–15. [Google Scholar] [CrossRef]
- Tian, X.X.; Wang, L.; Fang, X.Z.; Du, M.H. Effects of drying methods on physicochemical properties, fatty acid composition and trace nutrient contents of I. polycarpa Maxim. seed oil. China Oils Fats 2020, 45, 8–11+55. [Google Scholar]
- Polat, S.; Guclu, G.; Kelebek, H.; Keskin, M.; Selli, S. Comparative Elucidation of Colour, Volatile and Phenolic Profiles of Black Carrot (Daucus carota L.) Pomace and Powders Prepared by Five Different Drying Methods. Food Chem. 2022, 369, 130941. [Google Scholar] [CrossRef]
- Qian, C.; Li, H.; Hou, Z.; Liang, Z. Effects of Different Drying Methods on Rubus Chingii Hu Fruit during Processing. Heliyon 2024, 10, e24512. [Google Scholar] [CrossRef]
- Qin, H.; Yang, T.; Yang, S.; Yang, M.; Wang, Y.; Zhang, J. Effects of Different Pre-Drying and Drying Methods on Volatile Compounds in the Pericarp and Kernel of Amomum Tsao-Ko. Front. Plant Sci. 2022, 13, 803776. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jiao, X.; Liu, J.; Jia, M.; Blanchard, C.; Zhou, Z. Characterizing the Volatile Compounds of Different Sorghum Cultivars by Both GC-MS and HS-GC-IMS. Food Res. Int. 2021, 140, 109975. [Google Scholar] [CrossRef]
- Li, J.; Hua, J.; Dong, C.; Yang, Y.; Deng, Y.; Wang, J.; Jiang, Y.; Yuan, H.; Zhou, Q. Real-Time Fingerprinting of the Dynamics of Green Tea Volatiles by Ion Mobility Spectrometry for Aroma Assessment and Discrimination. LWT 2020, 131, 109751. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, N.; Zhang, Q.; Tian, Z.; Li, M.; Shi, W. Evaluation of Aroma Characteristics of Penaeus Vannamei with Different Drying Methods Using HS-SPME-GC-MS, MMSE-GC-MS, and Sensory Evaluation. Food Chem. 2024, 449, 138957. [Google Scholar] [CrossRef]
- González-Cavieres, L.; Pérez-Won, M.; Tabilo-Munizaga, G.; Jara-Quijada, E.; Díaz-Álvarez, R.; Lemus-Mondaca, R. Advances in Vacuum Microwave Drying (VMD) Systems for Food Products. Trends Food Sci. Technol. 2021, 116, 626–638. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Li, L.; Wang, S.; Liu, Y.; Gao, M. Effect of Enzymatic Hydrolysis on Volatile Flavor Compounds of Monascus-Fermented Tartary Buckwheat Based on Headspace Gas Chromatography-Ion Mobility Spectrometry. Food Res. Int. 2023, 163, 112180. [Google Scholar] [CrossRef]
- Li, S.; Liu, F.; Wu, M.; Li, Y.; Song, X.; Yin, J. Effects of Drying Treatments on Nutritional Compositions, Volatile Flavor Compounds, and Bioactive Substances of Broad Beans. Foods 2023, 12, 2160. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Shen, L.; Shi, X.; Deng, Y.; Qiao, Y.; Wu, W.; Xiong, G.; Wang, L.; Li, X.; Ding, A.; et al. Characterization of Flavor Perception and Characteristic Aroma of Traditional Dry-Cured Fish by Flavor Omics Combined with Multivariate Statistics. LWT 2023, 173, 114240. [Google Scholar] [CrossRef]
- Bozkir, H.; Tekgül, Y.; Erten, E.S. Effects of Tray Drying, Vacuum Infrared Drying, and Vacuum Microwave Drying Techniques on Quality Characteristics and Aroma Profile of Orange Peels. J. Food Process Eng. 2021, 44, e13611. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Chen, J.; Xie, J.; Shen, S.; Deng, Y.; Zhu, J.; Yuan, H.; Jiang, Y. Characterization of the Key Aroma Compounds in Black Teas with Different Aroma Types by Using Gas Chromatography Electronic Nose, Gas Chromatography-Ion Mobility Spectrometry, and Odor Activity Value Analysis. LWT 2022, 163, 113492. [Google Scholar] [CrossRef]
