Unlocking the Ilex guayusa Potential: Volatile Composition, Antioxidant, Antidiabetic, and Hemolytic Activities, with In Silico Molecular Docking and ADMET Analysis of Hydroethanolic Extracts
Abstract
1. Introduction
2. Results
2.1. Total Phenolics and Flavonoids Content
2.2. Antioxidant Assay
2.3. Antidiabetic Potential of the Extracts
2.3.1. Effect of the Extracts on α-Amylase Inhibition
2.3.2. Effect of the Extracts on α-Glucosidase Inhibition
2.4. GC-MS-Based Metabolite Identification
2.5. Correlation Between Metabolite Profile, Antioxidant Activity, and α-Glucosidase Inhibition
2.6. Hemolytic Activity of the Extracts
2.7. Docking Molecular
3. Discussion
4. Materials and Methods
4.1. Plant Collection
4.2. Extracts Preparation
4.3. Total Phenol Content
4.4. Total Flavonoid Content
4.5. Antioxidant Activity
4.5.1. DPPH Radical Scavenging Assay
4.5.2. ABTS Radical Scavenging Assay
4.6. Antidiabetic Activity
4.6.1. α-Amylase Inhibition
4.6.2. α-Glucosidase Inhibition
4.7. Chemical Characterization by GC-MS
4.7.1. Sample Preparation
4.7.2. Untargeted Metabolomic Approach and Data Analysis
4.8. Statistical Analysis
4.9. Hemolytic Activity
4.10. In Silico Molecular Docking Coupled with ADME Prediction
4.10.1. Molecular Docking Analysis
4.10.2. In Silico ADMET Profiles of Relevant Molecular Docking Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC-MS | Gas chromatography coupled to mass spectrometry |
TPC | Total phenolic content |
TFC | Total flavonoids content |
ABTS | 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
LOQ | Limit of Quantification |
SD | Standard Deviation |
IL | Identification level |
RT | Retention Time |
PCA | Principal Component Analysis |
HCA | Hierarchical cluster analysis |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
CNS | Central Nervous System |
GIA | Gastrointestinal absorption |
IC50 | Half inhibitory concentration |
LD50 | Half lethal dose |
References
- Lessmann, J.; Fajardo, J.; Muñoz, J.; Bonaccorso, E. Large expansion of oil industry in the Ecuadorian Amazon: Biodiversity vulnerability and conservation alternatives. Ecol. Evol. 2016, 6, 4997–5012. [Google Scholar] [CrossRef]
- Valarezo-García, C.; Jaramillo, D.; Djabayan, P.; Vásconez, P.; Falconí, F. La amazonia ecuatoriana y sus saberes ancestrales; el uso del extracto de corteza del árbol de Piwi (Pictocoma discolor) un saber singular en el accidente ofídico. Rev. Mex. Cienc. Farm. 2016, 47, 26–34. Available online: http://www.redalyc.org/articulo.oa?id=57956612002 (accessed on 15 December 2024).
- Caballero-Serrano, V.; McLaren, B.; Carrasco, J.C.; Alday, J.G.; Fiallos, L.; Amigo, J.; Onaindia, M. Traditional ecological knowledge and medicinal plant diversity in Ecuadorian Amazon home gardens. Glob. Ecol. Conserv. 2019, 17, e00524. [Google Scholar] [CrossRef]
- Paniagua-Zambrana, N.; Cámara-Leret, R.; Macía, M.J. Patterns of Medicinal Use of Palms Across Northwestern South America. Bot. Rev. 2015, 81, 317–415. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J. Etnobotánica y Sistemas Tradicionales de Salud en el Ecuador. Enfoque de la Guayusa Ilex guayusa Loes. Rev. Etnobiol. 2017, 15, 79–88. [Google Scholar]
- Wise, G.; Negrin, A. A critical review of the composition and history of safe use of guayusa: A stimulant and antioxidant novel food. Crit. Rev. Food Sci. Nutr. 2020, 60, 2393–2404. [Google Scholar] [CrossRef] [PubMed]
- Noriega, P.; Moreno, E.; Falcón, A.; Quishpe, V.; Noriega Pdel, C. Guayusa (Ilex guayusa Loes.) Ancestral Plant of Ecuador: History, Traditional Uses, Chemistry, Biological Activity, and Potential Industrial Uses. Molecules 2025, 30, 2837. [Google Scholar] [CrossRef] [PubMed]
- Shemluck, M. The Flowers of Ilex guayusa. Bot. Mus. Leafl. 1979, 27, 155–160. Available online: http://www.jstor.org/stable/41762819 (accessed on 18 January 2025). [CrossRef]
- Arteaga-Crespo, Y.; Radice, M.; Bravo-Sanchez, L.R.; García-Quintana, Y.; Scalvenzi, L. Optimisation of ultrasound-assisted extraction of phenolic antioxidants from Ilex guayusa Loes. leaves using response surface methodology. Heliyon 2020, 6, e03043. [Google Scholar] [CrossRef]
- Swanston-Flatt, S.; Day, C.; Flatt, P.; Gould, B.; Bailey, C. Glycemic effects of traditional European plant treatments for diabetes: Studies in normal and streptozotocin diabetic mice. Diabetes Res. 1989, 10, 69–73. Available online: https://www.researchgate.net/publication/20411947 (accessed on 15 December 2024).
