Reductive Synthesis of Stable, Polysaccharide in Situ-Modified Gold Nanoparticles Using Disulfide Cross-Linked Alginate
Abstract
1. Introduction
2. Results
2.1. AA-AuNPs Synthesis
2.2. NMR Spectroscopy of Disulfide Cross-Linked Alginate
2.3. AA-AuNP Characterization
2.3.1. Storage Stability of AA-AuNPs
2.3.2. Morphology of AA-AuNPs
2.3.3. X-Ray Photoelectron Spectroscopy
2.3.4. ζ-Potential Measurements
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patil, M.P.; Kim, G.-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 2017, 101, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Tang, J.H.; Aziz, A.A.; Nowfal, S.H.; Jameel, M.S.; Alrosan, M.; Oladzadabbasabadi, N.; Ghasemlou, M. Green synthesis of gold nanoparticles and their emerging applications in cancer imaging and therapy: A review. Rev. Inorg. Chem. 2024, 45, 663–685. [Google Scholar] [CrossRef]
- Zhuang, L.; Lian, Y.; Zhu, T. Multifunctional gold nanoparticles: Bridging detection, diagnosis, and targeted therapy in cancer. Mol. Cancer 2025, 24, 228. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, C.; Zhang, X.; Liu, Y.; Li, Y.; Li, D.; Xi, Q. Plant-synthesized gold nanotheranostics for photothermal treatment and imaging of breast cancer: Harnessing flavonoids for dual-functionality. Ind. Crops Prod. 2025, 235, 121718. [Google Scholar] [CrossRef]
- Poletaeva, J.E.; Chelobanov, B.P.; Epanchintseva, A.V.; Tupitsyna, A.V.; Dovydenko, I.S.; Ryabchikova, E.I. Internalization of Lipid-Coated Gold Nanocomposites and Gold Nanoparticles by Mouse SC-1 Fibroblasts in Monolayer and Spheroids. Nanomaterials 2025, 15, 1419. [Google Scholar] [CrossRef]
- Facchi, D.P.; da Cruz, J.A.; Bonafé, E.G.; Pereira, A.G.B.; Fajardo, A.R.; Venter, S.A.S.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Polysaccharide-Based Materials Associated with or Coordinated to Gold Nanoparticles: Synthesis and Medical Application. Curr. Med. Chem. 2017, 24, 2701–2735. [Google Scholar] [CrossRef]
- Thodikayil, A.T.; Sharma, S.; Saha, S. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify. ACS Appl. Bio Mater. 2021, 4, 2907–2940. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Meng, F.; Su, C.; Li, J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr. Polym. 2023, 321, 121284. [Google Scholar] [CrossRef]
- Sanfilippo, V.; Caruso, V.C.; Cucci, L.M.; Inturri, R.; Vaccaro, S.; Satriano, C. Hyaluronan-Metal Gold Nanoparticle Hybrids for Targeted Tumor Cell Therapy. Int. J. Mol. Sci. 2020, 21, 3085. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.M.; Kumar, A.; Mousa, S.; Park, T.-J.; Ajayan, P.; Kubotera, N.; Mousa, S.A.; Linhardt, R.J. Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities. Biomacromolecules 2009, 10, 589–595. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, H.; Wei, Y.; Cong, F. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules 2017, 18, 1677–1696. [Google Scholar] [CrossRef]
- Hu, L.; Song, Z.; Wu, B.; Yang, X.; Chen, F.; Wang, X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Au Nanorings for Dual-Responsive and Dual-Imaging Guided Targeted Synergistic Photothermal Chemotherapy Against Pancreatic Carcinoma. Int. J. Nanomed. 2024, 19, 13429–13442. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Giner-Casares, J.J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Venkatesan, J.; Nithya, R.; Sudha, P.N.; Kim, S.-K. Chapter Four—Role of Alginate in Bone Tissue Engineering. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 73, pp. 45–57. [Google Scholar]
