Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hederagenin and its glycosides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1196 KB  
Review
Recent Progress in Health Benefits of Hederagenin and Its Glycosides
by Guangjie Zhang, Yining Feng, Li Huang, Chenxi Ren, Mingyuan Gao, Jie Zhang and Tianzhu Guan
Molecules 2025, 30(16), 3393; https://doi.org/10.3390/molecules30163393 - 15 Aug 2025
Viewed by 412
Abstract
Hederagenin, a pentacyclic triterpenoid saponin from various medicinal plants, shows immense therapeutic potential; however, its inherent low bioavailability severely hinders its clinical translation. This comprehensive review synthesizes recent studies on the health benefits of hederagenin and its glycosides, critically the chemical modification strategies [...] Read more.
Hederagenin, a pentacyclic triterpenoid saponin from various medicinal plants, shows immense therapeutic potential; however, its inherent low bioavailability severely hinders its clinical translation. This comprehensive review synthesizes recent studies on the health benefits of hederagenin and its glycosides, critically the chemical modification strategies and pharmacological mechanisms aimed at optimizing its bioactivity. Key findings reveal that its broad anticancer and anti-inflammatory activities largely stem from its capacity to modulate crucial cellular signaling pathways, including the NF-κB, PI3K/Akt, and MAPK. Structural modification, particularly intelligent derivatization at the C-28 position, is a central strategy to overcome its pharmacokinetic deficiencies and significantly boost cytotoxicity. Furthermore, its unique pro-oxidant function within cancer cells, achieved by inhibiting the Nrf2-ARE antioxidant pathway, offers a novel approach for selective chemotherapeutics. For the clinical translation of hederagenin, we propose a strategic focus on derivatization through multi-target hybrids and sophisticated delivery systems. This approach is essential for addressing its pharmacokinetic barriers while strategically leveraging its context-dependent pro-oxidant effects. Full article
Show Figures

