Fullerene-Supported Single-Atom Catalysts for Electrocatalytic Water Splitting: Progress, Challenges, and Machine Learning Perspectives
Abstract
1. Introduction
2. Application Potential of Fullerenes in Water Splitting Catalysis
2.1. Zero-Dimensional Carbon Materials for HER and OER
2.2. Enhancement via Metal Introduction
3. Progress of Fullerene-Supported SACs
3.1. Fullerene-Pt and Fullerene-V Systems
3.2. Bifunctionality and Spin-State Modulation
3.3. Structural Diversity and Coordination Complexity
3.4. Critical Comparison and Scalability Challenges of Synthesis Strategies
4. Machine Learning and Computational Screening for Fullerene SACs
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunathilake, C.; Soliman, I.; Panthi, D.; Tandler, P.; Fatani, O.; Ghulamullah, N.A.; Marasinghe, D.; Farhath, M.; Madhujith, T.; Conrad, K.; et al. A comprehensive review on hydrogen production, storage, and applications. Chem. Soc. Rev. 2024, 53, 10900–10969. [Google Scholar] [CrossRef]
- Zhang, D.; Li, M.; Yong, X.; Song, H.; Waterhouse, G.I.N.; Yi, Y.; Xue, B.; Zhang, D.; Liu, B.; Lu, S. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517. [Google Scholar] [CrossRef]
- Tang, J.; Guan, D.; Xu, H.; Zhao, L.; Arshad, U.; Fang, Z.; Zhu, T.; Kim, M.; Pao, C.-W.; Hu, Z.; et al. Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction. Nat. Commun. 2025, 16, 801. [Google Scholar] [CrossRef]
- Liang, C.; Rao, R.R.; Svane, K.L.; Hadden, J.H.L.; Moss, B.; Scott, S.B.; Sachs, M.; Murawski, J.; Frandsen, A.M.; Riley, D.J.; et al. Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides. Nat. Catal. 2024, 7, 763–775. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X.; Kwon, S.; Chen, K.; Liu, X.; Yang, J.; Sun, H.; Wang, Y.; Uchiyama, T.; Uchimoto, Y.; et al. Water splitting by C60-Supported Vanadium Single Atoms. Science 2025, 387, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, Y.; Zhang, Z.; Zhang, X.; Ji, Q.; Zhang, H.; Song, Z.; Liu, D.; Zeng, J.; Chuang, C.; et al. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction. Nat. Nanotechnol. 2025, 20, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Feidenhans’l, A.A.; Regmi, Y.N.; Wei, C.; Xia, D.; Kibsgaard, J.; King, L.A. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem. Rev. 2024, 124, 5617–5667. [Google Scholar] [CrossRef]
- Park, Y.; Jang, H.Y.; Lee, T.K.; Kim, T.; Kim, D.; Kim, D.; Baik, H.; Choi, J.; Kwon, T.; Yoo, S.J.; et al. Atomic-level Ru-Ir mixing in rutile-type (RuIr)O2 for efficient and durable oxygen evolution catalysis. Nat. Commun. 2025, 16, 579. [Google Scholar] [CrossRef]
- Zhang, S.; He, X.; Ding, Y.; Shi, Z.; Wu, B. Supply and demand of platinum group metals and strategies for sustainable management. Renew. Sust. Energy Rev. 2024, 204, 114821. [Google Scholar] [CrossRef]
- Gao, Z.; Li, A.; Liu, X.; Peng, M.; Yu, S.; Wang, M.; Ge, Y.; Li, C.; Wang, T.; Wang, Z.; et al. Shielding Pt/γ-Mo2N by inert nano-overlays enables stable H2 production. Nature 2025, 638, 690–696. [Google Scholar] [CrossRef]
- Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510. [Google Scholar] [CrossRef]
- Peng, B.J. Monolayer fullerene networks as photocatalysts for overall water splitting. Am. Chem. Soc. 2022, 144, 19921–19931. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Peng, B.J. Smallest [5,6] fullerene as building blocks for 2D networks with superior stability and enhanced photocatalytic performance. Am. Chem. Soc. 2025, 147, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Wu, J.; Chen, M.; Yang, S.; Lu, Y.; Du, P. Few-Layer Fullerene Network for Photocatalytic Pure Water Splitting into H2 and H2O2. Angew. Chem. Int. Ed. 2023, 62, e202311352. [Google Scholar] [CrossRef]
