Influence of Freeze- and Spray Drying with Carrier Agents on Alkamides, Antioxidant Properties, and Process Contaminants in Echinacea purpurea Root Extract Powders
Abstract
1. Introduction
2. Results and Discussion
2.1. Moisture Content (Mc)
2.2. Water Activity (aw)
2.3. Bulk Density
2.4. True Density
2.5. Porosity
2.6. Color and Browning Index (BI)
2.7. Alkamides Content
2.8. Total Phenolics Content (TPC)
2.9. Antioxidant Capacity In Vitro
2.10. Furfural (FF) and 5-Hydroxymethyl-L-furfural (5-HMF) Content
2.11. Free Amino Groups (OPA Assay)
3. Materials and Methods
3.1. Material
3.2. Methods
3.2.1. Drying
3.2.2. Physicochemical Properties
3.2.3. Determination of Alkamides Content
3.2.4. Determination of Total Phenolics Content (TPC)
3.2.5. Determination of Antioxidant Capacity In Vitro
3.2.6. Quantification of Furfural (FF) and 5-Hydroxymethyl-L-furfural (5-HMF)
3.2.7. Determination of Free Amino Groups (OPA Assay)
3.2.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea Purpurea: Pharmacology, PhytoChemistry and Analysis Methods. Pharmacogn. Rev. 2015, 9, 63–72. [Google Scholar] [CrossRef]
- Balciunaite, G.; Haimi, P.-J.; Mikniene, Z.; Savickas, G.; Ragazinskiene, O.; Juodziukyniene, N.; Baniulis, D.; Pangonyte, D. Identification of Echinacea purpurea (L.) Moench Root LysM Lectin with Nephrotoxic Properties. Toxins 2020, 12, 88. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea Plants as Antioxidant and Antibacterial Agents: From Traditional Medicine to Biotechnological Applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, C.; Maida, I.; Maggini, V.; Bosi, E.; Mocali, S.; Emiliani, G.; Perrin, E.; Firenzuoli, F.; Mengoni, A.; Fani, R. Preliminary Data on Antibacterial Activity of Echinacea purpurea-Associated Bacterial Communities against Burkholderia cepacia Complex Strains, Opportunistic Pathogens of Cystic Fibrosis Patients. Microbiol. Res. 2017, 196, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; del Carmen Sierra-Palacios, E.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on Phytochemical, Antioxidant, Anti-Inflammatory, Hypoglycaemic and Antiproliferative Activities of Echinacea Purpurea and Echinacea Angustifolia Extracts. Phram. Biol. 2017, 55, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Kindscher, K. Medicinal Wild Plants of the Prairie: An Ethnobotanical Guide; University Press of Kansas: Lawrence, KS, USA, 1992; ISBN 978-0-7006-0527-9. [Google Scholar]
- Łysoniewska, E.; Kalisz, S.; Mitek, M. Jakość sensoryczna nektarów i napojów z czarnej porzeczki wzbogaconych ekstraktami z jeżówki purpurowej oraz zielonej herbaty. ŻYWNOŚĆ Nauka Technol. Jakość 2011, 6, 167–176. [Google Scholar]
- Mahmoud, S.; Ashoush, I.; Attia, M.; Mahmoud, R. Immunomodulatory and Antioxidant Activity of Pomegranate Juice Incorporated with Spirulina and Echinacea Extracts Sweetened by Stevioside. J. Agric. Vet. Sci. 2015, 8, 161–174. [Google Scholar] [CrossRef]
- Kalisz, S.; Ścibosz, I. Wpływ Dodatku Ekstraktów Roślinnych na Zawartość Polifenoli Ogółem, Antocyjanów, Witaminy C i Pojemność Przeciwutleniającą Nektarów z Czarnej Porzeczki. ŻYWNOŚĆ Nauka Technol. Jakość 2010, 72, 45–55. [Google Scholar]
- Gallo, M.; Ferracane, R.; Naviglio, D. Antioxidant Addition to Prevent Lipid and Protein Oxidation in Chicken Meat Mixed with Supercritical Extracts of Echinacea Angustifolia. J. Supercrit. Fluids 2012, 72, 198–204. [Google Scholar] [CrossRef]
- Sabouri, Z.; Barzegar, M.; Sahari, M.A.; Naghdi Badi, H. Antioxidant and Antimicrobial Potential of Echinacea purpurea Extract and Its Effect on Extension of Cake Shelf Life. J. Med. Plants 2012, 11, 28–40. [Google Scholar]
- Moradi, F.; Emamifar, A.; Ghaderi, N. Effect of Basil Seed Gum Based Edible Coating Enriched with Echinacea Extract on the Postharvest Shelf Life of Fresh Strawberries. Food Meas. 2019, 13, 1852–1863. [Google Scholar] [CrossRef]
- Verified Market Reports. Echinacea Purpurea Extract Market Size, Trends, Market Overview & Forecast 2033. Available online: https://www.verifiedmarketreports.com/product/echinacea-purpurea-extract-market/ (accessed on 3 August 2025).