- Zeng, L.; Zhou, X.; Liao, Y.; Yang, Z. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. J. Adv. Res. 2021, 34, 159–171. [Google Scholar] [CrossRef]
- Shih, M.L.; Morgan, J.A. Metabolic flux analysis of secondary metabolism in plants. Metab. Eng. Commun. 2020, 10, e00123. [Google Scholar] [CrossRef] [PubMed]
- Cieśla, Ł.; Moaddel, R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat. Prod. Rep. 2016, 33, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary Metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef]
- Blum-Silva, C.H.; Chaves, V.C.; Schenkel, E.P.; Coelho, G.C.; Reginatto, F.H. The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of ilex paraguariensis aqueous extracts. Rev. Bras. Farmacogn. 2015, 25, 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Shikh, E.V.; Khaytovich, E.D.; Tsvetkov, D.N. Herbal extracts in hepatoprotection: Antioxidant and immunomodulatory effects. A review. Ter. Arkh. 2024, 96, 836–845. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxid. Med. Cell Longev. 2016, 2016, 913076. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 Diabetes. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513253/ (accessed on 15 December 2024).
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a position statement of the american diabetes association and the european association for the study of diabetes. Diabetes Care 2015, 38, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Noh, S.; Lim, S.; Kim, B. Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants 2021, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Mugale, M.N.; Dev, K.; More, B.S.; Mishra, V.S.; Washimkar, K.R.; Singh, K.; Maurya, R.; Rath, S.K.; Chattopadhyay, D.; Chattopadhyay, N. A Comprehensive Review on Preclinical Safety and Toxicity of Medicinal Plants. Clin. Complement. Med. Pharmacol. 2024, 4, 100129. [Google Scholar] [CrossRef]
- Tran, P.N.T.; Tran, T.T.N. Evaluation of Acute and Subchronic Toxicity Induced by the Crude Ethanol Extract of Plukenetia volubilis Linneo Leaves in Swiss Albino Mice. BioMed Res. Int. 2021, 6524658. [Google Scholar] [CrossRef]
- Kpemissi, M.; Metowogo, K.; Melila, M.; Veerapur, V.P.; Negru, M.; Taulescu, M.; Potârniche, A.-V.; Suhas, D.S.; Puneeth, T.A.; Vijayakumar, S.; et al. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol. Rep. 2020, 7, 162–168. [Google Scholar] [CrossRef]
- Jităreanu, A.; Trifan, A.; Vieriu, M.; Caba, I.C.; Mârțu, I.; Agoroaei, L. Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes 2022, 11, 83. [Google Scholar] [CrossRef]
- Urugo, M.M.; Tringo, T.T. Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. Int. J. Food Sci. 2023, 2023, 9947841. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in Phenolic Compounds Content and Antioxidant Activity of Different Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef]
- Maina, S.; Ryu, D.H.; Bakari, G.; Misinzo, G.; Nho, C.W.; Kim, H.Y. Variation in phenolic compounds and antioxidant activity of various organs of african cabbage (Cleome gynandra l.) accessions at different growth stages. Antioxidants 2021, 10, 1952. [Google Scholar] [CrossRef]
- Chang, X.; Lu, Y.; Lin, Z.; Qiu, J.; Guo, X.; Pan, J.; Abbasi, A.M. Impact of Leaf Development Stages on Polyphenolics Profile and Antioxidant Activity in Clausena lansium (Lour.) Skeels. BioMed Res. Int. 2018, 2018, 7093691. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Nie, T.; Cooper, G.J.S. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front. Pharmacol. 2021, 12, 798329. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S.; Ruengsamran, T.; Kampa, P.; Sompong, W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement. Med. Ther. 2012, 12, 110. [Google Scholar] [CrossRef]
- Olaokun, O.O.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complement. Med. Ther. 2013, 13, 94. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef]
- Priscilla, D.H.; Roy, D.; Suresh, A.; Kumar, V.; Thirumurugan, K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem.-Biol. Interact. 2014, 210, 77–85. [Google Scholar] [CrossRef]
- Kashtoh, H.; Baek, K.H. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. Plants 2023, 12, 2944. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P. α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012, 8, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Yip, Y.M.; Panda, P.; Ong, L.L.; Wong, P.W.K.; Zhang, D.; Judeh, Z. Cinnamoyl Sucrose Esters as Alpha Glucosidase Inhibitors for the Treatment of Diabetes. Molecules 2021, 26, 469. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.A.; Ochoa-Ocampo, M.; Garzón, T.; Martinez, K.; Sinaluisa, I.; Pastuña-Fasso, J.V.; Espinosa de los Monteros-Silva, N.; Niño-Ruíz, Z.; Mogollón, N.G.S.; Diéguez-Santana, K. Exploring Variability in the Methylxanthine Content within Ilex guayusa Loes: Impact of Soil Conditions, Age, and Sunlight Exposure. ACS Agric. Sci. Technol. 2025, 5, 1034–1046. [Google Scholar] [CrossRef]