- Hinneh, M.; Abotsi, E.E.; Van De Walle, D.; Tzompa-Sosa, D.A.; De Winne, A.; Simonis, J.; Messens, K.; Van Durme, J.; Afoakwa, E.O.; De Cooman, L.; et al. Pod Storage with Roasting: A Tool to Diversifying the Flavor Profiles of Dark Chocolates Produced from ‘Bulk’ Cocoa Beans? (Part I: Aroma Profiling of Chocolates). Food Res. Int. 2019, 119, 84–98. [Google Scholar] [CrossRef]
- Yin, W.; Ma, X.; Li, S.; Wang, X.; Liu, H.; Shi, R. Comparison of Key Aroma-Active Compounds Between Roasted and Cold-Pressed Sesame Oils. Food Res. Int. 2021, 150, 110794. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zheng, H.; Meng, K.; Yu, H.; Xie, G.; Zhang, Y.; Yang, X.; Chen, J.; Xu, Z.; Lin, Z.; et al. Quantitative Study on Core Bacteria Producing Flavor Substances in Huangjiu (Chinese Yellow Rice Wine). LWT 2022, 168, 113900. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, K.; Li, W.; Peng, Y.; Yi, Y.; Qiao, M.; Fu, Y. Characterization of Flavor and Taste Profile of Different Radish (Raphanus sativus L.) Varieties by Headspace-Gas Chromatography-Ion Mobility Spectrometry (GC/IMS) and E-Nose/Tongue. Food Chem. X 2024, 22, 101419. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Cai, Y.; Wu, X.; Gai, S.; Wang, B.; Liu, D. Characterization of Selected Commercially Available Grilled Lamb Shashliks Based on Flavor Profiles Using GC-MS, GC × GC-TOF-MS, GC-IMS, E-Nose and E-Tongue Combined with Chemometrics. Food Chem. 2023, 423, 136257. [Google Scholar] [CrossRef] [PubMed]
Number | VOCs | RI | Rt [s] | Dt [RIPrel] | I. polycarpa Fruit Samples (mg·kg−1) | I. polycarpa Oil Samples (mg·kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G-F | G-ND | G-HAD | G-MD | G-MVD | Y-ND | Y-HAD | Y-MD | Y-MVD | |||||
1 | Guaiacol | 1909.3 | 3089.76 | 1.11957 | 190.35 ± 31.59 a | 6.6 ± 0.36 b | 31.76 ± 6.43 b | 64.28 ± 5.61 b | 230.41 ± 35.53 a | 23.18 ± 2.54 c | 52.69 ± 6.87 bc | 97.13 ± 13.33 b | 279.08 ± 36.92 a |
2 | 3-Methylbutanoic acid | 1908.2 | 3082.28 | 1.48419 | 47.48 ± 8.44 a | 3.34 ± 0.31 b | 6.79 ± 0.88 b | 10.56 ± 1.3 b | 162.63 ± 62.06 b | 8.25 ± 1.48 b | 8.05 ± 1.26 b | 8.14 ± 1.15 b | 35.01 ± 6.38 a |
3 | 2-Acetylpyrazine | 1745.60 | 2165.86 | 1.52123 | 150.27 ± 19.45 b | 4.65 ± 0.74 d | 22.07 ± 3.02 cd | 73.97 ± 10.86 c | 257.46 ± 46.34 a | 14.18 ± 0.36 c | 21.24 ± 2.07 bc | 47.07 ± 5.79 b | 196.06 ± 21.78 a |
4 | Dihydro-2(3 H)-furanone | 1710.1 | 2005.02 | 1.09032 | 33.9 ± 4.12 a | 6.42 ± 0.5 c | 23.46 ± 2.02 b | 4.46 ± 1.85 c | 19.86 ± 1.13 b | 15.41 ± 0.5 b | 27.92 ± 1.4 a | 9.61 ± 1.3 c | 28.57 ± 3.22 a |
5 | Propanoic acid | 1638.6 | 1717 | 1.11567 | 14.89 ± 1.61 a | 1.27 ± 0.01 c | 4.05 ± 0.41 b | 2.3 ± 0.11 bc | 4.03 ± 0.34 b | 5.02 ± 0.22 c | 7.05 ± 0.56 b | 6.81 ± 0.53 b | 9.74 ± 1.16 a |
6 | (E)-2-Nonenal | 1570.6 | 1481.55 | 1.41386 | 12.76 ± 0.85 a | 1.89 ± 0.1 b | 1.62 ± 0.08 b | 1.16 ± 0.08 b | 1.51 ± 0.14 b | 5.06 ± 0.39 ab | 5.58 ± 0.1 a | 4.05 ± 0.41 b | 4.3 ± 0.47 b |
