Optimization and Validation of a QuEChERS-Based Method Combined with Gas Chromatography–Tandem Mass Spectrometry for Analyzing Pesticide Residues in Edible Insect Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Sample Extraction Procedure
2.2. Optimization of MRM Condition for GC–MS/MS Analysis
2.3. Method Validations
2.3.1. Linearity, Selectivity, Limit of Detection, and Limit of Quantification
2.3.2. Precision and Accuracy
2.3.3. Matrix Effect
Matrix | Instrument | No. Analysis | RSD (%) | Recovery (%) | LOQ (µg/kg) | Linearity (r2) | Matrix Effect (ME %) | Reference |
---|---|---|---|---|---|---|---|---|
Mealworms | LC-MS/MS | 353 | 5–15 | 75–115 | 5 | >0.995 | −20 to +25 | [19] |
Mealworms | GC-MS/MS, LC-MS/MS | 300 | 5–12 | 80–115 | 5 | >0.993 | −15 to +20 | [17] |
Edible insects | GC-MS/MS, LC-MS/MS | - | 5–20 | 75–120 | 5 | >0.990 | −18 to +22 | [7] |
Edible insects (6 species) | LC-MS/MS | 374 | 6–15 | 75–110 | 5 | >0.995 | −15 to +25 | [6] |
Mealworm larvae | GC-MS/MS | 247 | 0–19.9 | 70–120 | 50 | ≥0.990 | Not specified | [31] |
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Selection
3.3. Sample Extraction
3.4. GC-MS/MS Instrument Conditions
3.5. Method Validation
3.5.1. Linearity and Sensitivity
3.5.2. Precision and Accuracy
3.5.3. Matrix Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Puwastien, P.; Attig, G. Edible insects in Thailand: An unconventional protein source? Ecol. Food Nutr. Ecol. Food Nutr. 1997, 36, 133–149. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Klunder, H.; Wolkers-Rooijackers, J.C.M.; Korpela, J.; Nout, M.J. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Hoang, H. Consumer acceptability of alternative foods: A study of processed cricket-based foods in Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2023, 1155, 012025. [Google Scholar] [CrossRef]
- Labu, S.; Subramanian, S.; Cheseto, X.; Akite, P.; Kasangaki, P.; Chemurot, M.; Tanga, C.M.; Salifu, D.; Egonyu, J.P. Agrochemical Contaminants in Six Species of Edible Insects from Uganda and Kenya. Curr. Res. Insect Sci. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Kolakowski, B.M.; Johaniuk, K.; Zhang, H.; Yamamoto, E. Analysis of Microbiological and Chemical Hazards in Edible Insects Available to Canadian Consumers. J. Food Prot. 2021, 84, 1575–1581. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Kim, H.W.; Choi, Y.S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef]
- Lee, J.; Kim, L.; Shin, Y.; Lee, J.; Lee, J.; Kim, E.; Moon, J.K.; Kim, J.H. Rapid and Simultaneous Analysis of 360 Pesticides in Brown Rice, Spinach, Orange, and Potato Using Microbore GC-MS/MS. J. Agric. Food Chem. 2017, 65, 3387–3395. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2019, 86, 412–431. [Google Scholar] [CrossRef]
- Polgár, L.; Kmellár, B.; Garcia-Reyes, J.F.; Fodor, P. Comprehensive Evaluation of the Clean-up Step in the QuEChERS Procedure for the Multi-Residue Determination of Pesticides in Different Vegetable Oils Using LC-MS/MS. Anal. Methods 2012, 4, 1142–1148. [Google Scholar] [CrossRef]