- Kment, Š.; Bakandritsos, A.; Tantis, I.; Kmentová, H.; Zuo, Y.; Henrotte, O.; Naldoni, A.; Otyepka, M.; Varma, R.S.; Zbořil, R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024, 124, 11767–11847. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, Z.-R.; Cui, Y.-H.; Zhang, R.; Zhang, L.; Zeng, J.; Cheng, D. One-Step Approach for Constructing High-Density Single-Atom Catalysts toward Overall Water Splitting at Industrial Current Densities. Angew. Chem. Int. Ed. 2023, 62, e202214259. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhou, X.; Yu, A.; Huang, Q.; Xu, T.; Zhu, L.; Peng, P.; Song, S.; Echegoyen, L.; et al. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nat. Commun. 2023, 14, 2460. [Google Scholar] [CrossRef]
- Hou, G.-L.; Yang, T.; Li, M.; Vanbuel, J.; Lushchikova, O.V.; Ferrari, P.; Bakker, J.M.; Janssens, E. Water Splitting by C60-Supported Vanadium Single Atoms. Angew. Chem. Int. Ed. 2021, 60, 27095–27101. [Google Scholar] [CrossRef]
- Xu, J.; Bakker, J.M.; Lushchikova, O.V.; Lievens, P.; Janssens, E.; Hou, G.-L. Pathways of cluster growth: Infra-red multi-photon dissociation spectroscopy of a series of Re–Si clusters, [ReSin]+, n = 3–9. J. Am. Chem. Soc. 2023, 145, 22243–22251. [Google Scholar] [CrossRef]
- Li, M.; Yang, T.; Bakker, J.M.; Janssens, E.; Hou, G.-L. Unveiling the role of C60-supported vanadium single atoms for catalytic overall water splitting. Cell Rep. Phys Sci. 2022, 3, 100910. [Google Scholar] [CrossRef]
- Lee, K.; Song, H.; Park, J.T. [60] Fullerene-Metal Cluster Complexes: Novel Bonding Modes and Electronic Communication. Acc. Chem. Res. 2003, 36, 78–86. [Google Scholar] [CrossRef]
- Li, Y.; Xu, T.; Huang, Q.; Zhu, L.; Yan, Y.; Peng, P.; Li, F.-F. C60 Fullerenol to Stabilize and Activate Ru Nanoparticles for Highly Efficient Hydrogen Evolution Reaction in Alkaline Media. ACS Catal. 2023, 13, 7597–7605. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Singh, S.; Borrmann, H.; Hasse, V.; Yi, C.; Li, Y.; Schmidt, M.; Li, X.; Fecher, G.H.; et al. Topological semimetals with intrinsic chirality as spin-controlling electrocatalysts for the oxygen evolution reaction. Nat. Energy 2025, 10, 101–109. [Google Scholar] [CrossRef]
- Lu, Z.; Ronson, T.K.; Heard, A.W.; Feldmann, S.; Vanthuyne, N.; Martinez, A.; Nitschke, J.R. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem. 2023, 15, 405–412. [Google Scholar] [CrossRef]
- Balch, A.L.; Winkler, K. Electrochemistry of fullerene/transition-metal complexes: Three decades of progress. Coord. Chem. Rev. 2021, 438, 213623. [Google Scholar] [CrossRef]
- Yamada, M.; Akasaka, T.; Nagase, S. Endohedral metal atoms in pristine and functionalized fullerene cages. Acc. Chem. Res. 2010, 43, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yang, S. Endohedral metallofullerene molecular nanomagnets. Chem. Soc. Rev. 2024, 53, 2863–2897. [Google Scholar] [CrossRef] [PubMed]
- Habicher, T.; Nierengarten, J.-F.; Gramlich, V.; Diederich, F. PtII-Directed Self-Assembly of a Dinuclear Cyclophane Containing Two Fullerenes. Angew. Chem. Int. Ed. 1998, 37, 1916–1919. [Google Scholar]
- Ding, R.; Chen, J.; Chen, Y.; Liu, J.; Bando, Y.; Wang, X. Unlocking the potential: Machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 2024, 53, 11390–11461. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.; Batzner, S.; Schoenholz, S.S.; Aykol, M.; Cheon, G.; Cubuk, E.D. Scaling deep learning for materials discovery. Nature 2023, 624, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Tran, R.; Lan, J.; Shuaibi, M.; Wood, B.M.; Goyal, S.; Das, A.; Heras-Domingo, J.; Kolluru, A.; Rizvi, A.; Shoghi, N.; et al. The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts. ACS Catal. 2023, 13, 3066–3084. [Google Scholar] [CrossRef]
- Wu, M.; Song, Z.; Cui, Y.; Fu, Z.; Hong, K.; Li, Q.; Lyu, Z.; Liu, W.; Wang, J. Machine Learning-Assisted Design of Nitrogen-Rich Covalent Triazine Frameworks Photocatalysts. Adv. Funct. Mater. 2025, 35, 2413453. [Google Scholar] [CrossRef]
- Abed, J.; Heras-Domingo, J.; Sanspeur, R.Y.; Luo, M.; Alnoush, W.; Meira, D.M.; Wang, H.; Wang, J.; Zhou, J.; Zhou, D.; et al. Pourbaix Machine Learning Framework Identifies Acidic Water Oxidation Catalysts Exhibiting Suppressed Ruthenium Dissolution. J. Am. Chem. Soc. 2024, 146, 15740–15750. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, D.; Ye, S.; Li, X.; Li, H.; Feng, Y.; Jiang, Z.; Yang, L.; Ye, K.; Shen, Y.; et al. Catalytic Structure Design by AI Generating with Spectroscopic Descriptors. Am. Chem. Soc. 2023, 145, 26817–26823. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, C.; Wang, S.; Wang, Q.; Reinhard, M.; Zhang, G.; Zhan, F.; Wang, H.; Skoien, D.; Kroll, T.; et al. Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening. Nat. Catal. 2025, 8, 126–136. [Google Scholar] [CrossRef]