7 | Benzaldehyde | 1547.7 | 1409.78 | 1.15505 | 22.86 ± 4.37 a | 3.52 ± 0.1 b | 7.24 ± 0.8 b | 1.61 ± 0.06 b | 2.71 ± 0.14 b | 3.57 ± 0.13 b | 16.61 ± 1.03 a | 2.8 ± 0.2 b | 3.8 ± 0.24 b |
8 | (E,E)-2,4-Heptadienal | 1517.8 | 1321.11 | 1.20476 | 2.28 ± 0.18 a | 0.47 ± 0.01 b | 0.43 ± 0.04 b | 0.21 ± 0.02 b | 0.39 ± 0.04 b | 1.67 ± 0.07 b | 1.99 ± 0.06 a | 1.14 ± 0.06 d | 1.36 ± 0.07 c |
9 | Acetic acid | 1503.60 | 1281.00 | 1.15848 | 663.73 ± 134.1 a | 70.46 ± 4.6 b | 192.11 ± 13.15 b | 116.43 ± 14.97 b | 153.67 ± 10.98 b | 94.55 ± 6.96 c | 292.18 ± 28.51 a | 154.49 ± 27.6 b | 169.95 ± 17.35 b |
10 | Furfural | 1492.8 | 1251.44 | 1.09335 | 5.55 ± 0.51 a | 0.42 ± 0.06 d | 2.82 ± 0.24 b | 1.42 ± 0.22 c | 2.41 ± 0.3 b | 1.39 ± 0.13 c | 2.95 ± 0.48 b | 1.75 ± 0.31 c | 5.55 ± 0.47 a |
11 | 1-Octen-3-ol | 1485.8 | 1232.44 | 1.16705 | 7.16 ± 0.76 a | 3.16 ± 0.11 b | 1.27 ± 0.04 c | 0.46 ± 0.11 c | 0.6 ± 0.04 c | 10.53 ± 0.3 a | 4.94 ± 0.16 b | 1.29 ± 0.2 d | 2.1 ± 0.17 c |
12 | 2,4-Heptadienal | 1485 | 1230.33 | 1.2099 | 8.39 ± 1.47 a | 0.86 ± 0.01 b | 0.54 ± 0 b | 0.23 ± 0.04 b | 0.6 ± 0.02 b | 1.51 ± 0.16 b | 2.26 ± 0.07 a | 1 ± 0.11 c | 1.05 ± 0.18 c |
13 | (E)-2-Octenal | 1437.30 | 1109.32 | 1.82187 | 34.38 ± 3.59 a | 7.63 ± 0.31 b | 6.72 ± 0.21 b | 5.4 ± 0.2 b | 7.03 ± 0.17 b | 33.91 ± 0.47 a | 17.9 ± 0.64 b | 10.72 ± 0.46 c | 11.94 ± 0.74 c |
14 | Nonanal | 1400.2 | 1023.55 | 1.48376 | 18.66 ± 3.01 a | 1.72 ± 0.06 b | 1.16 ± 0.1 b | 1.45 ± 0.17 b | 1.68 ± 0.08 b | 4.78 ± 0.38 a | 3.89 ± 0.17 b | 3.58 ± 0.05 b | 3.32 ± 0.1 b |
15 | 1-Hexanol-M | 1369.00 | 956.55 | 1.64006 | 25.68 ± 3.2 a | 23.24 ± 0.64 a | 11.94 ± 0.86 b | 2.73 ± 0.29 c | 3.48 ± 0.12 c | 42.54 ± 0.45 a | 23.77 ± 1.12 b | 6.74 ± 0.67 c | 8.41 ± 0.51 c |
16 | Dimethyl trisulfide | 1415.1 | 1057.05 | 1.30035 | 2.59 ± 0.31 a | 0.26 ± 0.04 c | 0.9 ± 0.11 b | 0.27 ± 0.01 c | 0.28 ± 0.01 c | 2.48 ± 0.07 a | 2.38 ± 0.13 a | 0.91 ± 0.05 b | 0.75 ± 0.04 b |
17 | 3-Ethylpyridine | 1386.1 | 992.73 | 1.10259 | 6.57 ± 1.24 a | 0.4 ± 0.03 b | 0.55 ± 0.05 b | 0.38 ± 0.01 b | 0.74 ± 0.15 b | 1.21 ± 0.11 a | 1.28 ± 0.11 a | 0.97 ± 0.2 a | 1.21 ± 0.22 a |
18 | 2,3-Dimethylpyrazine | 1350.6 | 919.03 | 1.10738 | 5.63 ± 1.07 a | 0.37 ± 0.01 b | 0.9 ± 0.11 b | 0.4 ± 0.04 b | 1.04 ± 0.37 b | 1.54 ± 0.04 b | 1.86 ± 0.01 a | 1.05 ± 0.03 c | 1.85 ± 0.12 a |
19 | (E)-2-Heptenal | 1330.70 | 880.17 | 1.66717 | 84.81 ± 15.4 a | 7.67 ± 0.44 b | 9.67 ± 0.56 b | 6.07 ± 0.57 b | 14.23 ± 0.92 b | 51.04 ± 0.56 a | 34.72 ± 1.3 b | 11.2 ± 0.43 c | 15.52 ± 0.67 c |
20 | 1-Hydroxy-2-propanone | 1313.5 | 848 | 1.0691 | 206.31 ± 46.27 a | 5.04 ± 0.21 b | 12.56 ± 1.54 b | 8.54 ± 0.64 b | 17.52 ± 1.22 b | 6.99 ± 0.03 c | 10.68 ± 1.09 b | 7.09 ± 0.36 c | 15.36 ± 2.28 a |
21 | 3-Hydroxy-2-butanone | 1298.7 | 821.2 | 1.0691 | 169.35 ± 41.51 a | 5.25 ± 0.21 b | 9.49 ± 0.82 b | 3.42 ± 1.55 b | 5.75 ± 0.44 b | 16.58 ± 0.53 b | 23.77 ± 1.31 a | 6.36 ± 1.63 b | 8.43 ± 0.67 c |
22 | 1-Octen-3-one | 1308.4 | 838.62 | 1.27962 | 3.33 ± 0.25 a | 0.24 ± 0.01 c | 0.81 ± 0.17 b | 0.54 ± 0.06 bc | 0.9 ± 0.09 b | 2.88 ± 0.07 a | 1.51 ± 0.11 b | 1.39 ± 0.1 b | 1.08 ± 0.09 c |