- Sachan, N.K.; Pushkar, S.; Jha, A.K.; Bhattcharya, A. Sodium alginate: The wonder polymer for controlled drug delivery. J. Pharm. Res. 2015, 2, 1191–1199. [Google Scholar]
- Rehm, B.; Moradali, M.F. Alginates and Their Biomedical Applications; Springer: Singapore, 2018; Volume 11, pp. 1–268. [Google Scholar]
- Rosiak, P.; Latanska, I.; Paul, P.; Sujka, W.; Kolesinska, B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021, 26, 7264. [Google Scholar] [CrossRef]
- Ahmed, H.B.; Abdel-Mohsen, A.M.; Emam, H.E. Green-assisted tool for nanogold synthesis based on alginate as a biological macromolecule. RSC Adv. 2016, 6, 73974–73985. [Google Scholar] [CrossRef]
- Liu, H.; Ikeda, K.; Nguyen, M.T.; Sato, S.; Matsuda, N.; Tsukamoto, H.; Tokunaga, T.; Yonezawa, T. Alginate-Stabilized Gold Nanoparticles Prepared Using the Microwave-Induced Plasma-in-Liquid Process with Long-Term Storage Stability for Potential Biomedical Applications. ACS Omega 2022, 7, 6238–6247. [Google Scholar] [CrossRef]
- Il Kim, M.; Park, C.Y.; Seo, J.M.; Kang, K.S.; Park, K.S.; Kang, J.; Hong, K.S.; Choi, Y.; Lee, S.Y.; Park, J.P.; et al. In Situ Biosynthesis of a Metal Nanoparticle Encapsulated in Alginate Gel for Imageable Drug-Delivery System. ACS Appl. Mater. Interfaces 2021, 13, 36697–36708. [Google Scholar] [CrossRef]
- Kafedjiiski, K.; Föger, F.; Hoyer, H.; Bernkop-Schnürch, A.; Werle, M. Evaluation of In Vitro Enzymatic Degradation of Various Thiomers and Cross-Linked Thiomers. Drug Dev. Ind. Pharm. 2007, 33, 199–208. [Google Scholar] [CrossRef]
- Martínez, A.; Iglesias, I.; Lozano, R.; Teijón, J.M.; Blanco, M.D. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr. Polym. 2011, 83, 1311–1321. [Google Scholar] [CrossRef]
- Gao, L.; Fei, J.; Zhao, J.; Cui, W.; Cui, Y.; Li, J. pH- and Redox-Responsive Polysaccharide-Based Microcapsules with Autofluorescence for Biomedical Applications. Chem.—Eur. J. 2012, 18, 3185–3192. [Google Scholar] [CrossRef]
- Chang, D.; Lei, J.; Cui, H.; Lu, N.; Sun, Y.; Zhang, X.; Gao, C.; Zheng, H.; Yin, Y. Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: Preparation, characterization, and in vitro drug release behavior. Carbohydr. Polym. 2012, 88, 663–669. [Google Scholar] [CrossRef]
- Hauptstein, S.; Dezorzi, S.; Prüfert, F.; Matuszczak, B.; Bernkop-Schnürch, A. Synthesis and in vitro characterization of a novel S-protected thiolated alginate. Carbohydr. Polym. 2015, 124, 1–7. [Google Scholar] [CrossRef]
- Mahou, R.; Borcard, F.; Crivelli, V.; Montanari, E.; Passemard, S.; Noverraz, F.; Gerber-Lemaire, S.; Bühler, L.; Wandrey, C. Tuning the Properties of Hydrogel Microspheres by Adding Chemical Cross-linking Functionality to Sodium Alginate. Chem. Mater. 2015, 27, 4380–4389. [Google Scholar] [CrossRef]
- Siboro, S.A.P.; Anugrah, D.S.B.; Ramesh, K.; Park, S.-H.; Kim, H.-R.; Lim, K.T. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr. Polym. 2021, 260, 117779. [Google Scholar] [CrossRef]
- Chiu, H.I.; Lim, V. Wheat Germ Agglutinin-Conjugated Disulfide Cross-Linked Alginate Nanoparticles as a Docetaxel Carrier for Colon Cancer Therapy. Int. J. Nanomed. 2021, 16, 2995–3020. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Alibaeva, E.I.; Gil’fanova, G.U.; Galimshina, Z.R.; Mescheryakova, E.S.; Khalilov, L.M.; Sergeev, S.N.; Penkov, N.V.; Subrahmanyam, C. Au Nanoparticle Synthesis in the Presence of Thiolated Hyaluronic Acid. Int. J. Mol. Sci. 2025, 26, 10532. [Google Scholar] [CrossRef]
- Reich, H.J. Organic Chemistry Data Collection. Available online: https://organicchemistrydata.org/hansreich/resources/nmr/?page=05-hmr-15-aabb%2F (accessed on 9 January 2020).