- Lee, D.S.; Robertson, G.L. Shelf-Life Estimation of Packaged Dried Foods as Affected by Choice of Moisture Sorption Isotherm Models. J. Food Process. Preserv. 2022, 46, e16335. [Google Scholar] [CrossRef]
- Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro- and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. [Google Scholar] [CrossRef]
- Karthik, P.; Anandharamakrishnan, C. Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of Its Stability with Spray-Drying and Freeze-Drying Methods. Food Bioprocess Technol. 2013, 6, 2780–2790. [Google Scholar] [CrossRef]
- Desobry, S.A.; Netto, F.M.; Labuza, T.P. Comparison of Spray-Drying, Drum-Drying and Freeze-Drying for β-Carotene Encapsulation and Preservation. J. Food Sci. 2006, 62, 1158–1162. [Google Scholar] [CrossRef]
- Barbosa, J.; Borges, S.; Amorim, M.; Pereira, M.J.; Oliveira, A.; Pintado, M.E.; Teixeira, P. Comparison of Spray Drying, Freeze Drying and Convective Hot Air Drying for the Production of a Probiotic Orange Powder. J. Funct. Foods 2015, 17, 340–351. [Google Scholar] [CrossRef]
- Papoutsis, K.; Golding, J.B.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M. Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods 2018, 7, 115. [Google Scholar] [CrossRef]
- Ramírez, M.J.; Giraldo, G.I.; Orrego, C.E. Modeling and Stability of Polyphenol in Spray-Dried and Freeze-Dried Fruit Encapsulates. Powder Technol. 2015, 277, 89–96. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; López-Córdoba, A. Enhancing the Physicochemical, Thermal, and Technological Properties of Freeze-Dried Welsh Onion Leaf Juice: Influence of Maltodextrin and Gum Arabic as Carrier Agents. Polymers 2025, 17, 801. [Google Scholar] [CrossRef] [PubMed]
- Benavent, C.; Torrado-Salmerón, C.; Torrado-Santiago, S. Development of a Solid Dispersion of Nystatin with Maltodextrin as a Carrier Agent: Improvements in Antifungal Efficacy against Candida Spp. Biofilm Infections. Pharmaceuticals 2021, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Hoskin, R.; Xiong, J.; Lila, M.A. Whey and Soy Proteins as Wall Materials for Spray Drying Rosemary: Effects on Polyphenol Composition, Antioxidant Activity, Bioaccessibility after in Vitro Gastrointestinal Digestion and Stability during Storage. LWT 2021, 149, 111901. [Google Scholar] [CrossRef]
- Barańska, A.; Świeca, M.; Samborska, K. Sour Cherry Juice Concentrate Powdered by High and Low Temperature Spray Drying with Pea Protein as a Carrier—Physical Properties, Antioxidant Activity and In Vitro Bioaccessibility. Dry. Technol. 2022, 41, 444–459. [Google Scholar] [CrossRef]
- El Hosry, L.; Elias, V.; Chamoun, V.; Halawi, M.; Cayot, P.; Nehme, A.; Bou-Maroun, E. Maillard Reaction: Mechanism, Influencing Parameters, Advantages, Disadvantages, and Food Industrial Applications: A Review. Foods 2025, 14, 1881. [Google Scholar] [CrossRef]