23 | Cyclohexanone | 1293.3 | 811.82 | 1.15841 | 5.17 ± 0.98 a | 0.23 ± 0.01 c | 0.41 ± 0.03 c | 0.42 ± 0.03 c | 1.16 ± 0.16 b | 1.23 ± 0.06 c | 2.04 ± 0.08 b | 2.57 ± 0.07 a | 2.74 ± 0.09 a |
24 | 2,3-Dimethylpyrazine | 1295.3 | 815.1 | 1.41113 | 9.5 ± 1.85 a | 0.37 ± 0.04 b | 0.8 ± 0.07 b | 0.51 ± 0.04 b | 0.95 ± 0.09 b | 2.04 ± 0.03 a | 2.07 ± 0.1 a | 1.91 ± 0.1 a | 1.87 ± 0.09 a |
25 | (E)-2-Heptenal | 1276 | 783.24 | 1.0762 | 11.46 ± 2.95 a | 0.35 ± 0.01 b | 1.37 ± 0.15 b | 0.95 ± 0.2 b | 3.15 ± 0.4 b | 1.43 ± 0.1 b | 1.68 ± 0.08 b | 1.34 ± 0.07 b | 4.77 ± 0.16 a |
26 | 1-Hydroxy-2-propanone | 1263.40 | 763.05 | 1.51042 | 109.95 ± 22.44 a | 16.42 ± 0.36 b | 20.53 ± 1.21 b | 21.55 ± 0.62 b | 23.89 ± 0.69 b | 69.16 ± 0.36 a | 62.1 ± 1.7 b | 55.89 ± 2.47 c | 35.94 ± 1.03 d |
27 | 3-Hydroxy-2-butanone | 1239.3 | 725.87 | 1.25256 | 19.24 ± 4.04 a | 3.07 ± 0.04 b | 4.45 ± 0.36 b | 0.85 ± 0.05 c | 1.25 ± 0.02 b | 6.22 ± 0.23 b | 11.49 ± 0.44 a | 4.61 ± 0.14 c | 4.76 ± 0.23 c |
28 | 1-Octen-3-one | 1230.80 | 713.13 | 1.52227 | 30.98 ± 5.83 a | 7.76 ± 0.16 bc | 4.97 ± 0.31 c | 1.8 ± 0.17 c | 3.41 ± 0.21 c | 22.12 ± 0.19 a | 13.19 ± 0.44 b | 3.74 ± 0.2 c | 5.72 ± 0.2 d |
29 | Cyclohexanone | 1219.80 | 697.19 | 1.48819 | 269.65 ± 55.57 a | 18.9 ± 0.85 b | 26.96 ± 1.76 b | 6.06 ± 0.76 b | 9.36 ± 1.54 b | 70.07 ± 0.57 b | 93.06 ± 3.03 a | 16.91 ± 0.45 c | 34.35 ± 1.34 d |
30 | Octanal | 1214.7 | 689.76 | 1.18735 | 3.34 ± 0.62 a | 0.34 ± 0.02 b | 0.31 ± 0.01 b | 0.26 ± 0.02 b | 0.32 ± 0.02 b | 2.06 ± 0.11 a | 1.65 ± 0.03 b | 0.95 ± 0.02 b | 0.92 ± 0.01 b |
31 | 2-Methylpyrazine | 1213.2 | 687.63 | 1.09547 | 11.86 ± 2.03 a | 1.23 ± 0.04 b | 0.69 ± 0.06 b | 0.53 ± 0.09 b | 0.83 ± 0.06 b | 1.2 ± 0.01 a | 1.1 ± 0.08 a | 0.46 ± 0.02 c | 0.71 ± 0.04 b |
32 | 1-Pentanol | 1254.6 | 749.24 | 1.14437 | 1.13 ± 0.29 a | 0.09 ± 0.01 b | 0.06 ± 0.01 b | 0.1 ± 0.01 b | 0.14 ± 0.01 b | 0.45 ± 0.05 a | 0.42 ± 0.02 a | 0.4 ± 0.06 a | 0.45 ± 0.05 a |
33 | Heptanal | 1195.70 | 663.20 | 1.69862 | 21.61 ± 3.2 a | 4.32 ± 0.17 c | 5.05 ± 0.36 c | 4.11 ± 0.17 c | 9.13 ± 0.84 b | 26.87 ± 0.42 a | 22.74 ± 0.6 b | 13 ± 0.73 d | 17.08 ± 0.47 c |
34 | 2-Heptanone-D | 1191.4 | 656.83 | 1.62601 | 3.82 ± 0.27 a | 1.08 ± 0.11 b | 0.86 ± 0.04 b | 0.61 ± 0.03 b | 0.78 ± 0.05 b | 4.23 ± 0.02 a | 2.47 ± 0.2 b | 1.22 ± 0.1 c | 1.63 ± 0.1 c |
35 | 1-Penten-3-ol | 1175.4 | 622.91 | 0.94341 | 54.43 ± 12.2 a | 7.53 ± 0.28 b | 9.24 ± 0.62 b | 5.27 ± 0.65 b | 9.14 ± 0.37 b | 21.49 ± 0.1 b | 26.41 ± 0.97 a | 10.23 ± 0.53 c | 11.69 ± 0.4 c |
36 | 1-Butanol-M | 1162.6 | 596.97 | 1.18075 | 104.88 ± 23.48 a | 5.63 ± 0.31 b | 7.89 ± 0.51 b | 5.64 ± 0.3 b | 7.98 ± 0.3 b | 17.87 ± 0.44 d | 35.81 ± 1.42 a | 25.24 ± 1.52 b | 20.21 ± 0.7 c |
37 | (E)-2-Pentenal | 1148.30 | 569.24 | 1.36085 | 331.36 ± 74.22 a | 24.1 ± 1.16 b | 49.95 ± 3.08 b | 35.32 ± 0.27 b | 40.32 ± 2.49 b | 226.45 ± 1.27 a | 32.36 ± 2.83 b | 9.61 ± 0.47 d | 19.27 ± 0.96 c |
38 | beta-Pinene | 1125.2 | 527.2 | 1.21566 | 14.14 ± 3.38 a | 0.65 ± 0.09 b | 1.38 ± 0.13 b | 0.28 ± 0.04 b | 0.25 ± 0.01 b | 3.67 ± 0.14 a | 3.39 ± 0.04 b | 2.53 ± 0.05 d | 2.95 ± 0.02 c |
