A Short-Chain Fatty Acid, Butyrate, Suppresses the Hyperexcitability of Rat Nociceptive Primary Neurons Involved in Inflammatory Hyperalgesia
Abstract
1. Introduction
2. Results
2.1. CFA-Induced Orofacial Hyperalgesia
2.2. Attenuation of Mechanical Hyperalgesia by Chronic Butyrate Treatment
2.3. Reduction in Inflammatory Edema by Butyrate Treatment: Measurement of Whisker-Pad Thickness
2.4. Inflammation-Induced Alterations in Trigeminal Ganglion (TG) Neuronal Excitability
2.5. Chronic Butyrate Administration Attenuates Inflammation-Induced Hyperexcitability of TG Neurons
3. Discussion
3.1. Butyrate Administration Mitigates Trigeminal Inflammatory Hyperalgesia
3.2. Potential Mechanisms Underlying the Suppressive Effect of Butyrate on Trigeminal Neuronal Hyperexcitability Associated with Hyperalgesia
3.3. Functional Implications of Butyrate’s Attenuating Effect on Trigeminal Inflammatory Hyperalgesia
4. Materials and Methods
4.1. CFA-Induced Orofacial Inflammation and Butyrate Treatment Protocol
4.2. Evaluation of Mechanical Hyperalgesia via Escape Threshold Determination
4.3. Extracellular Single-Unit Recordings of TG Neuronal Activity
4.4. Electrophysiological Recording Protocol with Mechanical Stimulation of the Orofacial Region
4.5. Statistical Analysis of Behavioral and Electrophysiological Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCFAs | Short-chain fatty acids |
TG | Trigeminal ganglion |
CFA | Complete Freund’s Adjuvant |
SpVc | Trigeminal spinal nucleus caudalis |
WDR | Wide dynamic range |
CNS | Central nervous system |
GPR41 | G-protein-coupled receptor 41 |
Cav | Voltage-gated Ca channel |
Nav | Voltage-gated Na channel |
Kv | Voltage-gated KJ channel |
HDAC | Histone deacetylase |
Cox-2 | Cyclooxygenase-2 |
PGE2 | Prostaglandin E2 |
NSAID | Non-steroidal anti-inflammatory drugs |
TRPA1 | Transient receptor potential ankyrin 1 |
BDNF | Brain-derived neurotrophic factor |
References
- Sessle, B.J. Chronic orofacial pain: Models; mechanisms, and Genetic and related environmental influences. Int. J. Mol. Sci. 2021, 22, 7112. [Google Scholar] [CrossRef] [PubMed]
- Iwata, K.; Takeda, M.; Oh, S.; Shinoda, M. Neurophysiology of Orofacial Pain. In Contemporary Oral Medicine; Farah, C.S., Ed.; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Shinoda, M.; Suzuro, H.; Iwata, K.; Hayashi, Y. Plastic changes in nociceptive pathways contributing to persistent orofacial pain. J. Oral Biosci. 2022, 64, 263. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.; Woolf, C.J. Can we conquer pain? Nat. Neurosci. 2022, 5 (Suppl. S11), 1062–1067. [Google Scholar] [CrossRef]
- Millan, M.J. The induction of pain: An integrative review. Prog. Neurobiol. 1999, 57, 1–164. [Google Scholar]
- Iwata, K.; Tashiro, A.; Tsuboi, Y.; Imai, T.; Sumino, R.; Morimoto, T.; Dubner, R.; Ren, K. Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J. Neurophysiol. 1999, 82, 1244–1253. [Google Scholar] [CrossRef]
- Imbe, H.; Iwata, K.; Zhou, Q.-Q.; Zou, S.; Dubner, R.; Ren, K. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Cells Tissues Organs 2001, 169, 238–247. [Google Scholar] [CrossRef]
- Takeda, M.; Takahashi, M.; Kitagawa, J.; Kanazawa, T.; Nasu, M.; Mastumoto, S. Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masetter muscle inflammation. Mol. Pain 2013, 9, 49. [Google Scholar] [CrossRef]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef]
- Nøhr, M.K.; Egerod, K.L.; Christiansen, S.H.; Gille, A.; Offermanns, S.; Schwartz, T.W.; Møler, M. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 2015, 290, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.J.; Lu, V.B.; Puhl, H.L., 3rd; Ikeda, S.R. β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J. Neurosci. 2013, 33, 19314–19325. [Google Scholar] [CrossRef] [PubMed]