- Singh, V.P.; Siddiqui, M.H. Plant Ionomics: Sensing, Signaling and Regulation, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023. [Google Scholar]
- Aljaafari, M.N.; Alkhoori, M.A.; Hag-Ali, M.; Cheng, W.-H.; Lim, S.-H.-E.; Loh, J.-Y.; et, a.l. Contribution of Aldehydes and Their Derivatives to Antimicrobial and Immunomodulatory Activities. Molecules 2022, 27, 3589. [Google Scholar] [CrossRef]
- Liang, X.; Qian, R.; Wang, D.; Liu, L.; Sun, C.; Lin, X. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses. Biology 2022, 11, 1590. [Google Scholar] [CrossRef]
- Li, C.; Zha, W.; Li, W.; Wang, J.; You, A. Advances in the Biosynthesis of Terpenoids and Their Ecological Functions in Plant Resistance. Int. J. Mol. Sci. 2023, 24, 11561. [Google Scholar] [CrossRef]
- Scala, A.; Allmann, S.; Mirabella, R.; Haring, M.A.; Schuurink, R.C. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens. Int. J. Mol. Sci. 2013, 14, 17781–17811. [Google Scholar] [CrossRef]
- Rao, M.J.; Ahmed, U.; Ahmed, M.H.; Duan, M.; Wang, J.; Wang, Y.; Wang, L. Comparison and Quantification of Metabolites and Their Antioxidant Activities in Young and Mature Leaves of Sugarcane. ACS Food Sci. Technol. 2021, 1, 362–373. [Google Scholar] [CrossRef]
- Qadir, R.; Anwar, F.; Bashir, K.; Tahir, M.H.; Alhumade, H.; Mehmood, T. Variation in Nutritional and Antioxidant Attributes of Moringa oleifera L. Leaves at Different Maturity Stages. Front. Energy Res. 2022, 10, 888355. [Google Scholar] [CrossRef]
- Xia, X.; Chen, C.; Yang, L.; Wang, Y.; Duan, A.; Wang, D. Analysis of metabolites in young and mature Docynia delavayi (Franch.) Schneid leaves using UPLC-ESI-MS/MS. PeerJ 2022, 10, e12844. [Google Scholar] [CrossRef]
- Anwar, K.; Rahmanto, B.; Triyasmono, L.; Rizki, M.I.; Halwany, W.; Lestari, F. The Influence of Leaf Age on Total Phenolic, Flavonoids, and Free Radical Scavenging Capacity of Aquilaria beccariana. Res. J. Pharm. Biol. Chem. Sci. 2017, 18, 129–133. Available online: https://www.researchgate.net/publication/313435961 (accessed on 15 December 2024).
- Pastuña-Fasso, J.V.; Quiroz-Moreno, C.D.; Medina-Villamizar, E.J.; Cooperstone, J.L.; Radice, M.; Peñuela-Mora, M.C.; Almeida, J.R.; Mogollón, N.G.S. Metabolite fingerprinting of Urospatha sagittifolia (Araceae) tubers at different growth stages by multi-platform metabolomics and molecular networking. Microchem. J. 2024, 199, 110058. [Google Scholar] [CrossRef]
- Nobossé, P.; Fombang, E.N.; Mbofung, C.M.F. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci. Nutr. 2018, 6, 2188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, X.; Li, W.; Tan, S.; Zheng, Q. Phenolic content, antioxidant capacity, and α-amylase and α-glucosidase inhibitory activities of Dimocarpus longan Lour. Food Sci. Biotechnol. 2020, 29, 683–692. [Google Scholar] [CrossRef]
- Loo, A.Y.; Jain, K.; Darah, I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 2008, 107, 1151–1160. [Google Scholar] [CrossRef]
- Noriega, P.; Calderón, L.; Ojeda, A.; Paredes, E. Chemical Composition, Antimicrobial and Antioxidant Bioautography Activity of Essential Oil from Leaves of Amazon Plant Clinopodium brownei (Sw.). Molecules 2023, 28, 1741. [Google Scholar] [CrossRef]
- Suryanti, V.; Wibowo, F.R.; Khotijah, S.; Andalucki, N. Antioxidant Activities of Cinnamaldehyde Derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012077. [Google Scholar] [CrossRef]
- Takahashi, K.; Yoshioka, Y.; Kato, E.; Katsuki, S.; Iida, O.; Hosokawa, K.; Kawabata, J. Methyl caffeate as an α-glucosidase inhibitor from solanum torvum fruits and the activity of related compounds. Biosci. Biotechnol. Biochem. 2010, 74, 741–745. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Sookkongwaree, K.; Roengsumran, S.; Petsom, A.; Ngamrojnavanich, N.; Chavasiri, W.; Deesamer, S.; Yibchok-anun, S. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 2004, 14, 2893–2896. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Yu, J.; Chen, X.; Zhang, S.; Cai, Y.; Li, L. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism. Food Chem. 2021, 353, 129448. [Google Scholar] [CrossRef]
- Cheng, N.; Yi, W.-B.; Wang, Q.-Q.; Peng, S.-M.; Zou, X.-Q. Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives. Chin. Chem. Lett. 2014, 25, 1094–1098. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in Dietary Polyphenols as α-Glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Crit. Rev. Food Sci. Nutr. 2013, 53, 818–836. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Ocampo, M.; Espinosa de los Monteros-Silva, N.; Pastuña-Fasso, J.; Sacoto, J.; Peñuela-Mora, M.; Casanola-Martin, G.; Almeida, J.R.; Diéguez-Santana, K.; Mogollón, N.G.S. Volatile Compositional Profile, Antioxidant Properties, and Molecular Docking of Ethanolic Extracts from Philodendron heleniae. Molecules 2025, 30, 1366. [Google Scholar] [CrossRef]