- Zhou, Z.; Langrish, T. Color Formation and Maillard Reactions During the Spray Drying Process of Skim Milk and Model Systems. J. Food Process Eng. 2021, 45, e13936. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of Spray Drying Conditions on the Physicochemical and Antioxidant Properties of the Gac (Momordica cochinchinensis) Fruit Aril Powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The Effect of Different Drying Processes and the Amounts of Maltodextrin Addition on the Powder Properties of Sumac Extract Powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.C.; Garmer, S.P.M.; Alvim, I.D.; Aguirre, J.M. Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Dry. Technol. 2013, 31, 470–478. [Google Scholar] [CrossRef]
- Darniadi, S.; Ho, P.; Murray, B.S. Comparison of Blueberry Powder Produced via Foam-Mat Freeze-Drying versus Spray-Drying: Evaluation of Foam and Powder Properties. J. Sci. Food Agric. 2018, 98, 2002–2010. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. Stability of Microencapsulated Strawberry Flavour by Spray Drying, Freeze Drying and Fluid Bed. Powder Technol. 2019, 347, 179–185. [Google Scholar] [CrossRef]
- Donthi, M.R.; Butreddy, A.; Saha, R.N.; Kesharwani, P.; Dubey, S.K. Leveraging Spray Drying Technique for Advancing Biologic Product Development–A Mini Review. Health Sci. Rev. 2024, 10, 100142. [Google Scholar] [CrossRef]
- Tang, X.; Pikal, M.J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21, 191–200. [Google Scholar] [CrossRef]
- Fitzpatrick, J. Chapter 13—Powder Properties in Food Production Systems. In Handbook of Food Powders, 2nd ed.; Bhandari, B., Bansal, N., Zhang, M., Schuck, P., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2024; pp. 203–218. ISBN 978-0-323-98820-9. [Google Scholar]
- Do, H.T.T.; Nguyen, H.V.H. Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder. Beverages 2018, 4, 101. [Google Scholar] [CrossRef]
- Tay, J.B.J.; Chua, X.; Ang, C.; Subramanian, G.S.; Tan, S.Y.; Lin, E.M.J.; Wu, W.-Y.; Goh, K.K.T.; Lim, K. Effects of Spray-Drying Inlet Temperature on the Production of High-Quality Native Rice Starch. Processes 2021, 9, 1557. [Google Scholar] [CrossRef]
- Gong, Z.; Yu, M.; Wang, W.; Shi, X. Functionality of Spray-Dried Strawberry Powder: Effects of Whey Protein Isolate and Maltodextrin. Int. J. Food Prop. 2018, 21, 2229–2238. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, M.; Ohm, J.-B.; Chen, B.; Rao, J. Solid Dispersion-Based Spray-Drying Improves Solubility and Mitigates Beany Flavour of Pea Protein Isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S. (Ed.) Handbook of Food Preservation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; 1088p. [Google Scholar] [CrossRef]
- Kandasamy, S.; Naveen, R. A Review on the Encapsulation of Bioactive Components Using Spray-drying and Freeze-drying Techniques. J. Food Process Eng. 2022, 45, e14059. [Google Scholar] [CrossRef]