- Hou, R.; Jiao, W.; Xiao, Y.; Guo, J.; Lv, Y.; Tan, H.; Hu, J.; Wan, X. Novel use of PVPP in a modified QuEChERS extraction method for UPLC-MS/MS analysis of neonicotinoid insecticides in tea matrices. Anal. Methods 2015, 7, 5521–5529. [Google Scholar] [CrossRef]
- Li, J.; Dong, F.; Xu, J.; Liu, X.; Li, Y.; Shan, W.; Zheng, Y. Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modified QuEChERS (quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry. Anal. Chim. Acta 2011, 702, 127–135. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Qin, D.; Jiang, S.; Liu, F. Application of Graphitized Carbon Black to the QuEChERS Method for Pesticide Multiresidue Analysis in Spinach. J. AOAC Int. 2009, 92, 538–547. [Google Scholar] [CrossRef]
- Rajski, Ł.; Lozano, A.; Uclés, A.; Ferrer, C.; Fernández-Alba, A.R. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2013, 1304, 109–120. [Google Scholar] [CrossRef]
- Hou, X.; Han, M.; Dai, X.; Yang, X.; Yi, S. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography–tandem mass spectrometry. Food Chem. 2013, 138, 1198–1205. [Google Scholar] [CrossRef]
- Kim, L.; Baek, S.; Son, K.; Kim, E.; Noh, H.H.; Kim, D.; Oh, M.-s.; Moon, B.-c.; Ro, J.-H. Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS. Molecules 2020, 25, 3518. [Google Scholar] [CrossRef]
- Lehotay, S.; Mastovska, K.; Lightfield, A. Use of Buffering Other Means to Improve Results of Problematic Pesticides in a Fast Easy Method for Residue Analysis of Fruits Vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, C.; Baek, S.; Kim, L.; Son, K.-A.; Lee, H.-D.; Kim, D.; Kim, J.-H.; Noh, H. Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Analysis of 353 Pesticides in the Edible Insect Tenebrio molitor Larvae (Mealworms). Molecules 2020, 25, 5866. [Google Scholar] [CrossRef]
- Lehotay, S. QuEChERS Sample Preparation Approach for Mass Spectrometric Analysis of Pesticide Residues in Foods. Methods Mol. Biol. 2011, 747, 65–91. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Chang, Q.; Hu, X.; Kang, J.; Fan, C. Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry. Chromatographia 2017, 80, 1447–1458. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, X.; Wei, H.; Liu, D.; Xia, G.; Yang, X. Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. Food Anal. Methods 2016, 9, 2133–2141. [Google Scholar] [CrossRef]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Env. Sci. Pollut. Res. Int. 2017, 24, 7124–7138. [Google Scholar] [CrossRef]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/11312/2021). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 17 April 2025).
- Marchi, I.; Viette, V.; Badoud, F.; Fathi, M.; Saugy, M.; Rudaz, S.; Veuthey, J.-L. Characterization and classification of matrix effects in biological samples analyses. J. Chromatogr. A 2010, 1217, 4071–4078. [Google Scholar] [CrossRef]