39 | (Z)-2-Pentenal | 1125.7 | 528.1 | 1.35806 | 11.58 ± 3.61 a | 3.51 ± 0.08 b | 1.19 ± 0.11 c | 0.26 ± 0.03 c | 0.76 ± 0.09 c | 1.42 ± 0.08 a | 1.34 ± 0.07 a | 0.37 ± 0.03 d | 0.57 ± 0.06 c |
40 | Hexanal-D | 1101.8 | 487.85 | 1.55771 | 47.39 ± 10.38 a | 23.22 ± 1.21 bc | 36.39 ± 2.27 ab | 10.55 ± 1.32 c | 28.95 ± 3.07 b | 159.35 ± 10.88 a | 89.73 ± 2.94 b | 34.19 ± 3.03 d | 55.06 ± 1.64 c |
41 | 1-Propanol-M | 1052.5 | 420.76 | 1.11095 | 37.1 ± 8.88 a | 2.18 ± 0.04 b | 2.75 ± 0.16 b | 1.55 ± 0.16 b | 2.76 ± 0.09 b | 10.17 ± 0.08 b | 10 ± 0.37 b | 4.76 ± 0.34 c | 11.89 ± 0.55 a |
42 | 1-Penten-3-one | 1038.6 | 403.77 | 1.3064 | 91.77 ± 19.71 a | 10.16 ± 0.33 b | 10.49 ± 0.41 b | 3.87 ± 0.64 b | 12.79 ± 1.22 b | 7.5 ± 0.04 b | 13.32 ± 0.52 a | 1.02 ± 0.07 d | 2.37 ± 0.11 c |
43 | Thiophene | 1028.7 | 392.14 | 1.04114 | 27.71 ± 6.29 a | 2.22 ± 0.08 b | 2.44 ± 0.1 b | 3.16 ± 0.21 b | 3.12 ± 0.1 b | 5.28 ± 0.05 b | 5.81 ± 0.11 a | 3.98 ± 0.11 b | 5.62 ± 0.18 a |
44 | Pentanal | 998.1 | 358.15 | 1.41949 | 57.26 ± 13.46 a | 10.01 ± 0.51 c | 37.48 ± 2.6 b | 47.36 ± 2.08 ab | 51.19 ± 2.92 ab | 155.19 ± 0.57 c | 169.2 ± 5.12 b | 192.13 ± 9.01 a | 133.2 ± 4.72 d |
45 | Ethanol | 947.1 | 318.8 | 1.13887 | 973.15 ± 222.55 a | 44.51 ± 2.05 b | 42.62 ± 2.59 b | 39.29 ± 3.44 b | 39.38 ± 1.26 b | 117.86 ± 2.32 a | 85.42 ± 2.94 b | 50.23 ± 2.36 c | 80.18 ± 3.14 b |
46 | 3-Methylbutanal | 925.4 | 303.59 | 1.39995 | 219.73 ± 51.49 a | 14.97 ± 0.65 b | 20.63 ± 1.47 b | 23.8 ± 0.59 b | 31.04 ± 1.82 b | 92.41 ± 1.12 c | 104.07 ± 3.75 b | 106.85 ± 5.28 b | 118.76 ± 4.14 a |
47 | 2-Butanone | 913.5 | 295.54 | 1.24079 | 40.92 ± 10.36 a | 7.04 ± 0.21 b | 10.5 ± 0.9 b | 8.46 ± 0.73 b | 11.74 ± 0.67 b | 6.85 ± 0.04 c | 22.85 ± 1.1 a | 8.17 ± 0.4 c | 11.08 ± 0.45 b |
48 | Ethyl Acetate | 895.7 | 283.91 | 1.33712 | 532.21 ± 112.42 a | 21.24 ± 0.94 b | 24.98 ± 1.77 b | 9.42 ± 0.18 b | 12.17 ± 0.45 b | 53.89 ± 0.35 a | 50.09 ± 1.61 b | 6.81 ± 0.14 c | 55.23 ± 1.98 a |
49 | Butanal | 888.6 | 279.44 | 1.28267 | 63 ± 14.41 a | 5 ± 0.12 b | 8.26 ± 0.64 b | 7.2 ± 0.56 b | 9.64 ± 0.68 b | 37.77 ± 0.19 ab | 34.72 ± 1.47 b | 38.49 ± 1.81 a | 23.04 ± 0.88 c |
50 | Acrolein | 865.3 | 265.13 | 1.0565 | 287.83 ± 65.35 a | 14.11 ± 0.45 b | 5.71 ± 0.63 b | 5.18 ± 0.77 b | 3.43 ± 0.15 b | 25.92 ± 0.2 c | 34.29 ± 1.2 b | 13.41 ± 0.53 d | 36.9 ± 1.12 a |
51 | Acetone | 835.9 | 248.14 | 1.11374 | 411.86 ± 96.52 a | 16.64 ± 0.68 b | 20.23 ± 1.18 b | 47.19 ± 0.64 b | 62.49 ± 2.16 b | 53.8 ± 0.37 b | 50.77 ± 1.75 b | 66.59 ± 3.3 a | 55.01 ± 1.67 b |
52 | Propanal | 817.9 | 238.3 | 1.14027 | 64.3 ± 16.09 a | 11.41 ± 0.31 b | 18.09 ± 1.11 b | 12.82 ± 0.71 b | 20.48 ± 1.15 b | 70.91 ± 0.63 a | 67.08 ± 2.21 b | 26.55 ± 1.28 c | 30.45 ± 1.09 c |
53 | 2-Methylpropanal | 826.2 | 242.77 | 1.27988 | 57.62 ± 14.42 a | 4.27 ± 0.16 b | 5.7 ± 0.34 b | 2.15 ± 0.33 b | 3.56 ± 0.12 b | 15.24 ± 0.39 c | 29.65 ± 1.02 b | 15.93 ± 0.84 c | 34.67 ± 1.5 a |
54 | Methyl acetate | 848.5 | 255.29 | 1.19332 | 64.19 ± 14.82 a | 5.1 ± 0.25 b | 8.72 ± 0.69 b | 0.5 ± 0.05 b | 0.59 ± 0.03 b | 4.75 ± 0.04 c | 10.34 ± 0.59 a | 3.59 ± 0.25 d | 9.09 ± 0.42 b |