- Laokuldilok, T.; Kanha, N. Effects of Processing Conditions on Powder Properties of Black Glutinous Rice (Oryza sativa L.) Bran Anthocyanins Produced by Spray Drying and Freeze Drying. LWT-Food Sci. Technol. 2015, 64, 405–411. [Google Scholar] [CrossRef]
- Ganaie, T.A.; Masoodi, F.A.; Rather, S.A.; Gani, A. Exploiting Maltodextrin and Whey Protein Isolate Macromolecules as Carriers for the Development of Freeze Dried Honey Powder. Carbohydr. Polym. Technol. Appl. 2021, 2, 100040. [Google Scholar] [CrossRef]
- Lim, W.; Jeong, Y.; Lee, W.; Yoo, B. Improved Physical and Structural Properties of High-Protein Powders by Fluidized-Bed Agglomeration. Food Sci. Biotechnol. 2024, 33, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour Encapsulation and Controlled Release—A Review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Amid, B.T. Effect of Different Drying Techniques on Flowability Characteristics and Chemical Properties of Natural Carbohydrate-Protein Gum from Durian Fruit Seed. Chem. Cent. J. 2013, 7, 1. [Google Scholar] [CrossRef]
- Shams, R.; Singh, J.; Dash, K.K.; Dar, A.H.; Nayik, G.A.; Ansari, M.J.; Hemeg, H.A.; Ahmed, A.E.M.; Shaikh, A.M.; Kovács, B. Effect of Maltodextrin and Soy Protein Isolate on the Physicochemical and Flow Properties of Button Mushroom Powder. Front. Nutr. 2022, 9, 908570. [Google Scholar] [CrossRef]
- Pham, H.T.T.; Bista, A.; Kebede, B.; Buvé, C.; Hendrickx, M.; Van Loey, A. Insight into Non-enzymatic Browning of Shelf-stable Orange Juice during Storage: A Fractionation and Kinetic Approach. J. Sci. Food Agric. 2020, 100, 3765–3775. [Google Scholar] [CrossRef]
- Vieira, S.F.; Gonçalves, S.M.; Gonçalves, V.M.F.; Llaguno, C.P.; Macías, F.; Tiritan, M.E.; Cunha, C.; Carvalho, A.; Reis, R.L.; Ferreira, H.; et al. Echinacea Purpurea Fractions Represent Promising Plant-Based Anti-Inflammatory Formulations. Antioxidants 2023, 12, 425. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea Species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.), Echinacea purpurea (L.) Moench): A Review of Their Chemistry, Pharmacology and Clinical Properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef]
- Liu, Y.; Murphy, P.A. Alkamide Stability in Echinacea Purpurea Extracts with and without Phenolic Acids in Dry Films and in Solution. J. Agric. Food Chem. 2006, 55, 120–126. [Google Scholar] [CrossRef]
- Kabganian, R.; Carrier, D.J.; Sokansanj, S. Drying of Echinacea angustifolia Roots. J. Herbs Spices Med. Plants 2003, 10, 11–18. [Google Scholar] [CrossRef]
- Hevia, F.; Melín, P.; Berti, M.; Fischer, S.; Pinochet, C. Effect of Drying Temperature and Air Speed on Cichoric Acid and Alkylamide Content of Echinacea purpurea. Acta Hortic. 2002, 576, 321–325. [Google Scholar] [CrossRef]