- Putnam, C.D.; Arvai, A.S.; Bourne, Y.; Tainer, J.A. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 2000, 296, 295–309. [Google Scholar] [CrossRef]
- Nicholls, P.; Fita, I.; Loewen, P.C. Enzymology and structure of catalases. Adv. Inorg. Chem. 2000, 51, 51–106. [Google Scholar]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. Neurotherapeutics 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, V.M.; Cherian, K.M. Red cell haemolysis test as an in vitro approach for the assessment of toxicity of karanja oil. Toxicol. Vitr. 2000, 14, 513–516. [Google Scholar] [CrossRef]
- Đorđević, N.B.; Vukajlović, J.T.; Milošević-Đorđević, O.; Mihailović, V.B.; Srećković, N.Z.; Rakonjac, A.B.; Simić, S.B. Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro. Microorganisms 2024, 12, 2208. [Google Scholar] [CrossRef]
- Joty, F.A.; Hasan, M.M.; Sohan, M.S.R.; Alam, M.J.; Reza, M.A.; Ferdousi, Z. Hemolytic, antioxidant, and phospholipase A2 neutralization efficacy of Asparagus racemosus, Withania somnifera, Syzygium cumini, Psidium guajava, Basella alba, Morus indica, Morus laevigata, and Morus latifolia. J. Adv. Biotechnol. Exp. Ther. 2024, 7, 118–135. [Google Scholar] [CrossRef]
- Amin, K.; Dannenfelser, R.M. In vitro hemolysis: Guidance for the pharmaceutical scientist. J. Pharm. Sci. 2006, 95, 1173–1176. [Google Scholar] [CrossRef]
- Kundishora, A.; Sithole, S.; Mukanganyama, S. Determination of the Cytotoxic Effect of Different Leaf Extracts from Parinari curatellifolia (Chrysobalanaceae). J. Toxicol. 2020, 2020, 8831545. [Google Scholar] [CrossRef]
- Ribeiro, N.M.; Rebouças De Araújo, Í.D.; Vital, A.C.; Medeiros, G.; Medonça, R.; Cavalcanti de Albuquerque, C.; Fernandes, J.; Sousa, V. Red blood cell hemolytic assay: An alternative to assess cytotoxicity of essential oils. Int. J. Dev. Res. 2020, 10, 34565–34569. Available online: http://www.journalijdr.com/red-blood-cell-hemolytic-assay-alternative-assess-cytotoxicity-essential-oils (accessed on 15 December 2024).
- Martínez, M.; Mancuello, C.; Pereira, C.; González, F.; Prieto, R.; Rolón, M.; Álvarez, S.; Benítez, B. Estudio espectrofotométrico de la actividad hemolítica del extracto crudo de Phoradendron bathyoryctum Eichler sobre eritrocitos humanos. Steviana 2021, 5, 114–121. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Quintanilla-Licea, R.; Castillo-Hernández, S.L.; Sánchez-García, E.; Bautista-Villarreal, M.; González-Meza, G.M.; Gloria-Garza, M.A.; Rodríguez-Luis, O.E.; Kluz, M.I.; Kačániová, M. In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures. Life 2024, 14, 1176. [Google Scholar] [CrossRef]
- Xu, X.; Li, F.; Zhang, X.; Li, P.; Zhang, X.; Wu, Z.; Li, D. In vitro synergistic antioxidant activity and identification of antioxidant components from Astragalus membranaceus and Paeonia lactiflora. PLoS ONE 2014, 9, e96780. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn. 2014, 1, 35–40. Available online: https://www.rjpharmacognosy.ir/article_5776_2f1608bf9318a09e55c6c82494f8067e.pdf (accessed on 26 August 2025).
- Ochoa-Ocampo, M.A.; Niño-Ruiz, Z.; Torres-Gutiérrez, R.; Mogollón, N.G.; Diéguez-Santana, K. Characterization, biological activity and application trends of Ilex guayusa Loes: A systematic literature review and bibliometric analysis. Food Chem. Adv. 2025, 7, 100958. [Google Scholar] [CrossRef]
- Waterman, P. Metabolites. In Ecological Methods and Concepts, 1st ed.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 77–99. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- González-Muñoz, A.; Quesille-Villalobos, A.M.; Fuentealba, C.; Shetty, K.; Gálvez Ranilla, L. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J. Agric. Food Chem. 2013, 61, 10995–11007. [Google Scholar] [CrossRef]
- Haddou, S.; Elrherabi, A.; Loukili, E.H.; Abdnim, R.; Hbika, A.; Bouhrim, M.; Al Kamaly, O.; Saleh, A.; Shahat, A.A.; Bnouham, M.; et al. Chemical Analysis of the Antihyperglycemic, and Pancreatic α-Amylase, Lipase, and Intestinal α-Glucosidase Inhibitory Activities of Cannabis sativa L. Seed Extracts. Molecules 2024, 29, 93. [Google Scholar] [CrossRef]
- Proaño-Bolaños, C.; Blasco-Zúñiga, A.; Almeida, J.R.; Wang, L.; Llumiquinga, M.A.; Rivera, M.; Zhou, M.; Chen, T.; Shaw, C. Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae). Biomolecules 2019, 9, 667. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [PubMed]
- Polák, L.; Škoda, P.; Riedlová, K.; Krivák, R.; Novotný, M.; Hoksza, D. PrankWeb 4: A modular web server for protein–ligand binding site prediction and downstream analysis. Nucleic Acids Res. 2025, 53, W466–W471. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio Visualizer, version 24.1.0.23298; Dassault Systèmes: San Diego, CA, USA, 2023.