- Sashide, Y.; Takeda, M. Gut Microbiota-Derived Short-chain Fatty Acid Suppresses the Excitability of Rat Nociceptive Secondary Neurons via G-protein-coupled receptor 41 Signaling. Mol. Pain 2025, 21, 17448069251320233. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Han, B.; Tang, X.; Liu, R.; Ji, Q.; Zhiu, Z.; Zhang, L. Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and polarization. Mol. Pain 2021, 17, 1744806921996520. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, S.; Shu, H.; Crawford, J.; Xing, Y.; Tao, F. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota. Brain Behav. Immun. 2020, 87, 455–464. [Google Scholar] [CrossRef]
- Davie, J.R. Inhibition of histone deacetylase activity by butyrate activity. J. Nutr. 2003, 133, 2485–2493. [Google Scholar] [CrossRef]
- Luhrs, H.; Gerke, T.; Muller, J.G.; Melcher, R.; Schauber, J.; Boxberge, F.; Scheppach, W.; Merzel, T. Butyrate inhibits NF-kappa B activation in lamina propria macrophage of patients with ulcerative colitis. Scand. J. Gastroenterol. 2002, 37, 456–458. [Google Scholar] [CrossRef]
- Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312–11319. [Google Scholar] [CrossRef]
- Russo, R.; De Carto, C.; Avagliano, C.; Cristiano, C.; La Rana, G.; Raso, G.M.; Canani, R.B.; Meli, R.; Calignano, A. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice. Pharmacol. Res. 2016, 103, 279–291. [Google Scholar] [CrossRef]
- Kukkar, A.; Sigh, N.; Jaggi, A.S. Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats. J. Formos. Med. Assoc. 2014, 113, 921–928. [Google Scholar] [CrossRef]
- Murakami, N.; Yoshikawa, K.; Tsukada, K.; Kamino, N.; Hayashi, Y.; Hitomi, S.; Kimura, Y.; Shibuta, I.; Osada, A.; Sato, S.; et al. Butyric acid modulates periodontal nociception in Porphyromonas gingivalis-induced periodontitis. J. Oral Sci. 2022, 64, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Sashide, Y.; Toyota, R.; Takeda, M. Local administration of the phytochemical, quercetin, attenuates the hyperexcitability of rat nociceptive primary sensory neurons following inflammation comparable to lidocaine. J. Pain 2024, 25, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Takahashi, M.; Matsumoto, S. Contribution of activated interleukin receptors in trigeminal ganglion neurons to hyperalgesia via satellite glia interleukin-1β paracrine mechanism. Brain Behav. Immun. 2008, 22, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.D. Local Anesthetics. In Basic and Clinical Pharmacology; Katzung, B.G., Ed.; Lange Medical Books; McGraw-Hill: New York, NY, USA, 1996; pp. 425–433. [Google Scholar]
- Syoji, Y.; Kobayashi, R.; Miyamura, N.; Hirohara, T.; Kubota, Y.; Uotsu, N.; Yui, K.; Shimazu, Y.; Takeda, M. Suppression of hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia following systemic administration of lutein via inhibition of cyclooxygenase-2 cascade signaling. J. Inflamm. 2018, 15, 24. [Google Scholar] [CrossRef]
- Currcio, A.; Sasso, O.; Melist, D.; Nieddu, M.; La Rana, G.; Russo, R.; Gavini, E.; Boatto, G.; Abignente, E.; Calignano, A.; et al. Galactosyl prodrug of Ketorolac: Synthesis, stability, and pharmacological and pharmacokinetic evaluations. J. Med. Chem. 2009, 52, 3794–3800. [Google Scholar] [CrossRef]
- Harriot, A.M.; Gold, M.S. Contribution of primary afferent channels to neuropathic pain. Curr. Pain Headache Rep. 2009, 13, 197–207. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.H.; Xing, C.; Liu, T. Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. Br. J. Anaesth. 2019, 123, 637–654. [Google Scholar] [CrossRef]
- Takeda, M.; Takehana, S.; Shimazu, Y. Modulatory mechanism of nociceptive neuronal activity by dietary constituents’ resveratrol. Int. J. Mol. Sci. 2016, 17, 1702. [Google Scholar] [CrossRef]
- Jaccus, M.O.; Ubele, V.N.; Renger, J.J.; Todorovic, S.M. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J. Neurosci. 2012, 32, 9374–9382. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Jevtovic-Todorovic, V. Regulation of T-type calcium channels in the peripheral pain pathway. Channels 2007, 1, 238–245. [Google Scholar] [CrossRef]