- Can Karaca, A. Encapsulation of Black Pepper Seed Oil Using Maltodextrin and Pea Protein. Food Sci. Technol. Int. 2020, 26, 369–378. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Sung, J.-M.; Lin, S.-D. Effect of Extraction Methods on the Active Compounds and Antioxidant Properties of Ethanolic Extracts of Echinacea purpurea Flower. Am. J. Plant Sci. 2015, 6, 201–212. [Google Scholar] [CrossRef]
- Kucharska-Guzik, A.; Guzik, Ł.; Charzyńska, A.; Michalska-Ciechanowska, A. Influence of Freeze Drying and Spray Drying on the Physical and Chemical Properties of Powders from Cistus creticus L. Extract. Foods 2025, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Karabulut, D.; Yesil-Celiktas, O. A Bioactivity Based Comparison of Echinacea purpurea Extracts Obtained by Various Processes. J. Supercrit. Fluids 2014, 89, 8–15. [Google Scholar] [CrossRef]
- Pires, C.; Martins, N.; Carvalho, A.M.; Barros, L.; Ferreira, I.C.F.R. Phytopharmacologic Preparations as Predictors of Plant Bioactivity: A Particular Approach to Echinacea Purpurea (L.) Moench Antioxidant Properties. Nutrition 2016, 32, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Huang, H.; Chen, J.; Wang, L. Inhibition Mechanism of Thermally Induced Furfural in Simplified Sugarcane Juice Model System by Polyphenols. Food Chem. X 2025, 27, 102469. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Wang, M. Impacts of Selected Dietary Polyphenols on Caramelization in Model Systems. Food Chem. 2013, 141, 3451–3458. [Google Scholar] [CrossRef]
- Chutani, D.; Vasiljevic, T.; Huppertz, T.; Murphy, E. Electrostatic Spray Drying of a Milk Protein Matrix—Impact on Maillard Reactions. Molecules 2024, 29, 5994. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of Carrier Agents on Physical and Microstructural Properties of Spray Dried Tamarind Pulp Powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Palou, E.; López-Malo, A.; Barbosa-Cánovas, G.V.; Welti-Chanes, J.; Swanson, B.G. Polyphenoloxidase Activity and Color of Blanched and High Hydrostatic Pressure Treated Banana Puree. J. Food Sci. 1999, 64, 42–45. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Horszwald, A.; Andlauer, W. Characterisation of Bioactive Compounds in Berry Juices by Traditional Photometric and Modern Microplate Methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of Bread Making on Formation of Maillard Reaction Products Contributing to the Overall Antioxidant Activity of Rye Bread. J. Cereal Sci. 2008, 48, 123–132. [Google Scholar] [CrossRef]
Drying Technique | Drying Temperature | Carrier Type | Moisture Content | Water Activity | Bulk Density | True Density | Porosity |
---|---|---|---|---|---|---|---|
FD | −60/25 °C | C | 9.58 ± 0.06 a | 0.1551 ± 0.0011 a | 441.85 ± 4.79 b | 1434.18 ± 32.59 a | 69.18 ± 1.03 bc |
M | 7.00 ± 0.01 b | 0.0345 ± 0.0016 h | 437.19 ± 29.74 b | 1420.57 ± 16.34 a–c | 69.21 ± 2.45 bc | ||