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef]
Sample | Total Phenolic Content (TPC) (μg GAE/mg Extract) * | Total Flavonoids Content (TFC) (μg QE/mg Extract) * |
---|---|---|
A0 | 39.59 ± 0.33 d | 6.19 ± 0.01 b |
A2 | 34.58 ± 0.25 f | 5.95 ± 0.03 bc |
B0 | 56.84 ± 0.20 b | 6.77 ± 0.07 a |
B2 | 77.91 ± 0.16 a | 6.11 ± 0.18 bc |
C0 | 54.44 ± 0.25 c | 5.85 ± 0.58 c |
C2 | 36.58 ± 0.11 e | 4.27 ± 0.12 d |
Sample | TEAC (mg/gdw) * | |
---|---|---|
ABTS | DPPH | |
A0 | 0.3184 ± 0.0004 Ad | 0.3033 ± 0.0313 Aa |
A2 | 0.2906 ± 0.0081 Ae | 0.0968 ± 0.0026 Bc |
B0 | 0.3577 ± 0.0028 Ab | 0.2807 ± 0.0236 Ba |
B2 | 0.3885 ± 0.0459 Aa | 0.2264 ± 0.0049 Bb |
C0 | 0.3377 ± 0.0067 Ac | 0.0551 ± 0.0089 Bd |
C2 | 0.3077 ± 0.0022 Ad | 0.1850 ± 0.0047 Bc |
Sample | IC50 (µg/mL) |
---|---|
Acarbose | 48.79 ± 0.80 |
A0 | 251.31 ± 4.15 a |
A2 | 158.92 ± 11.30 b |
B0 | 68.05 ± 5.69 c |
B2 | 172.85 ± 8.06 b |
C0 | 286.77 ± 11.20 d |
C2 | 283.56 ± 6.32 d |
IL * | RT (min) * | Score * | LTPRI Exp * | LTPRI Lit * | Identified Metabolite Name | Class | Biological Activity Reported |
---|---|---|---|---|---|---|---|
1 | 24.425 | 0.81 | 1862 | 1856.2 | Caffeine | Imidazopyrimidines (xanthine derivative) | Central nervous system stimulant, improves concentration and alertness, diuretic effect, antioxidant, potential neuroprotective properties [30,31]. |
1 | 24.666 | 0.79 | 1984 | 1910 | Theobromine | Xanthine (purine alkaloid) | Mild stimulant, vasodilator, diuretic, bronchodilator, cardiotonic, and antioxidant effects [32,33]. |
2 | 4.06 | 0.72 | 957.28 | 953.0 | Senecioic acid | Fatty Acyls | Anti-inflammatory and antimicrobial activity in plant extracts [34]. |
2 | 5.127 | 0.81 | 1011.93 | 1004.1 | Phenol | Phenol (hydroxybenzene) | Antiseptic, antimicrobial, corrosive at high concentrations, precursor in pharmaceutical synthesis [35]. |
2 | 8.06 | 0.90 | 1144.06 | 1141 | Phenethyl alcohol (1-phenylethanol) | Aromatic alcohol | Antimicrobial, antifungal, used in perfumery for floral scent [36,37]. |
2 | 9.851 | 0.93 | 1216.61 | 1216 | 4-Vinylphenol | Vinyl phenol (functionalized phenol) | Antifungal activity [38,39,40]. |
2 | 10.474 | 0.86 | 1240.9 | 1237 | Coumaran | Hydrogenated aromatic (indan derivative) | Some derivatives exhibit antioxidant and antimicrobial properties [41,42,43]. |
2 | 11.575 | 0.835 | 1283.2 | 1268.8 | 3-Methylcatechol | Methylated di-phenol | Antioxidant, inhibitor of oxidative enzymes, potential anticancer agent [44]. |
2 | 11.812 | 0.92 | 1293.08 | 1293 | Indol | Aromatic heterocycle | Some derivatives have anticancer and antimicrobial activity [45,46]. |
2 | 11.818 | 0.75 | 1293.31 | 1287 | Cinnamaldehyde | Aromatic aldehyde | Antimicrobial, anti-inflammatory, antioxidant, potential anticancer agent [47]. |
2 | 11.821 | 0.90 | 1293.41 | 1272 | Hydroquinone | Di-phenol (1,4-dihydroxybenzene) | Skin depigmenting agent, antioxidant [48]. |
2 | 13.96 | 0.88 | 1277.25 | 1367 | Syringol | Methoxylated phenol | Antioxidant, antimicrobial, lignin-derived compound [49,50,51]. |
2 | 15.029 | 0.82 | 1419.79 | 1398 | Methyl cinnamate | Aromatic ester | Antimicrobial, pleasant aroma, used in perfumery and cosmetics [52]. |
2 | 15.151 | 0.74 | 1424.75 | 1420 | Vanillin | Phenolic aldehyde | Antioxidant, antimicrobial, anti-inflammatory, natural flavoring agent. |
3 | 18.131 | 0.79 | 1647.28 | 1532 | Methyl laurate | Fatty acid ester | Antimicrobial and emollient activity, used in cosmetics and fragrances [53]). |
3 | 3.223 | 0.77 | 913 | 2760 | 4′,6,7-Trimethoxyflavonol | Trimethoxyflavonol (polyphenol) | Antioxidant, anti-inflammatory, and anticancer activity [54]. |