- Gambeta, E.; Chichorro, J.G.; Zamponi, G.W. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol. Pain 2020, 16, 1744806920901890. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, V.M.; Caballero, A.G.; Berger, N.D.; Gladding, C.M.; Chen, L.; Pfeifer, T.A.; Zamponi, G.W. Small organic molecule disruptors of Cav3.2-USP5 interactions reverse inflammatory and neuropathic pain. Mol. Pain 2015, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Gambeta, E.; Gandini, M.A.; Souza, I.A.; Zamponi, G.W. Cav3.2 calcium channels contribute to trigeminal neuralgia. Pain 2022, 163, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, L.S.; Wallace, M.S. Acute pain mechanisms. Surg. Clin. N. Am. 1999, 79, 213–229. [Google Scholar] [CrossRef]
- Roch, M.; Messlinger, K.; Kulchitsky, V.; Tichonovich, O.; Azev, O.; Koulchitsky, S. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery. Neuroscience 2007, 150, 681–691. [Google Scholar] [CrossRef]
- Diener, M.; Scharrer, E. The effect of short-chain fatty acids on Cl- and K+ conductance in rat colonic crypts. Pflugers Arch. 1994, 426, 472–480. [Google Scholar] [CrossRef]
- Diener, M.; Scharrer, E. Effects of short-chain fatty acids on cell volume regulation and chloride transport in the rat distal colon. Comp. Biochem. Physiol. A Physiol. 1997, 118, 375–379. [Google Scholar] [CrossRef]
- LaCroix-Fralish, M.L.; Ledoux, J.B.; Mogil, J.S. The Pain Genes Database: An interactive web browser of pain-related transgenic knockout studies. Pain 2007, 131, 3e1–3e4. [Google Scholar] [CrossRef]
- Geranton, S.M.; Morenilla-Palao, C.; Hunt, S.P. A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J. Neurosci. 2007, 27, 6163–6173. [Google Scholar] [CrossRef]
- Griffin, R.S.; Costigan, M.; Brenner, G.J.; Ma, C.H.; Scholz, J.; Moss, A.; Allchorne, A.J.; Stahl, G.L.; Woolf, C.J. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 2007, 27, 8699–8708. [Google Scholar] [CrossRef]
- Cousens, L.S.; Gallwitz, D.; Alberts, B.M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 1979, 254, 1716–1723. [Google Scholar] [CrossRef] [PubMed]
- Khan, O.; Fotheringham, S.; Wood, V.; Stimson, L.; Zhang, C.; Pezzella, F.; Duvic, M.; Kerr, D.J.; La Thangue, N.B. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc. Natl. Acad. Sci. USA 2010, 107, 6532–6537. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Wei, D.; Zou, S.; Ren, K.; Dubner, R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol. Pain 2010, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. (Eds.) The Rat Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: New York, NY, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sashide, Y.; Utugi, S.; Takeda, M. A Short-Chain Fatty Acid, Butyrate, Suppresses the Hyperexcitability of Rat Nociceptive Primary Neurons Involved in Inflammatory Hyperalgesia. Molecules 2025, 30, 2407. https://doi.org/10.3390/molecules30112407
Sashide Y, Utugi S, Takeda M. A Short-Chain Fatty Acid, Butyrate, Suppresses the Hyperexcitability of Rat Nociceptive Primary Neurons Involved in Inflammatory Hyperalgesia. Molecules. 2025; 30(11):2407. https://doi.org/10.3390/molecules30112407
Chicago/Turabian StyleSashide, Yukito, Syogo Utugi, and Mamoru Takeda. 2025. "A Short-Chain Fatty Acid, Butyrate, Suppresses the Hyperexcitability of Rat Nociceptive Primary Neurons Involved in Inflammatory Hyperalgesia" Molecules 30, no. 11: 2407. https://doi.org/10.3390/molecules30112407
APA StyleSashide, Y., Utugi, S., & Takeda, M. (2025). A Short-Chain Fatty Acid, Butyrate, Suppresses the Hyperexcitability of Rat Nociceptive Primary Neurons Involved in Inflammatory Hyperalgesia. Molecules, 30(11), 2407. https://doi.org/10.3390/molecules30112407