PPI | 6.43 ± 0.11 b | 0.0360 ± 0.0011 h | 550.41 ± 1.05 a | 1370.87 ± 19.35 c–f | 59.84 ± 0.64 d | ||
M+PPI | 7.02 ± 0.06 b | 0.0350 ± 0.0001 h | 467.04 ± 15.40 b | 1394.77 ± 17.70 a–d | 66.52 ± 0.68 c | ||
SD | 150 °C | C | 0.92 ± 0.02 fg | 0.1115 ± 0.0026 c | 463.32 ± 18.56 b | 1428.15 ± 7.95 ab | 67.55 ± 1.48 c |
M | 2.31 ± 0.02 c | 0.0970 ± 0.0021 de | 400.78 ± 17.97 b–d | 1326.60 ± 7.82 f | 69.78 ± 1.53 bc | ||
PPI | 1.91 ± 0.19 c–e | 0.1370 ± 0.0014 b | 600.02 ± 32.59 a | 1407.00 ± 8.03 a–d | 57.36 ± 2.07 d | ||
M+PPI | 1.36 ± 0.43 d–f | 0.0821 ± 0.0002 fg | 357.23 ± 18.63 c–e | 1391.33 ± 7.49 a–e | 74.32 ± 1.48 ab | ||
170 °C | C | 0.70 ± 0.01 fg | 0.0996 ± 0.0013 d | 453.92 ± 29.97 b | 1416.44 ± 11.02 a–d | 67.94 ± 2.37 c | |
M | 2.07 ± 0.11 cd | 0.0789 ± 0.0018 g | 277.99 ± 16.91 fg | 1360.42 ± 15.60 d–f | 79.56 ± 1.48 a | ||
PPI | 1.23 ± 0.04 ef | 0.1138 ± 0.0054 c | 599.15 ± 12.64 a | 1411.77 ± 15.26 a–d | 57.55 ± 1.35 d | ||
M+PPI | 1.70 ± 0.16 c–e | 0.0989 ± 0.0007 de | 347.81 ± 32.76 d–f | 1374.09 ± 7.58 b–e | 74.68 ± 2.52 ab | ||
190 °C | C | 0.25 ± 0.11 g | 0.0896 ± 0.0037 ef | 431.23 ± 3.49 b–c | 1413.41 ± 8.40 a–d | 69.49 ± 0.07 bc | |
M | 0.61 ± 0.54 fg | 0.1010 ± 0.0006 d | 262.85 ± 0.98 g | 1257.94 ± 10.68 g | 79.10 ± 0.10 a | ||
PPI | 0.64 ± 0.01 fg | 0.1113 ± 0.0022 c | 570.32 ± 2.88 a | 1430.57 ± 8.78 ab | 60.13 ± 0.45 d | ||
M+PPI | 0.32 ± 0.10 g | 0.0869 ± 0.0044 fg | 318.9 ± 7.41 e–g | 1335.52 ± 9.56 ef | 76.12 ± 0.73 a |
Drying Technique | Drying Temperature | Carrier Type | Color | BI | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
FD | −60/25 °C | C | 60.46 ± 1.40 h | 10.58 ± 0.82 a | 22.96 ± 1.66 a | 59.94 ± 6.49 a |
M | 75.85 ± 0.31 d–f | 5.52 ± 0.21 d | 22.02 ± 0.19 a–c | 39.03 ± 0.56 b–d | ||
PPI | 67.67 ± 0.85 g | 7.31 ± 0.16 b | 19.81 ± 0.63 de | 42.03 ± 2.04 bc | ||
M+PPI | 68.83 ± 1.20 g | 6.69 ± 0.21 bc | 20.41 ± 1.02 c–e | 41.72 ± 1.48 bc | ||
SD | 150 °C | C | 78.13 ± 0.50 de | 4.26 ± 0.03 e | 20.84 ± 0.49 b–d | 34.46 ± 1.09 de |
M | 88.05 ± 0.76 a | 1.45 ± 0.07 fg | 18.76 ± 0.25 e | 24.66 ± 0.64 f | ||
PPI | 73.92 ± 0.16 f | 5.93 ± 0.14 d | 23.86 ± 0.65 a | 44.15 ± 1.29 b | ||
M+PPI | 85.09 ± 0.89 bc | 2.00 ± 0.06 f | 19.94 ± 0.46 de | 27.87 ± 0.40 f | ||
170 °C | C | 78.44 ± 1.33 c | 4.41 ± 0.13 e | 22.94 ± 0.16 a | 38.06 ± 0.89 cd | |
M | 88.67 ± 0.36 a | 1.23 ± 0.02 g | 18.44 ± 0.27 e | 23.82 ± 0.33 f | ||
PPI | 74.98 ± 0.69 f | 6.13 ± 0.24 cd | 23.00 ± 0.28 a | 42.00 ± 1.17 bc | ||
M+PPI | 83.05 ± 1.85 c | 1.70 ± 0.07 fg | 20.37 ± 0.40 c–e | 29.05 ± 0.60 ef | ||
190 °C | C | 77.98 ± 0.77 de | 4.55 ± 0.02 e | 22.67 ± 0.53 ab | 37.98 ± 0.68 cd | |
M | 87.93 ± 0.47 a | 1.33 ± 0.08 fg | 18.80 ± 1.00 e | 24.66 ± 1.52 f | ||
PPI | 75.46 ± 1.09 ef | 5.89 ± 0.20 d | 23.72 ± 0.39 a | 42.82 ± 1.67 bc | ||
M+PPI | 86.06 ± 0.50 ab | 1.88 ± 0.07 fg | 20.27 ± 0.46 c–e | 27.88 ± 0.69 f |