- Eatoo, M.A.; Wehbe, N.; Kharbatia, N.; Guo, X.; Mishra, H. Why do some metal ions spontaneously form nanoparticles in water microdroplets? Disentangling the contributions of the air–water interface and bulk redox chemistry. Chem. Sci. 2025, 16, 1115–1125. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Nyholm, R.; Berndtsson, A.; Martensson, N. Core level binding energies for the elements Hf to Bi (Z=72-83). J. Phys. C Solid State Phys. 1980, 13, L1091. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J.; King, R.C. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Chanhassen, MN, USA, 1995. [Google Scholar]
- Casaletto, M.P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A.M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 2006, 38, 215–218. [Google Scholar] [CrossRef]
- Sahoo, S.R.; Ke, S.-C. Spin-Orbit Coupling Effects in Au 4f Core-Level Electronic Structures in Supported Low-Dimensional Gold Nanoparticles. Nanomaterials 2021, 11, 554. [Google Scholar] [CrossRef]
- Gerin, P.; Dengis, P.; Rouxhet, P. Performance of XPS analysis of model biochemical compounds. J. Chim. Phys. 1995, 92, 1043–1065. [Google Scholar] [CrossRef]
- Gerin, P.A.; Genet, M.J.; Rouxhet, P.G. Polysaccharide by XPS: Analysis of Maltodextrin. Surf. Sci. Spectra 1996, 4, 28–32. [Google Scholar] [CrossRef]
- Fernandes, R.F.; Alves, G.A.S.; Gonçalves, R.V.; Temperini, M.L.A. A Methodology to Identify the Releasing of the Amide-Containing β-Glucan from the Usnea Lichen: A Spectroscopic Study. J. Polym. Environ. 2021, 29, 3105–3115. [Google Scholar] [CrossRef]
- Rouxhet, P.G.; Genet, M.J. XPS analysis of bio-organic systems. Surf. Interface Anal. 2011, 43, 1453–1470. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Q. Adsorption of phosphorylated chitosan on mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 656–663. [Google Scholar] [CrossRef]
- Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Sci. Rep. 2015, 5, 11712. [Google Scholar] [CrossRef]
- Singh, O.N.; Burgess, J. Characterization of albumin-alginic acid complex coacervation. J. Pharm. Pharmacol. 1989, 41, 670–673. [Google Scholar] [CrossRef]
- Chauvin, J.-P.R.; Pratt, D.A. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew. Chem. Int. Ed. 2017, 56, 6255–6259. [Google Scholar] [CrossRef]
- Chiu, H.I.; Ayub, A.D.; Mat Yusuf, S.N.; Yahaya, N.; Abd Kadir, E.; Lim, V. Docetaxel-Loaded Disulfide Cross-Linked Nanoparticles Derived from Thiolated Sodium Alginate for Colon Cancer Drug Delivery. Pharmaceutics 2020, 12, 38. [Google Scholar] [CrossRef]
- Naeimipour, S.; Rasti Boroojeni, F.; Selegård, R.; Aili, D. Enzymatically Triggered Deprotection and Cross-Linking of Thiolated Alginate-Based Bioinks. Chem. Mater. 2022, 34, 9536–9545. [Google Scholar] [CrossRef]
- Naeimipour, S.; Boroojeni, F.R.; Lifwergren, P.; Selegård, R.; Aili, D. Multimodal and dynamic cross-linking of modular thiolated alginate-based bioinks. Mater. Today Adv. 2023, 19, 100415. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Deng, Y.; Zhao, Z.; Li, X.; Xia, Y. Facile Synthesis of Gold Nanoparticles with Alginate and Its Catalytic Activity for Reduction of 4-Nitrophenol and H2O2 Detection. Materials 2017, 10, 557. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.-H.; Nguyen, L.-K.-T.; Tran, M.-T.; Le, V.-D.; Ty, N.M.; Pham, T.N.H.; Vu-Quang, H.; Chi, T.T.K.; Giang, T.T.H.; Tu, N.T.T.; et al. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. Beilstein J. Nanotechnol. 2024, 15, 1227–1237. [Google Scholar] [CrossRef]