3 | 3.976 | 0.82 | 952.87 | 924 | 2(5H)-Furanone | Furanone lactone | Antimicrobial, inhibitor of bacterial biofilm formation [55,56,57]. |
3 | 5.038 | 0.88 | 1007.71 | 900 | Nonane | Alkane (C9) | No significant biological activity reported. |
3 | 5.122 | 0.70 | 1011.73 | 1942 | Isophytol | Acyclic terpene alcohol | Antioxidant properties, precursor to vitamins [58,59]. |
3 | 8.721 | 0.70 | 1171.15 | 1321.86 | 2,2,4,4,6,8,8-Heptamethylnonane | Highly branched alkane | No significant biological activity reported. |
3 | 9.169 | 0.85 | 1189 | 2657 | Catechol | Di-phenol (1,2-dihydroxybenzene) | Antioxidant, precursor in biosynthesis of other phenolic compounds, antimicrobial [60,61,62,63]. |
3 | 9.396 | 0.70 | 1198 | 1000 | Hexadecane | Alkane (C16) | No significant biological activity reported. |
3 | 10.371 | 0.86 | 1236 | 1089 | Tolualdehyde | Aromatic aldehyde | No significant biological activity reported. |
3 | 15.392 | 0.99 | 1434 | 897 | 4-Vinylphenol | Phenol | Antimicrobial phenolic compound affecting flavor and aroma of fermented foods [64,65]. |
3 | 18.226 | 0.70 | 1551 | 1500 | Pentadecane | Alkane (C15) | No significant biological activity reported. |
3 | 18.67 | 0.70 | 2078.47 | 2076 | Isopropyl tetradecyl ether | Aliphatic ether | No significant biological activity reported. |
3 | 21.26 | 0.70 | 1683.16 | 1152 | Isopentyl valerate | Ester (carboxylic acid ester) | No significant biological activity reported. |
3 | 22.265 | 0.70 | 1757.87 | 1642 | 4-Propenyl syringol | Functionalized phenol (propenylated) | Antioxidant and antimicrobial activities [66]. |
3 | 28.298 | 0.70 | 2228.07 | 1867 | 1-Hexadecanol | Aliphatic alcohol (C16 primary alcohol) | Emollient and mild antimicrobial properties [66,67]. |
Cod | Ligand Name | 3A4A | 2CAG | ||
---|---|---|---|---|---|
Affinity (kcal mol−1) | Key Interactions | Affinity (kcal mol−1) | Key Interactions | ||
9 | 4′,6,7-Trimethoxyflavonol | −8.3 | Conventional H-bond: Arg315, Arg442. Carbon H-bond: Ser240, Asp242, Asp352, Leu313. π–π T-shaped: Tyr158. π-Alkyl: Arg315. Van der Waals: Leu313, Lys156, Phe314, Arg315, Glu411, Val216, Glu277, Asp352, Arg442, Phe159, Tyr158. | −9.4 | Conventional H-bond: Arg51, Arg344. Unfavorable Donor–Donor: Arg344. π-Cation: Arg91. Carbon-Hydrogen Bond: Arg91. π–π Stacked: Tyr337. π–π T-shaped: Tyr337. Alkyl: Ala112, Val125, His54. π-Alkyl: Arg52, Ala340. Van der Waals: Tyr337, Asn127, Phe313. |
7 | 4-Propenylsyringol | −5.5 | Conventional H-bond: Asp242. Carbon H-bond: Ser241, Lys156. π–π T-shaped: Tyr158. Alkyl: Tyr158. π-Alkyl: Phe314. Van der Waals: Phe314, Leu313, Arg315, His280. | −7 | Conventional H-bond: Arg333, His54. Carbon-Hydrogen Bond: Val125. π-Alkyl: His197. Alkyl: Phe140, Phe132, Val95. Van der Waals: Tyr337, Asn127, Gly126. |
5 | Vanillin | −5.9 | Conventional H-bond: Lys156, Asn317. Carbon H-bond: Asp233. Unfavorable Donor–Donor: Asn317. π–π T-Shaped: Phe314. π–π Stacked: Phe314. π-Cation: His423. π-Alkyl: Ile419. Van der Waals: Phe314. | −6.4 | Conventional H-bond: Arg333, Asn127, Ser196, Tyr337. Pi-Cation: His197. π–π Stacked: Phe132. π-Alkyl: His54. Van der Waals: Tyr337, Phe140, Gly126. |
8 | Syringol | −5.8 | Conventional H-bond: Lys156. Carbon H-bond: Asn415, Asn235. π-Cation: His423. π–π Stacked: Phe314. Alkyl: Phe314. Van der Waals: Lys156, Leu313. | −6.3 | Carbon-Hydrogen Bond: Val125. π-Cation: His197, Arg333. π–π Stacked: Phe132. Unfavorable Acceptor–Acceptor: Tyr337. Alkyl: His197, Arg333. π-Alkyl: Phe140. Van der Waals: Tyr337, Asn127, Gly126. |