Drying Technique | Drying Temperature | Carrier Type | Alkamide Content (mg/g powder db) | ||||||
---|---|---|---|---|---|---|---|---|---|
Alkamide 1 | Alkamide 2 | Alkamide 3 | Alkamide 4 | Alkamide 5 | Alkamide 6 | Sum of Alkamide | |||
FD | −60/25 °C | C | 0.25 ± 0.01 ab | 0.95 ± 0.01 a | 1.15 ± 0.02 a | 0.07 ± 0.01 a | 0.41 ± 0.01 a | 0.53 ± 0.01 a | 3.36 ± 0.05 a |
M | 0.19 ± 0.01 d–f | 0.71 ± 0.02 b-d | 0.84 ± 0.02 cd | 0.04 ± 0.01 bc | 0.28 ± 0.01 b-d | 0.37 ± 0.01 bc | 2.43 ± 0.05 cd | ||
PPI | 0.16 ± 0.01 f | 0.62 ± 0.02 d | 0.69 ± 0.03 e | 0.04 ± 0.01 c | 0.20 ± 0.01 d | 0.25 ± 0.02 de | 1.96 ± 0.07 f | ||
M+PPI | 0.18 ± 0.01 ef | 0.68 ± 0.04 b–d | 0.77 ± 0.05 c–e | 0.04 ± 0.01 bc | 0.24 ± 0.02 b–d | 0.31 ± 0.02 c–e | 2.22 ± 0.15 d–f | ||
SD | 150 °C | C | 0.28 ± 0.01 a | 0.94 ± 0.01 a | 1.04 ± 0.01 ab | 0.06 ± 0.01 ab | 0.29 ± 0.01 bc | 0.36 ± 0.01 bc | 2.97 ± 0.01 ab |
M | 0.19 ± 0.01 d–f | 0.63 ± 0.01 cd | 0.71 ± 0.02 de | 0.04 ± 0.01 c | 0.20 ± 0.01 cd | 0.24 ± 0.01 e | 2.01 ± 0.07 ef | ||
PPI | 0.21 ± 0.01 cd | 0.71 ± 0.03 b–d | 0.80 ± 0.04 c–e | 0.04 ± 0.01 bc | 0.22 ± 0.02 cd | 0.26 ± 0.02 de | 2.24 ± 0.13 d–f | ||
M+PPI | 0.25 ± 0.01 ab | 0.87 ± 0.02 a | 1.04 ± 0.05 ab | 0.06 ± 0.01 ab | 0.32 ± 0.03 b | 0.37 ± 0.02 bc | 2.90 ± 0.14 b | ||
170 °C | C | 0.26 ± 0.02 ab | 0.92 ± 0.05 a | 1.01 ± 0.05 b | 0.06 ± 0.01 ab | 0.27 ± 0.05 b–d | 0.44 ± 0.08 ac | 2.96 ± 0.15 b | |
M | 0.18 ± 0.01 d–f | 0.62 ± 0.01 d | 0.69 ± 0.01 e | 0.04 ± 0.01 c | 0.20 ± 0.01 d | 0.25 ± 0.01 de | 1.97 ± 0.02 f | ||
PPI | 0.19 ± 0.01 d–f | 0.73 ± 0.02 b | 0.83 ± 0.03 cd | 0.05 ± 0.01 bc | 0.24 ± 0.01 b–d | 0.30 ± 0.01 c–e | 2.34 ± 0.1 d–f | ||
M+PPI | 0.24 ± 0.01 bc | 0.87 ± 0.02 a | 0.99 ± 0.02 b | 0.05 ± 0.01 bc | 0.28 ± 0.01 b–d | 0.35 ± 0.01 b–d | 2.77 ± 0.03 bc | ||
190 °C | C | 0.19 ± 0.01 d–f | 0.69 ± 0.04 b–d | 0.71 ± 0.06 de | 0.04 ± 0.01 bc | 0.22 ± 0.05 cd | 0.29 ± 0.05 c–e | 2.13 ± 0.22 d–f | |
M | 0.18 ± 0.01 d–f | 0.65 ± 0.01 b–d | 0.71 ± 0.01 de | 0.04 ± 0.01 c | 0.22 ± 0.01 cd | 0.28 ± 0.01 c–e | 2.07 ± 0.01 d–f | ||
PPI | 0.18 ± 0.01 d–f | 0.67 ± 0.01 b–d | 0.75 ± 0.01 c–e | 0.04 ± 0.01 bc | 0.22 ± 0.01 cd | 0.29 ± 0.01 c–e | 2.15 ± 0.01 d–f | ||
M+PPI | 0.20 ± 0.01 de | 0.72 ± 0.01 bc | 0.85 ± 0.01 c | 0.04 ± 0.01 bc | 0.26 ± 0.01 b–d | 0.32 ± 0.01 c–e | 2.41 ± 0.01 c–e |
Drying Technique | Drying Temperature | Carrier Type | TPC | Antioxidant Capacity | FF | 5-HMF | Free Amino Groups | |
---|---|---|---|---|---|---|---|---|
TEAC ABTS | FRAP | |||||||
FD | −60/25 °C | C | 4.83 ± 0.54 a | 27.19 ± 1.23 a | 27.39 ± 0.53 a | <LOQ | <LOQ | 4.64 ± 0.01 cd |
M | 2.50 ± 0.21 bc | 18.88 ± 0.54 bc | 18.48 ± 0.77 b–e | <LOQ | <LOQ | 2.40 ± 0.26 gh | ||
PPI | 1.62 ± 0.16 d | 13.89 ± 0.82 e | 13.84 ± 0.27 h | <LOQ | <LOQ | 2.34 ± 0.11 h | ||
M+PPI | 2.18 ± 0.50 cd | 16.12 ± 0.93 de | 15.23 ± 0.69 gh | <LOQ | <LOQ | 2.22 ± 0.03 h | ||