- Fang, Z.; Li, S.; Zhang, Y.; Wang, Y.; Meng, K.; Huang, C.; Sun, S.J. The DFT and Machine Learning Method Accelerated the Discovery of DMSCs with High ORR and OER Catalytic Activities. Phys. Chem. Lett. 2024, 15, 281–289. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, T.; Chen, J.; Cai, S.; Liu, J.; Huang, H.; Zhong, W.; Meng, Y.; Zhang, R.; Xia, Q.; et al. Screening of highly efficient electrocatalysts for hydrogen peroxide synthesis using single transition metal atoms embedded in carbon vacancy fullerene C60. Chem. Eng. Sci. 2024, 300, 120571. [Google Scholar] [CrossRef]
- Araujo, R.B.; Rodrigues, G.L.S.; dos Santos, E.C.; Pettersson, L.G.M. Adsorption energies on transition metal surfaces: Towards an accurate and balanced description. Nat. Commun. 2022, 13, 6853. [Google Scholar] [CrossRef]
- Cui, C.X.; Shen, Y.; He, J.R.; Fu, Y.; Hong, X.; Wang, S.; Jiang, J.; Luo, Y.J. Quantitative Insight into the Electric Field Effecton CO2 Electrocatalysis via Machine Learning Spectroscopy. Am. Chem. Soc. 2024, 146, 34551–34559. [Google Scholar] [CrossRef]













| Catalyst (Ref.) | Electrolyte/Conditions | HER η10 (mV) | Tafel Slope (mV·dec−1) | Mass Activity/TOF/ECSA-Normalized Data | Stability/Remarks |
|---|---|---|---|---|---|
| Pt single atoms on C60 (Pt/C60–2) [18] | 1.0 M KOH, 90% iR-corrected | 25 | 55 | TOF: 2.17 s−1 (50 mV), 5.55 s−1 (100 mV), 11.2 s−1 (150 mV); higher mass activity than 20 wt% Pt/C | Stable for 100 h at 10 mA·cm−2 (Δη ≈ +31.5 mV); negligible decay after 3000 CV cycles |
| Ru nanoparticles on fullerenol (Ru–OC60–300) [23] | 1.0 M KOH | 4.6 | 24.7 | High mass activity; ECSA/TOF reported in SI | Excellent durability and Faradaic efficiency; η depends on loading and iR correction |
| C60-supported V single atom (mechanistic) [19,20,21] | Gas-phase/IRMPD + DFT | - | - | Mechanistic study; >70 kJ·mol−1 barrier reduction, H-shuttle effect observed | Not directly comparable to bulk HER/OER performance |
| Commercial 20 wt% Pt/C (benchmark) | 1.0 M KOH | ≈39 | ≈99 | Standard benchmark; mass activity and TOF vary with loading | Common reference catalyst; see Ref. [18] for comparison |
| RuO2 (benchmark for OER) | 1.0 M KOH | n.a. | n.a. | OER η10 typically 200–350 mV (literature range) | Widely used benchmark; stability depends on morphology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-X.; Tong, S.-L.; Ma, D.-S.; Huang, H.; Zheng, X.-N.; Zhang, Y.-P.; Jiao, H.-Y.; Qu, L.-B.; Cui, C.-X. Fullerene-Supported Single-Atom Catalysts for Electrocatalytic Water Splitting: Progress, Challenges, and Machine Learning Perspectives. Molecules 2025, 30, 4494. https://doi.org/10.3390/molecules30234494
Li C-X, Tong S-L, Ma D-S, Huang H, Zheng X-N, Zhang Y-P, Jiao H-Y, Qu L-B, Cui C-X. Fullerene-Supported Single-Atom Catalysts for Electrocatalytic Water Splitting: Progress, Challenges, and Machine Learning Perspectives. Molecules. 2025; 30(23):4494. https://doi.org/10.3390/molecules30234494
Chicago/Turabian StyleLi, Chun-Xiang, Shu-Ling Tong, De-Sheng Ma, Hao Huang, Xiao-Nan Zheng, Yu-Ping Zhang, Hong-Yan Jiao, Ling-Bo Qu, and Cheng-Xing Cui. 2025. "Fullerene-Supported Single-Atom Catalysts for Electrocatalytic Water Splitting: Progress, Challenges, and Machine Learning Perspectives" Molecules 30, no. 23: 4494. https://doi.org/10.3390/molecules30234494
APA StyleLi, C.-X., Tong, S.-L., Ma, D.-S., Huang, H., Zheng, X.-N., Zhang, Y.-P., Jiao, H.-Y., Qu, L.-B., & Cui, C.-X. (2025). Fullerene-Supported Single-Atom Catalysts for Electrocatalytic Water Splitting: Progress, Challenges, and Machine Learning Perspectives. Molecules, 30(23), 4494. https://doi.org/10.3390/molecules30234494