1 | Phenylethyl alcohol | −5.6 | Conventional H-bond: Asn415. Carbon H-bond: Asn415. π-Cation: His423. π–π Stacked: Phe314. π-Alkyl: Ile419. Van der Waals: Phe314, Lys156. | −6.1 | Conventional H-bond: His197. π-Sulfur: Met329. π–π Stacked: Phe140. π-Alkyl: Arg333. Van der Waals: Tyr337, Asn127. |
3 | Methyl laurate | −5.1 | Conventional H-bond: His351. Carbon H-bond: Asp215. Pi-Alkyl: Phe178, His112, Tyr158. Van der Waals: Arg442, Phe178, Tyr158, Glu277, Val216, Glu411, Gln279, Arg213. | −6.2 | Conventional H-bond: Arg91. Carbon-Hydrogen Bond: Gly126. π-Alkyl: Ala112, Val125, His54. Alkyl: His341, Arg51, Tyr337, Ala340. Van der Waals: Tyr337, Phe313, Asn127. |
4 | Catechol | −5.6 | Conventional H-bond: Glu277, His351, Glu277. π–π T-shaped: Tyr72. π -Cation: Arg442. Van der Waals: Glu411, Glu277, Asp352, Val216, His351, Arg315. | −5.6 | Conventional H-bond: Arg91. π-Sigma: Ala112. π–π Stacked: His54. Pi-Alkyl: Val125. Van der Waals: Tyr337, Phe313. |
6 | Phenol | −5.3 | Conventional H-bond: Arg213, Glu277, His351. π-Cation: Arg442. Van der Waals: Val216, Glu277, His351, Asp352. | −5.2 | Pi-Sulfur: Met329. Pi–Pi Stacked: Phe140. π-Alkyl: Arg333. Van der Waals: Tyr337. |
2 | Senecioic acid | −5.2 | Conventional H-bond: Arg442, His351, Asp352. Unfavorable Acceptor–Acceptor: Asp352. Alkyl: Val216. π-Alkyl: Phe178, His112. Van der Waals: Arg213, His351, Val216, Glu277, Asp352. | −5.2 | Unfavorable Donor–Donor: Asn127. Alkyl: Met329, Leu278. π-Alkyl: Phe132, Phe140, His197. Van der Waals: Arg333, Phe140. |
PP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
TPSA (Å2) | 20.23 | 37.3 | 26.3 | 40.46 | 46.53 | 20.23 | 38.69 | 38.69 | 78.13 |
Consensus Log Po/w | 1.64 | 0.89 | 4.1 | 0.97 | 1.2 | 1.41 | 2.28 | 1.32 | 2.73 |
MW (g/mol) | 122.16 | 100.12 | 214.34 | 110.11 | 152.15 | 94.11 | 194.23 | 154.16 | 328.32 |
nRB | 2 | 1 | 11 | 0 | 2 | 0 | 3 | 2 | 4 |
nOHA | 1 | 2 | 2 | 2 | 3 | 1 | 3 | 3 | 6 |
nOHD | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 |
WLOGP | 1.22 | 1.04 | 4.08 | 1.1 | 1.21 | 1.39 | 2.33 | 1.41 | 3.19 |
WS Log S (Ali) | V. Sol | V. Sol | M. Sol | V. Sol | V. Sol | V. Sol | Sol | V. Sol | M. Sol |
GI absorption | High | High | High | High | High | High | High | High | High |
DLLR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BS | 0.55 | 0.85 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Leadlikeness | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 0 |
Absorption | |||||||||
WS (log mol/L) | −1.198 | −0.314 | −5.096 | −0.441 | −0.812 | −0.723 | −2.283 | −0.979 | −3.897 |
Caco2 (log Papp in 10−6 cm/s) | 1.605 | 1.571 | 1.604 | 1.443 | 1.23 | 1.613 | 1.605 | 1.585 | 1.087 |
GIA. % | 88.073 | 92.321 | 93.709 | 77.197 | 86.883 | 93.055 | 95.926 | 96.844 | 95.869 |
Skin Permeability log Kp (cm/s) | −1.83 | −2.754 | −1.844 | −2.729 | −2.752 | −1.924 | −2.438 | −2.615 | −2.712 |
P-gp substrate (Yes/No) | No | No | No | Yes | Yes | No | Yes | Yes | Yes |
P-gp I inhibitor (Yes/No) | No | No | No | No | No | No | No | No | Yes |
P-gp II inhibitor (Yes/No) | No | No | No | No | No | No | No | No | Yes |
Distribution | |||||||||
VDss (human) (log L/kg) | 0.202 | −0.833 | 0.256 | −0.25 | −0.357 | 0.131 | −0.23 | −0.331 | −0.162 |
Fraction unbound (human) | 0.434 | 0.667 | 0.23 | 0.491 | 0.464 | 0.533 | 0.355 | 0.457 | 0.14 |
BBB permeant (log BB) | −0.089 | −0.248 | 0.674 | −0.225 | −0.182 | −0.222 | 0.227 | −0.139 | −0.695 |
CNS permeability (log PS) | −1.857 | −2.53 | −1.897 | −1.719 | −1.828 | −1.824 | −1.661 | −1.818 | −2.309 |
Metabolism | |||||||||