Graphical abstract

13 pages, 1251 KB  
Article
A New Oleanane Type Saponin from the Aerial Parts of Nigella sativa with Anti-Oxidant and Anti-Diabetic Potential
by Amna Parveen, Muhammad Asim Farooq and Whang Wan Kyunn
Molecules 2020, 25(9), 2171; https://doi.org/10.3390/molecules25092171 - 6 May 2020
Cited by 40 | Viewed by 4597
Abstract
Natural product studies explore potential and interesting new compounds to discover innovative drugs. Nigella sativa (N. sativa) (Ranunculaceae) is traditionally used to treat diabetes. Flavonoids and triterpenoid mostly show anti-diabetic activity. The current study aim to identify new compounds by a systematic [...] Read more.
Natural product studies explore potential and interesting new compounds to discover innovative drugs. Nigella sativa (N. sativa) (Ranunculaceae) is traditionally used to treat diabetes. Flavonoids and triterpenoid mostly show anti-diabetic activity. The current study aim to identify new compounds by a systematic study of the anti-oxidant and anti-diabetic activity of aerial parts of N. sativa concerning. Phytochemicals were isolated from the methanolic extract of aerial parts of the plant by column chromatography and identified by nuclear magnetic resonance spectroscopy and mass spectroscopy. A new triterpenoid saponin glycoside was isolated along with flavonoids. The anti-diabetic study was carried out by DPPH, ABTS, α -glucosidase, and protein tyrosine phosphatase 1B assays at doses of 12.5 to 250 µM. The isolated phytochemicals were identified as 3-O-(β-d-xylopyranosyl-(1-3)-α-l-rhamnopyrnaosyl-(1-2)-α-l-arabinopyranosyl]-28-O-(α-l-rhamno-pyranosyl-(1-4)-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl] hederagenin (1), flaccidoside III (2), catechol (3), quercetin-3-gentiobiosides (4), magnoflorine (5), nigelflavonoside B (6), nigelloside (7), quercetin sphorotrioside (8), kaempferol-3, 7-diglucoside (9), kaempferol 3-O-rutinoside (10), rutin (11), 3-O-[α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranpsylhederagenin (12), 3β,23,28-trihydroxyolean-12-ene-3-O-α-l-arabinopyranoside(1→4)-a-rhamnopyranosyl,(1→4)-β-d-gluco-pyranoside (13), 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranpsyl]-28-O-β-d-gluco-pyranosyl hederagenin (14), and α-hederin (15). These were isolated and are reported for the first time in this study. Compared 13 was identified as a new compound. Compound 2 was isolated for first time from the genus Nigella. Compound 6 was found to be the most active in the DPPH, and ABTS assays and compound 10 was found to be the most active in the α-glucosidase assay, with IC50 32.7 ± 0.1, 95.18 ± 0.9, 214.5 ± 0.0 µΜ, respectively. Compound 12, at a dose of 125 µΜ, showed anti-diabetic activity in a PTP1B assay with IC50 91.30 ± 2.5 µΜ. In conclusion, the anti-diabetic activity of N. sativa is due to its flavonoids and TTSGs. Therefore, our studies suggest that the aerial parts of N. sativa are also a valuable and alternate source of valuable phytochemicals that could be used to develop anti-oxidant and anti-diabetic medicines. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 2486 KB  
Article
Effects of Flavonoids and Triterpene Analogues from Leaves of Eleutherococcus sieboldianus (Makino) Koidz. ‘Himeukogi’ in 3T3-L1 Preadipocytes
by Atsuyoshi Nishina, Masaya Itagaki, Yuusuke Suzuki, Mamoru Koketsu, Masayuki Ninomiya, Daisuke Sato, Takashi Suzuki, Satoshi Hayakawa, Makoto Kuroda and Hirokazu Kimura
Molecules 2017, 22(4), 671; https://doi.org/10.3390/molecules22040671 - 22 Apr 2017
Cited by 16 | Viewed by 5982
Abstract
Eleutherococcus sieboldianus (Makino) Koidz. is a local product from the area in and around Yonezawa City in Yamagata Prefecture, Japan. It has been used as a medicinal plant for a long time. We isolated and identified four types of flavonoid glycosides [astragalin ( [...] Read more.
Eleutherococcus sieboldianus (Makino) Koidz. is a local product from the area in and around Yonezawa City in Yamagata Prefecture, Japan. It has been used as a medicinal plant for a long time. We isolated and identified four types of flavonoid glycosides [astragalin (1), isoquercetin (2), rhamnocitrin 3-O-glucoside (3), and nicotiflorin (4)], a triterpene [methyl hederagenin (5)], and three types of triterpene glycosides [δ-hederin (6), echinocystic acid 3-O-arabinoside (7), and cauloside B (8)] from the methanol extract of E. sieboldianus, which regulates lipid accumulation in 3T3-L1 preadipocytes. Among the compounds isolated, 2 and 8 up- and down-regulated lipid accumulation and insulin induced adipocyte differentiation in 3T3-L1 preadipocytes. Compound 2 induced up-regulation of lipid accumulation and decreased adipocyte size, while 8 down-regulated lipid accumulations without decreasing cell size. Additionally, 2 increased adipogenic proteins [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and fatty-acid-binding protein 4 (FABP4)]. In contrast, 8 decreased the levels of all adipogenic proteins and glucose transporter type 4 (GLUT4), but increased adiponectin. Full article
Show Figures

Graphical abstract

8 pages, 149 KB  
Communication
A New Triterpene Hexaglycoside from the Bark of Kalopanax septemlobus (Thunb.) Koidz.
by Li-Shu Wang, Da-Qing Zhao, Tun-Hai Xu, Xue-Feng Zhou, Xian-Wen Yang and Yong-Hong Liu
Molecules 2009, 14(11), 4497-4504; https://doi.org/10.3390/molecules14114497 - 9 Nov 2009
Cited by 6 | Viewed by 11839
Abstract
The new triterpene glycoside 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosylhederagenin 28-O-β-D-gluco-pyranosyl-(1→6)-β-D-glucopyranoside, named septemoside A (1), and the known 3-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside-28-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin (2), were isolated from the bark of Kalopanax septemlobus. The structure elucidation of [...] Read more.
The new triterpene glycoside 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosylhederagenin 28-O-β-D-gluco-pyranosyl-(1→6)-β-D-glucopyranoside, named septemoside A (1), and the known 3-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside-28-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin (2), were isolated from the bark of Kalopanax septemlobus. The structure elucidation of the compounds was based on spectroscopic evidence, including HRESIMS, 1D and 2D-NMR analysis. Full article
Show Figures

Figure 1

Back to TopTop