SD | 150 °C | C | 4.83 ± 0.33 a | 28.91 ± 0.93 a | 28.19 ± 1.03 a | <LOQ | <LOQ | 6.34 ± 0.12 a |
M | 2.85 ± 0.08 bc | 19.41 ± 1.61 b | 19.44 ± 0.50 b–d | <LOQ | <LOQ | 3.58 ± 0.03 ef | ||
PPI | 2.37 ± 0.38 c | 15.35 ± 0.49 de | 15.40 ± 0.23 f–h | <LOQ | <LOQ | 4.77 ± 0.22 c | ||
M+PPI | 2.50 ± 0.15 bc | 17.97 ± 0.62 b–d | 17.61 ± 0.47 c–f | <LOQ | <LOQ | 3.08 ± 0.01 f | ||
170 °C | C | 4.72 ± 0.17 a | 29.49 ± 1.65 a | 28.61 ± 2.47 a | <LOQ | <LOQ | 5.53 ± 0.31 b | |
M | 3.11 ± 0.27 b | 19.63 ± 1.62 b | 19.70 ± 0.42 bc | <LOQ | <LOQ | 3.03 ± 0.04 fg | ||
PPI | 2.20 ± 0.14 cd | 16.32 ± 0.50 c–d | 16.40 ± 0.51 e–g | <LOQ | <LOQ | 4.07 ± 0.02 de | ||
M+PPI | 2.34 ± 0.15 c | 16.50 ± 1.12 c–d | 16.89 ± 0.54 e–g | <LOQ | <LOQ | 3.10 ± 0.34 f | ||
190 °C | C | 4.62 ± 0.11 a | 28.37 ± 1.13 a | 29.17 ± 1.29 a | <LOQ | <LOQ | 6.61 ± 0.01 a | |
M | 2.85 ± 0.20 bc | 19.56 ± 0.68 b | 20.07 ± 0.40 b | <LOQ | <LOQ | 4.33 ± 0.09 cd | ||
PPI | 2.19 ± 0.12 cd | 15.80 ± 0.65 de | 16.42 ± 0.17 e–g | <LOQ | <LOQ | 4.30 ± 0.08 cd | ||
M+PPI | 2.45 ± 0.11 bc | 17.10 ± 0.98 b–d | 17.40 ± 0.79 d–g | <LOQ | <LOQ | 3.66 ± 0.15 ef |
Carrier | Inlet Air Temperature [°C] | Outlet Air Temperature [°C] | Liquid Feed Rate [mL/min] | Gas Flow Rate [m3/h] |
---|---|---|---|---|
C | 150 | 87 ± 1 | 4 | 35 |
M | 85 ± 1 | 4 | 35 | |
PPI | 96 ± 1 | 4 | 35 | |
M+PPI | 97 ± 2 | 4 | 35 | |
C | 170 | 95 ± 1 | 4 | 35 |
M | 97 ± 1 | 4 | 35 | |
PPI | 97 ± 1 | 4 | 35 | |
M+PPI | 95 ± 1 | 4 | 35 | |
C | 190 | 97 ± 2 | 4 | 35 |
M | 96 ± 1 | 4 | 35 | |
PPI | 90 ± 1 | 4 | 35 | |
M+PPI | 94 ± 2 | 4 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kułaga, M.; Masztalerz, K.; Brzezowska, J.; Michalska-Ciechanowska, A. Influence of Freeze- and Spray Drying with Carrier Agents on Alkamides, Antioxidant Properties, and Process Contaminants in Echinacea purpurea Root Extract Powders. Molecules 2025, 30, 3864. https://doi.org/10.3390/molecules30193864
Kułaga M, Masztalerz K, Brzezowska J, Michalska-Ciechanowska A. Influence of Freeze- and Spray Drying with Carrier Agents on Alkamides, Antioxidant Properties, and Process Contaminants in Echinacea purpurea Root Extract Powders. Molecules. 2025; 30(19):3864. https://doi.org/10.3390/molecules30193864
Chicago/Turabian StyleKułaga, Mariusz, Klaudia Masztalerz, Jessica Brzezowska, and Anna Michalska-Ciechanowska. 2025. "Influence of Freeze- and Spray Drying with Carrier Agents on Alkamides, Antioxidant Properties, and Process Contaminants in Echinacea purpurea Root Extract Powders" Molecules 30, no. 19: 3864. https://doi.org/10.3390/molecules30193864
APA StyleKułaga, M., Masztalerz, K., Brzezowska, J., & Michalska-Ciechanowska, A. (2025). Influence of Freeze- and Spray Drying with Carrier Agents on Alkamides, Antioxidant Properties, and Process Contaminants in Echinacea purpurea Root Extract Powders. Molecules, 30(19), 3864. https://doi.org/10.3390/molecules30193864