CYP2D6 substrate | No | No | No | No | No | No | No | No | No |
CYP3A4 substrate | No | No | No | No | No | No | No | No | Yes |
CYP1A2 inhibitor | Yes | No | No | No | Yes | No | Yes | Yes | Yes |
CYP2C19 inhibitor | No | No | No | No | No | No | No | No | Yes |
CYP2C9 inhibitor | No | No | No | No | No | No | No | No | No |
CYP2D6 inhibitor | No | No | No | No | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No | No | No | No | Yes |
Excretion | |||||||||
Total renal clearance (log mL/min/kg) | 0.325 | 0.894 | 1.724 | 0.173 | 0.595 | 0.208 | 0.242 | 0.207 | 0.662 |
Renal OCT2 substrate | No | No | No | No | No | No | No | No | Yes |
Compounds | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | Cytotoxicity | Predicted LD50 (mg kg−1) | Toxicity Class | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pr | Pb | Pr | Pb | Pr | Pb | Pr | Pb | Pr | Pb | |||
Phenylethyl alcohol | In | 0.86 | In | 0.71 | In | 0.99 | In | 0.96 | In | 0.91 | 800 | 4 |
Senecioic acid | In | 0.62 | In | 0.81 | In | 0.99 | In | 0.92 | In | 0.71 | 2450 | 5 |
Methyl laurate | In | 0.58 | In | 0.55 | In | 0.99 | In | 0.98 | In | 0.73 | 5000 | 5 |
Catechol | In | 0.82 | Ac | 0.84 | In | 0.99 | In | 0.9 | In | 0.87 | 100 | 3 |
Vanillin | In | 0.52 | In | 0.6 | In | 0.55 | In | 0.98 | In | 0.94 | 1000 | 4 |
Phenol | In | 0.8 | In | 0.77 | In | 0.99 | In | 0.99 | In | 0.91 | 270 | 3 |
4-Propenylsyringol | In | 0.63 | In | 0.53 | Ac | 0.82 | Ac | 0.53 | In | 0.73 | 1560 | 4 |
Syringol | In | 0.68 | In | 0.51 | In | 0.83 | In | 0.8 | In | 0.89 | 550 | 4 |
4′,6,7-Trimethoxyflavonol | In | 0.69 | In | 0.57 | Ac | 0.78 | In | 0.7 | In | 0.99 | 5000 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de los Monteros-Silva, N.E.; Martínez-Palacios, K.; Jiménez, A.M.; Ochoa-Ocampo, M.; Garzón, T.; Carrillo-Vásconez, T.; Radice, M.; Yánez, E.V.; Rea-Martínez, J.; Niño-Ruiz, Z.; et al. Unlocking the Ilex guayusa Potential: Volatile Composition, Antioxidant, Antidiabetic, and Hemolytic Activities, with In Silico Molecular Docking and ADMET Analysis of Hydroethanolic Extracts. Molecules 2025, 30, 3885. https://doi.org/10.3390/molecules30193885
de los Monteros-Silva NE, Martínez-Palacios K, Jiménez AM, Ochoa-Ocampo M, Garzón T, Carrillo-Vásconez T, Radice M, Yánez EV, Rea-Martínez J, Niño-Ruiz Z, et al. Unlocking the Ilex guayusa Potential: Volatile Composition, Antioxidant, Antidiabetic, and Hemolytic Activities, with In Silico Molecular Docking and ADMET Analysis of Hydroethanolic Extracts. Molecules. 2025; 30(19):3885. https://doi.org/10.3390/molecules30193885
Chicago/Turabian Stylede los Monteros-Silva, Nina Espinosa, Karla Martínez-Palacios, Anggie M. Jiménez, Melanie Ochoa-Ocampo, Thomas Garzón, Tamara Carrillo-Vásconez, Matteo Radice, Enith Vanessa Yánez, Julio Rea-Martínez, Zulay Niño-Ruiz, and et al. 2025. "Unlocking the Ilex guayusa Potential: Volatile Composition, Antioxidant, Antidiabetic, and Hemolytic Activities, with In Silico Molecular Docking and ADMET Analysis of Hydroethanolic Extracts" Molecules 30, no. 19: 3885. https://doi.org/10.3390/molecules30193885
APA Stylede los Monteros-Silva, N. E., Martínez-Palacios, K., Jiménez, A. M., Ochoa-Ocampo, M., Garzón, T., Carrillo-Vásconez, T., Radice, M., Yánez, E. V., Rea-Martínez, J., Niño-Ruiz, Z., Dieguez-Santana, K., & Mogollón, N. G. S. (2025). Unlocking the Ilex guayusa Potential: Volatile Composition, Antioxidant, Antidiabetic, and Hemolytic Activities, with In Silico Molecular Docking and ADMET Analysis of Hydroethanolic Extracts. Molecules, 30(19), 3885. https://doi.org/10.3390/molecules30193885