Abstract
The widespread use of single-use plastics, particularly polyethylene (PE) and polypropylene (PP), has resulted in severe environmental pollution due to their durability and resistance to degradation. This report reviews current degradable alternatives to conventional polyolefins and strategies for enhancing their breakdown in natural and managed environments. Mechanisms of abiotic and biotic degradation are examined alongside the influence of environmental factors and standardized testing protocols. Commercially available biodegradable polymers—such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), starch-based plastics, cellulose derivatives, chitosan, and protein-based materials—are evaluated for their sources, degradation behavior, applications, scalability, and limitations. In addition, modification techniques for PE and PP, including copolymerization, pro-degradant additives, blending with biodegradable fillers, surface functionalization, enzyme-assisted degradation, and photocatalytic additives, are critically assessed for their potential to reduce environmental persistence. Key challenges such as performance trade-offs, incomplete degradation, ecotoxicity, cost, scalability, and end-of-life management are discussed within the context of circular economic integration. This report concludes with future research directions aimed at developing cost-effective, high-performance materials that degrade completely under real-world conditions while minimizing ecological impacts.