- Nguyen, L.-K.-T.; Do, M.-H.; Duong, P.-D.; Tran, T.-M.-D.; Ngo, T.-Q.-N.; Nguyen, X.T.; Le, V.-D.; Nguyen, C.-H.; Fajgar, R.; Nguyen, T.-D. In situ synthesis of gold nanoparticles embedded in a magnetic nanocomposite of glucosamine/alginate for enhancing recyclable catalysis performance of nitrophenol reduction. Nanoscale Adv. 2025, 7, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.F., III; Cancro, M.P.; Witkiewicz, P.L.; Eldridge, J.E. Gold(III) oxidation of disulfides in aqueous solution. Inorg. Chem. 1980, 19, 3198–3201. [Google Scholar] [CrossRef]
- Petrov, A.I. Interaction of disulfides with metal ions and spectroscopic identification of the products. Coord. Chem. Rev. 2024, 505, 215678. [Google Scholar] [CrossRef]
- Schubert, J.; Chanana, M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr. Med. Chem. 2018, 25, 4553–4586. [Google Scholar] [CrossRef]
- Vercruysse, K.P.; Marecak, D.M.; Marecek, J.F.; Prestwich, G.D. Synthesis and in Vitro Degradation of New Polyvalent Hydrazide Cross-Linked Hydrogels of Hyaluronic Acid. Bioconjugate Chem. 1997, 8, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.Z.; Liu, Y.; Luo, Y.; Roberts, M.C.; Prestwich, G.D. Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules 2002, 3, 1304–1311. [Google Scholar] [CrossRef] [PubMed]





| Sample | Au | Binding Energy (eV) 4f7/2 | Binding Energy (eV) 4f5/2 | Rel. Area (%) |
|---|---|---|---|---|
| AA-AuNPs | Au3+ | - | - | - |
| Au1+ | 84.7 | 88.4 | 37.23 ± 0.89 | |
| Au0 | 84.1 | 87.8 | 62.77 ± 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parfenova, L.V.; Alibaeva, E.I.; Gil’fanova, G.U.; Galimshina, Z.R.; Mescheryakova, E.S.; Khalilov, L.M.; Sergeev, S.N.; Penkov, N.V.; Li, B. Reductive Synthesis of Stable, Polysaccharide in Situ-Modified Gold Nanoparticles Using Disulfide Cross-Linked Alginate. Molecules 2025, 30, 4750. https://doi.org/10.3390/molecules30244750
Parfenova LV, Alibaeva EI, Gil’fanova GU, Galimshina ZR, Mescheryakova ES, Khalilov LM, Sergeev SN, Penkov NV, Li B. Reductive Synthesis of Stable, Polysaccharide in Situ-Modified Gold Nanoparticles Using Disulfide Cross-Linked Alginate. Molecules. 2025; 30(24):4750. https://doi.org/10.3390/molecules30244750
Chicago/Turabian StyleParfenova, Lyudmila V., Eliza I. Alibaeva, Guzel U. Gil’fanova, Zulfiya R. Galimshina, Ekaterina S. Mescheryakova, Leonard M. Khalilov, Semen N. Sergeev, Nikita V. Penkov, and Baoqiang Li. 2025. "Reductive Synthesis of Stable, Polysaccharide in Situ-Modified Gold Nanoparticles Using Disulfide Cross-Linked Alginate" Molecules 30, no. 24: 4750. https://doi.org/10.3390/molecules30244750
APA StyleParfenova, L. V., Alibaeva, E. I., Gil’fanova, G. U., Galimshina, Z. R., Mescheryakova, E. S., Khalilov, L. M., Sergeev, S. N., Penkov, N. V., & Li, B. (2025). Reductive Synthesis of Stable, Polysaccharide in Situ-Modified Gold Nanoparticles Using Disulfide Cross-Linked Alginate. Molecules, 30(24), 4750. https://doi.org/10.3390/molecules30244750