- EN 15662:2018; Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—QuEChERS-Method. CEN: Brussels, Belgium, 2018. Available online: https://www.en-standard.eu/bs-en-15662-2018-foods-of-plant-origin-multimethod-for-the-determination-of-pesticide-residues-using-gc-and-lc-based-analysis-following-acetonitrile-extraction-partitioning-and-clean-up-by-dispersive-spe-modular-quechers-method/ (accessed on 17 April 2025).
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass. Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef]
- Chawla, S.; Patel, H.; Gor, N.; Vaghela, K.; Solanki, P.; Shah, P. Evaluation of Matrix Effects in Multiresidue Analysis of Pesticide Residues in Vegetables and Spices by LC-MS/MS. J. AOAC Int. 2017, 100, 616–623. [Google Scholar] [CrossRef]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A.R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Mauer, L.; Forny, L.; Meunier, V.; Taylor, L. Optimizing the Quality of Food Powder Products: The Challenges of Moisture-Mediated Phase Transformations. Annu. Rev. Food Sci. Technol. 2019, 10, 457–478. [Google Scholar] [CrossRef]
- Noh, H.H.; Kim, C.J.; Kim, S.-H.; Eun, H.-R.; Shin, Y.; Jeong, W.T. GC–MS/MS–based multiresidue pesticide analysis in mealworm (Tenebrio molitor) larvae: Optimization of standard QuEChERS-based method to minimize matrix effects. Food Chem. X 2025, 27, 102386. [Google Scholar] [CrossRef]
No. | Pesticides | Groups | RT (min) | Precursor > Product Ion (CE, eV) | Dwell | |
---|---|---|---|---|---|---|
Quantifier Ion | Qualifier Ion | |||||
1 | Methamidophos | OP | 4.581 | 141 > 95 (5 eV) | 141> 80 (20 eV) | 10 |
2 | Dichlorvos | OP | 4.610 | 184.9 > 93 (10 eV) | 144.9 > 109 (10 eV) | 10 |
3 | Mevinphos | OP | 5.557 | 127 > 10 (10 eV) | 192> 126 (10 eV) | 10 |
4 | Acephate | OP | 5.663 | 136 > 94 (15 eV) | 78.9 > 47 (10 eV) | 10 |
5 | Omethoate | OP | 6.850 | 110 > 79 (15 eV) | 156 > 79 (25 eV) | 10 |
6 | Fenobucarb | CB | 6.769 | 121 > 77 (20 eV) | 149.9 > 121.1 (5 eV) | 10 |
7 | Monocrotophos | OP | 7.380 | 127.1 > 109 (10 eV) | 127.1 > 95 (15 eV) | 10 |
8 | Dimethoate | OP | 7.806 | 87 > 46 (20 eV) | 125 > 47 (15 eV) | 10 |
9 | Carbofuran | CB | 7.781 | 164.2 > 149.1 (10 eV) | 149.1 > 121.1 (5 eV) | 10 |
10 | Atrazine | Herbicide | 7.847 | 214.9 > 58.1 (10 eV) | 200 > 122.1 (5 eV) | 10 |
11 | BHC-beta | OC | 7.991 | 216.9 > 181.1 (5 eV) | 218.9 > 183.1 (5 eV) | 10 |
12 | Diazinon | OP | 8.239 | 137.1 > 84 (10 eV) | 199.1 > 93 (15 eV) | 10 |
13 | Pirimicarb | CB | 8.685 | 238 > 166.2 (10 eV) | 166 > 55.1 (20 eV) | 10 |
14 | Parathion-methyl | OP | 9.091 | 262.9 > 109 (10 eV) | 125 > 47 (10 eV) | 10 |
15 | Fenitrothion | OP | 9.094 | 125.1 > 47 (15 eV) | 277 > 109 (5 eV) | 10 |
16 | Pirimiphos-methyl | OP | 9.096 | 232.9 > 151 (5 eV) | 232.9 > 125 (5 eV) | 10 |
17 | Carbaryl | CM | 9.250 | 144.1 > 116.1 (15 eV) | 144.1 > 89 (45 eV) | 10 |
18 | Heptachlor | OC | 9.279 | 271.7 > 236.9 (15 eV) | 273.7 > 238.9 (15 eV) | 10 |
19 | Malathion | OP | 9.672 | 126.9 > 99 (5 eV) | 172.9 > 99 (15 eV) | 10 |
20 | Aldrin | OC | 9.880 | 262.9 > 192.9 (35 eV) | 263 > 228 (20 eV) | 10 |
21 | Chlorpyrifos | OP | 9.904 | 196.9 > 169 (15 eV) | 198.9 > 171 (15 eV) | 10 |
22 | Methidathion | OP | 10.952 | 144.9 > 85 (5 eV) | 144.9 > 58.1 (15 eV) | 10 |