55 | Tetrahydrothiophene | 1121 | 520.05 | 1.05371 | 64.12 ± 11.59 a | 1.76 ± 0.18 b | 0.71 ± 0.04 b | 0.67 ± 0.07 b | 0.78 ± 0.03 b | 0.87 ± 0.05 b | 0.91 ± 0.06 b | 0.78 ± 0.05 b | 1.93 ± 0.06 a |
56 | 2-Methyl-1-propanol-M | 1108.9 | 499.47 | 1.17517 | 61.15 ± 15.74 a | 3.2 ± 0.38 b | 4.35 ± 0.26 b | 3.56 ± 0.56 b | 5.34 ± 0.18 b | 12.85 ± 0.43 b | 23.73 ± 0.69 a | 7.44 ± 0.41 c | 24.37 ± 0.86 a |
57 | p-Xylene | 1144.5 | 562.09 | 1.07604 | 15.15 ± 3.03 a | 0.97 ± 0.07 c | 1.86 ± 0.11 bc | 2.75 ± 0.15 bc | 5.37 ± 0.2 b | 3.02 ± 0.11 d | 8.67 ± 0.48 b | 4.42 ± 0.16 c | 12.59 ± 0.44 a |
58 | 2-Pentanone | 998.1 | 358.15 | 1.36085 | 79.99 ± 18.52 a | 13.29 ± 0.65 b | 3.52 ± 0.07 b | 3.51 ± 0.43 b | 4.44 ± 0.06 b | 10.88 ± 0.51 a | 6.1 ± 0.23 b | 6.18 ± 0.33 b | 6.25 ± 0.28 b |
59 | Methyl 2-methylbutanoate | 1020.1 | 382.3 | 1.52141 | 20.78 ± 6.91 a | 9.95 ± 0.72 b | 1.42 ± 0.19 c | 0.34 ± 0.02 c | 1.3 ± 0.03 c | 1.54 ± 0.01 c | 3.17 ± 0.08 a | 0.9 ± 0.02 d | 2.04 ± 0.07 b |
60 | Ethyl isobutyrate | 984.5 | 346.81 | 1.56157 | 313.49 ± 76.6 a | 0.6 ± 0.05 b | 0.36 ± 0.05 b | 0.44 ± 0.01 b | 0.41 ± 0.01 b | 3.93 ± 0.07 d | 6.85 ± 0.01 a | 5.56 ± 0.14 c | 5.98 ± 0.16 b |
61 | 2,3-Pentanedione | 1061.6 | 432.39 | 1.20309 | 46.24 ± 9.17 a | 4.76 ± 0.15 b | 6.38 ± 0.61 b | 5.46 ± 0.49 b | 5.86 ± 0.61 b | 2.2 ± 0.07 b | 3.1 ± 0.15 a | 1.96 ± 0.1 b | 1.46 ± 0.02 c |
62 | 1-Propanol-D | 1053.2 | 421.66 | 1.25894 | 63.67 ± 13.83 a | 2.78 ± 0.08 b | 2.05 ± 0.26 b | 1.46 ± 0.07 b | 1.86 ± 0.17 b | 2.64 ± 0.07 a | 2.89 ± 0.18 a | 1.56 ± 0.14 b | 2.93 ± 0.13 a |
63 | Ethyl heptanoate | 1339.2 | 896.61 | 1.42089 | 9.39 ± 1.44 a | 0.91 ± 0.04 c | 0.81 ± 0.06 c | 4.09 ± 0.53 b | 2.69 ± 0.11 bc | 2.44 ± 0.05 b | 1.99 ± 0.03 b | 12.09 ± 0.85 a | 2.99 ± 0.12 b |
64 | 1-Butanol-D | 1162.6 | 596.97 | 1.38319 | 12.92 ± 2.27 a | 3.27 ± 0.13 bc | 6.03 ± 0.6 b | 1.64 ± 0.13 c | 2.74 ± 0.14 c | 5.19 ± 0.14 c | 21.83 ± 0.83 a | 7.59 ± 0.47 b | 4.24 ± 0.07 c |
65 | 2-Heptanone-M | 1191 | 656 | 1.26173 | 5.98 ± 1.04 a | 1.16 ± 0.06 b | 1.33 ± 0.04 b | 1.31 ± 0.09 b | 1.79 ± 0.04 b | 6.66 ± 0.21 a | 4.21 ± 0.16 b | 2.9 ± 0.2 d | 3.55 ± 0.15 c |
66 | Ethyl pentanoate | 1136.2 | 546.88 | 1.65962 | 4.43 ± 1.15 a | 0.96 ± 0.08 b | 1.31 ± 0.12 b | 0.2 ± 0.02 b | 0.26 ± 0.02 b | 2.92 ± 0.13 b | 3.74 ± 0.19 a | 0.94 ± 0.08 c | 0.93 ± 0.03 c |
67 | Phenylacetaldehyde | 1763.1 | 2249.87 | 1.26119 | 30.01 ± 5.3 a | 1.96 ± 0.08 b | 3.11 ± 0.1 b | 2.45 ± 0.28 b | 5.04 ± 0.64 b | 3.14 ± 0.08 c | 5.12 ± 0.35 b | 3.57 ± 0.35 c | 6.02 ± 0.29 a |
68 | 2-Acetylpyridine | 1663.3 | 1811.64 | 1.14644 | 39.6 ± 4.75 b | 1.35 ± 0.05 c | 6.76 ± 1.01 c | 8.15 ± 1.37 c | 68.02 ± 13.33 a | 6 ± 0.47 c | 6.55 ± 0.74 c | 11.47 ± 1.38 b | 62.84 ± 8.06 a |
69 | 2-Octanone-D | 1292.8 | 810.91 | 1.75771 | 59.04 ± 13.21 a | 23.66 ± 0.96 ab | 23.25 ± 1.48 ab | 25.32 ± 0.75 ab | 24.18 ± 0.87 b | 53.77 ± 0.77 a | 52.37 ± 1.78 a | 51.1 ± 2.41 a | 52.78 ± 1.65 a |
70 | Acetaldehyde | 771.9 | 214.81 | 0.97743 | 29.68 ± 7.5 a | 2.25 ± 0.15 b | 4.06 ± 0.17 b | 4.02 ± 0.39 b | 4.43 ± 0.37 b | 21.1 ± 1.19 c | 23.67 ± 2.44 a | 21.45 ± 2.95 c | 22.84 ± 1.59 b |