23 | DDE-o,p′ | OC | 11.024 | 246 > 176.2 (30 eV) | 248 > 176.2 (30 eV) | 10 |
24 | Endosulfan | OC | 11.197 | 158.9 > 89 (35 eV) | 194.9 > 124.9 (30 eV) | 10 |
25 | Prothiofos | OP | 11.447 | 113 > 94.9 (10 eV) | 266.9 > 239 (5 eV) | 10 |
26 | Profenofos | OP | 11.500 | 207.9 > 63 (30 eV) | 338.8 > 268.7 (15 eV) | 10 |
27 | DDE-p,p′ | OC | 11.569 | 246.1 > 176.2 (30 eV) | 246 > 211 (15 eV) | 10 |
28 | DDT-o,p′ | OC | 12.382 | 235 > 165.2 (20 eV) | 235 > 199.1 (15 eV) | 10 |
29 | Ethion | OP | 12.382 | 231 > 129 (10 eV) | 231 > 175 (5 eV) | 10 |
30 | Triazophos | OP | 12.609 | 161.2 > 134.2 (5 eV) | 161.2 > 91 (15 eV) | 10 |
31 | Triphenyphosphate | OP | 13.315 | 214.9 > 168.1 (15 eV) | 232.9 > 215.1 (10 eV) | 10 |
32 | Carbosulfan | CM | 13.778 | 118 > 76 (5 eV) | 164 > 103.1 (25 eV) | 10 |
33 | EPN | OP | 13.897 | 169 > 141.1 (5 eV) | 169 > 77.1 (25 eV) | 10 |
34 | Phosmet | OP | 13.959 | 160 > 77.1 (20 eV) | 160 > 133.1 (10 eV) | 10 |
35 | Amitraz | Acaricide/Insecticide | 14.714 | 132.1 > 117.1 (15 eV) | 162 > 132.2 (5 eV) | 10 |
36 | Azinphos-methyl | OP | 14.610 | 160 > 77 (20 eV) | 132.1 > 77 (15 eV) | 10 |
37 | Cyhalothrin (Lambda) | PY | 14.834 | 208.1 > 181.1 (10 eV) | 181.1 > 152.1 (30 eV) | 10 |
38 | Fenpropathrin | PY | 14.834 | 181.1 > 152.1 (25 eV) | 181 > 127 (5 eV) | 10 |
39 | Azinphos-ethyl | OP | 15.238 | 132 > 77.1 (15 eV) | 160 > 77.1 (20 eV) | 10 |
40 | Permethrin | PY | 15.688 | 183.1 > 168.1 (10 eV) | 183.1 > 153.1 (15 eV) | 10 |
41 | Coumaphos | PY | 15.844 | 210 > 182 (10 eV) | 361.9 > 109 (15 eV) | 10 |
42 | Cyfluthrin I | PY | 16.172 | 162.9 > 90.9 (15 eV) | 226 > 206 (5 eV) | 10 |
43 | Cyfluthrin II | PY | 16.253 | 162.9 > 90.9 (15 eV) | 162.9 > 127 (5 eV) | 10 |
44 | Cyfluthrin III | PY | 16.254 | 162.9 > 90.9 (15 eV) | 162.9 > 127 (5 eV) | 10 |
45 | Cyfluthrin IV | PY | 16.367 | 162.9 > 90.9 (15 eV) | 162.9 > 127 (5 eV) | 10 |
46 | Cypermethrin I | PY | 16.454 | 163 > 91 (10 eV) | 226 > 206 (5 eV) | 10 |
47 | Cypermethrin II | PY | 16.543 | 163.1 > 127.1 (5 eV) | 163.1 > 91 (15 eV) | 10 |
48 | Cypermethrin III | PY | 16.628 | 163.1 > 127.1 (5 eV) | 163.1 > 91 (15 eV) | 10 |
49 | Cypermethrin IV | PY | 16.651 | 163.1 > 127.1 (5 eV) | 163.1 > 91 (15 eV) | 10 |
50 | Fenvalerate | PY | 17.561 | 167 > 125.1 (5 eV) | 208.9 > 141.1 (15 eV) | 10 |
51 | Fluvalinate-tau | PY | 17.558 | 250 > 55 (40 eV) | 181 > 152 (40 eV) | 10 |
52 | Esfenvalerate | PY | 17.560 | 167 > 125.1 (10 eV) | 181 > 152.1 (25 eV) | 10 |
53 | Deltamethrin | PY | 18.082 | 252.9 > 93 (15 eV) | 181 > 152.1 (25 eV) | 10 |
No. | Pesticides | Calibration Levels (µg/kg) | % Deviation of BBC | ||||||
---|---|---|---|---|---|---|---|---|---|
5 µg/kg | 10 µg/kg | 25 µg/kg | 50 µg/kg | 100 µg/kg | 250 µg/kg | 500 µg/kg | |||
1 | Methamidophos | 5–500 | 15.00 | 5.90 | 2.12 | −15.87 | −13.28 | 4.23 | −0.45 |
2 | Dichlorvos | 5–500 | 7.60 | 11.11 | −1.91 | −3.21 | −3.61 | −4.44 | 1.26 |
3 | Acephate | 5–500 | −13.20 | 16.59 | −5.28 | 5.86 | −0.79 | −12.56 | 0.49 |
4 | Mevinphos | 5–500 | 4.00 | 2.30 | −6.80 | −2.06 | −6.15 | −2.95 | −3.15 |