71 | Diethyl acetal | 911.9 | 294.47 | 1.02418 | 58.16 ± 14.58 a | 4.55 ± 0.25 b | 5.21 ± 0.24 b | 5.88 ± 0.64 b | 9.84 ± 0.66 b | 17.24 ± 0.56 c | 17.42 ± 0.3 c | 30.19 ± 1.21 a | 23.07 ± 0.68 b |
72 | Dimethyl sulfide | 798.1 | 227.9 | 0.95114 | 38.67 ± 8.75 a | 3.03 ± 0.14 c | 9.06 ± 0.67 b | 11.62 ± 0.26 b | 9.49 ± 0.48 b | 15.82 ± 0.2 b | 42.1 ± 1.21 a | 7.91 ± 0.55 d | 12.1 ± 0.45 c |
73 | 2-Methyl-1-propanol-D | 1112.2 | 505.01 | 1.36457 | 291.49 ± 64.76 a | 15.46 ± 1 b | 21.09 ± 2 b | 1.95 ± 0.4 b | 5.13 ± 0.58 b | 11.21 ± 0.17 b | 32.19 ± 1.09 a | 1.39 ± 0.06 c | 15.57 ± 0.51 b |
74 | Hexanal-M | 1102.2 | 488.51 | 1.27399 | 102.09 ± 20.53 a | 7.01 ± 0.73 b | 10 ± 0.7 b | 11.89 ± 0.17 b | 15.69 ± 0.65 b | 107.02 ± 1.89 a | 88.19 ± 3.1 b | 62.11 ± 1.47 d | 77.23 ± 2.22 c |
75 | 5-Methyl-2(3H)-furanone | 1432.8 | 1098.52 | 1.12363 | 6.15 ± 0.82 a | 0.2 ± 0.04 c | 0.87 ± 0.13 c | 1.45 ± 0.13 bc | 2.32 ± 0.42 b | 0.71 ± 0.03 c | 1.56 ± 0.13 b | 1.74 ± 0.19 b | 2.49 ± 0.3 a |
76 | 2,5-Dimethylpyrazine | 1333.4 | 885.49 | 1.10465 | 4.01 ± 0.67 a | 0.28 ± 0.01 b | 0.36 ± 0.02 b | 0.25 ± 0.01 b | 0.83 ± 0.19 b | 1.25 ± 0.04 b | 1.1 ± 0.02 b | 1.05 ± 0.07 b | 2.55 ± 0.52 a |
77 | 2,5-Dimethylthiophene | 1194.8 | 662.01 | 1.07727 | 7.7 ± 1.72 a | 0.42 ± 0.07 b | 0.8 ± 0.08 b | 0.61 ± 0.03 b | 0.76 ± 0.02 b | 3.13 ± 0.31 a | 3.1 ± 0.06 a | 3.51 ± 0.2 a | 3.28 ± 0.13 a |
78 | 4-Methyl-3-penten-2-one | 1129.3 | 534.46 | 1.11143 | 10.89 ± 5.04 a | 0.32 ± 0.03 b | 0.32 ± 0.04 b | 0.27 ± 0.04 b | 1.51 ± 0.25 b | 1.97 ± 0.06 b | 3.32 ± 0.08 a | 0.89 ± 0.1 c | 0.95 ± 0.09 c |
79 | Butanoic acid | 1732.8 | 2106.54 | 1.16091 | 14.49 ± 2.28 b | 1.43 ± 0.48 c | 28.66 ± 3.83 a | 4.92 ± 2.51 c | 4.56 ± 0.57 c | 2.93 ± 0.11 b | 14.61 ± 2.12 a | 4.01 ± 1.01 b | 4.86 ± 0.27 b |
80 | 2-Methylpropanoic acid | 1694.4 | 1937.86 | 1.15733 | 10.77 ± 0.46 ab | 1.01 ± 0.07 c | 12.24 ± 1.68 a | 2.77 ± 0.66 c | 8.8 ± 1.66 b | 2.69 ± 0.18 b | 9.14 ± 1.06 a | 4.39 ± 0.74 b | 8.91 ± 0.86 a |
81 | Isoamyl acetate-M | 1137.60 | 549.43 | 1.74924 | 29.68 ± 6.13 a | 3.98 ± 0.4 c | 8.92 ± 1.73 b | 0.58 ± 0.07 c | 0.94 ± 0.02 c | 5.34 ± 0.05 b | 17.55 ± 0.59 a | 1.36 ± 0.2 c | 2.43 ± 0.09 c |
82 | cis-2-Penten-1-ol | 1340 | 898.14 | 0.94214 | 22.86 ± 4.32 a | 2.2 ± 0.09 b | 2.12 ± 0.15 b | 1.27 ± 0.01 b | 2 ± 0.16 b | 5.93 ± 0.09 a | 5.92 ± 0.14 a | 4.22 ± 0.34 b | 4.48 ± 0.23 b |
83 | 1-Hydroxy-2-propanone | 1314.8 | 850.43 | 1.23568 | 7.08 ± 1.15 b | 0.69 ± 0.02 c | 3.6 ± 0.77 c | 1.86 ± 0.27 bc | 13.45 ± 2.77 a | ||||
84 | Salicylaldehyde | 1823.6 | 2565.27 | 1.13461 | 37.03 ± 3.05 a | 6.79 ± 0.06 bc | 8.03 ± 0.42 bc | 3.61 ± 0.22 c | 10.91 ± 2.49 b | ||||
85 | Methional | 1476.8 | 1208.66 | 1.09635 | 9.09 ± 1.58 a | 0.83 ± 0.04 b | 1.03 ± 0.11 b | 0.55 ± 0.06 b | 1.45 ± 0.15 b | ||||
86 | 6-Methyl-5-hepten-2-one | 1349.4 | 916.72 | 1.18109 | 4.85 ± 0.55 a | 0.62 ± 0.01 b | 0.96 ± 0.07 b | 1.2 ± 0.07 b | 1.19 ± 0.08 b | ||||
87 | 2-Methyl-2-pentenal-M | 1186.7 | 646.68 | 1.52366 | 18.85 ± 4.83 a | 3.81 ± 0.48 b | 0.87 ± 0.05 b | 0.35 ± 0.04 b | 0.55 ± 0.01 b | ||||
88 | Ethyl 2-methylbutanoate | 1069.1 | 442.06 | 1.65157 | 182.85 ± 52.22 a | 0.17 ± 0.01 b | 0.27 ± 0.01 b | 0.26 ± 0.01 b | 0.35 ± 0.03 b | ||||
89 | Ethyl butanoate | 1055 | 423.99 | 1.55874 | 70.87 ± 17.63 a | 0.57 ± 0.03 b | 0.38 ± 0.03 b | 0.12 ± 0 b | 0.17 ± 0.01 b | ||||
90 | Ethyl 3-methylbutanoate | 1083.1 | 460.72 | 1.26913 | 36.22 ± 8.83 a | 0.33 ± 0.03 b | 0.3 ± 0.01 b | 0.11 ± 0.01 b | 0.16 ± 0.02 b | ||||
91 | Isobutyl acetate | 1030.3 | 394.04 | 1.61523 | 4.22 ± 0.65 a | 0.19 ± 0.01 b | 0.99 ± 0.36 b | 0.12 ± 0.01 b | 0.15 ± 0.01 b |
Numbering | Compound | Odor Threshold (mg·kg−1) | Flavor Characteristics | OAV (mg·kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I. polycarpa Fruit Samples | I. polycarpa Oil Samples | |||||||||||
G-F | G-ND | G-HAD | G-MD | G-MVD | Y-ND | Y-HAD | Y-MD | Y-MVD | ||||
1 | Hexanal | 0.300 | Grass aroma | 340.3 | 23.4 | 33.3 | 39.6 | 52.3 | 356.7 | 294.0 | 207.0 | 257.4 |
2 | (Z)-2-Pentenal | 1.500 | Fruity and sweet aroma | 7.7 | 2.3 | 0.8 | 0.2 | 0.5 | 1.0 | 0.9 | 0.2 | 0.4 |
3 | Butanoic acid | 2.500 | Acid odor | 5.8 | 0.6 | 11.5 | 2.0 | 1.8 | 1.2 | 5.8 | 1.6 | 1.9 |
4 | 3-Methylbutanoic acid | 1.800 | Irritating rancid odor | 26.4 | 1.9 | 3.8 | 5.9 | 90.4 | 4.6 | 4.5 | 4.5 | 19.5 |
5 | Ethanol | 50.000 | Aroma of wine | 19.5 | 0.9 | 0.9 | 0.8 | 0.8 | 2.4 | 1.7 | 1.0 | 1.6 |
6 | 2-Acetylpyridine | 0.500 | Baking aroma | 79.2 | 2.7 | 13.5 | 16.3 | 136.0 | 12.0 | 13.1 | 22.9 | 125.7 |
7 | Guaiacol | 3.000 | Smoked incense and burnt [24] flavor | 63.5 | 2.2 | 10.6 | 21.4 | 76.8 | 7.7 | 17.6 | 32.4 | 93.0 |
8 | Acetic acid | 100.00 | Irritating rancid odor | 5.7 | 0.4 | 0.6 | 0.5 | 0.7 | 0.8 | 1.8 | 1.2 | 1.3 |
9 | Pentanal | 17.5 | - | 13.6 | 2.4 | 8.9 | 11.3 | 12.2 | 37.0 | 40.3 | 45.8 | 31.7 |
Sample Code | Drying Type | Types of I. polycarpa Samples | Condition |
---|---|---|---|
G-F | Not dried | fresh fruit | - |
G-ND | Natural drying (sun drying) | fruit | The I. polycarpa fruit was naturally dried after harvest. |
Y-ND | oil | Spiral press. | |
G-HAD | Hot air drying | fruit | 50 °C. |
Y-HAD | oil | Spiral press. | |
G-MD | Microwave drying | fruit | 2 kW. |
Y-ND | oil | Spiral press. | |
G-VMD | Microwave vacuum drying | fruit | 2 kW and 0.06 kPa. |
Y-VMD | oil | Spiral press. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ping, H.; Ge, Y.; Liu, W.; Yang, J.; Zhong, Z.; Wang, J. Effects of Different Drying Methods on Volatile Flavor Compounds in Idesia Polycarpa Maxim Fruit and Oil. Molecules 2025, 30, 811. https://doi.org/10.3390/molecules30040811
Ping H, Ge Y, Liu W, Yang J, Zhong Z, Wang J. Effects of Different Drying Methods on Volatile Flavor Compounds in Idesia Polycarpa Maxim Fruit and Oil. Molecules. 2025; 30(4):811. https://doi.org/10.3390/molecules30040811
Chicago/Turabian StylePing, Hongrui, Yonghui Ge, Wenxuan Liu, Jinxiang Yang, Zhaoxue Zhong, and Jinhua Wang. 2025. "Effects of Different Drying Methods on Volatile Flavor Compounds in Idesia Polycarpa Maxim Fruit and Oil" Molecules 30, no. 4: 811. https://doi.org/10.3390/molecules30040811
APA StylePing, H., Ge, Y., Liu, W., Yang, J., Zhong, Z., & Wang, J. (2025). Effects of Different Drying Methods on Volatile Flavor Compounds in Idesia Polycarpa Maxim Fruit and Oil. Molecules, 30(4), 811. https://doi.org/10.3390/molecules30040811