5 | Fenobucarb | 5–500 | 8.60 | 1.65 | 11.90 | −8.64 | −3.81 | 2.94 | 1.44 |
6 | Omethoate | 5–500 | 10.80 | 12.00 | −14.03 | −11.17 | −5.59 | −1.67 | 0.47 |
7 | Monocrotophos | 5–500 | 5.40 | 10.88 | −13.48 | −3.93 | −8.83 | 4.23 | 0.50 |
8 | Dicrotofos | 5–500 | −14.60 | 18.62 | −13.35 | 4.09 | −8.22 | −4.05 | 0.51 |
9 | Carbofuran | 5–500 | 14.91 | −8.25 | −0.65 | 8.79 | 8.27 | −1.18 | −0.09 |
10 | Dimethoate | 5–500 | 8.60 | −5.59 | −22.40 | −1.31 | 2.02 | −1.13 | 0.40 |
11 | Atrazine | 5–500 | −2.27 | 17.08 | 4.72 | −4.64 | −2.36 | 1.03 | −0.14 |
12 | BHC-beta | 5–500 | −15.20 | −26.36 | 9.23 | −9.91 | −15.13 | −1.19 | 0.93 |
13 | Diazinon | 5–500 | 3.20 | −15.44 | −8.74 | −1.99 | 4.02 | 4.06 | −1.12 |
14 | Pirimicarb | 5–500 | 14.14 | −4.21 | −6.57 | −2.36 | 2.40 | 3.50 | −0.92 |
15 | Parathion-methyl | 5–500 | 4.07 | −6.45 | −10.91 | 2.94 | 1.70 | 5.34 | 0.34 |
16 | Fenitrothion | 5–500 | 4.40 | −9.73 | −18.16 | −11.32 | 4.45 | 5.69 | 0.31 |
17 | Pirimiphos-methyl | 5–500 | −1.20 | −9.95 | 9.16 | −10.72 | 9.20 | −4.14 | 0.42 |
18 | Carbaryl | 5–500 | 13.60 | −15.57 | −13.24 | −12.33 | −5.16 | −0.59 | 0.50 |
19 | Heptachlor | 5–500 | −13.00 | −16.18 | 1.72 | −4.09 | −7.12 | −0.28 | 2.34 |
20 | Malathion | 5–500 | −11.20 | 0.69 | −8.04 | −11.93 | −6.05 | −1.79 | 0.29 |
21 | Aldrin | 5–500 | 5.00 | 1.35 | −11.80 | −1.96 | 6.12 | 6.94 | −1.91 |
22 | Chlorpyrifos | 5–500 | 9.48 | 11.20 | 1.05 | −7.10 | −6.10 | 0.28 | 0.22 |
23 | Methidathion | 5–500 | 4.40 | 16.46 | −13.08 | −4.76 | 7.63 | −1.86 | 0.41 |
24 | DDE-o,p′ | 5–500 | 2.40 | 6.28 | −11.70 | 0.48 | 8.06 | 6.38 | −1.86 |
25 | Endosulfan | 5–500 | 15.60 | 3.30 | 7.55 | 16.86 | 18.97 | 14.97 | −0.86 |
26 | Prothiofos | 5–500 | 0.60 | 17.41 | 4.05 | −10.45 | −6.54 | −0.09 | 0.35 |
27 | Profenofos | 5–500 | −0.40 | 13.88 | 11.71 | −16.18 | 4.99 | −15.45 | 1.06 |
28 | DDE-p,p′ | 5–500 | −17.80 | −9.33 | −13.26 | −0.98 | 5.47 | 6.24 | −1.71 |
29 | DDT-o,p′ | 5–500 | −17.80 | −19.65 | 18.98 | 0.70 | −16.90 | −5.07 | 1.84 |
30 | Ethion | 5–500 | 15.20 | 19.46 | 18.70 | −13.01 | −0.40 | −6.08 | 2.34 |
31 | Triazophos | 5–500 | 12.22 | −19.42 | −9.26 | −0.41 | −7.67 | −5.62 | 0.37 |
32 | Cabosulfan | 5–500 | 2.21 | −6.79 | 15.80 | −11.43 | −2.20 | −17.52 | 0.91 |
33 | EPN | 5–500 | −11.44 | 3.45 | −14.72 | −11.45 | −1.77 | −7.85 | 2.81 |
34 | Phosmet | 5–500 | −20.90 | 12.31 | 11.61 | 5.14 | −5.51 | 7.81 | 0.47 |
35 | Amitraz | 5–500 | 15.93 | 1.58 | 1.09 | −4.15 | −6.42 | −0.08 | 0.29 |
36 | Azinphos-methyl | 5–500 | −2.00 | 19.70 | −16.77 | −7.35 | −14.98 | −2.13 | −2.76 |
37 | Cyhalothrin (Lambda) | 5–500 | 4.22 | 1.87 | 18.73 | −10.88 | −16.34 | −5.26 | 1.97 |
38 | Fenpropatrin | 5–500 | −12.39 | −0.15 | 17.54 | −10.73 | −17.61 | −3.45 | 1.57 |
39 | Azinphos-ethyl | 5–500 | 1.39 | −12.96 | −0.72 | −9.53 | −3.62 | 0.66 | 0.43 |
40 | Permethrin | 5–500 | −11.92 | 10.89 | −0.34 | −5.97 | −4.53 | 2.37 | −0.36 |
41 | Coumaphos | 5–500 | 7.29 | 6.81 | −12.20 | 5.00 | 3.23 | −1.04 | 0.50 |
42 | Cyfluthrin | 5–500 | −13.02 | 0.17 | 5.09 | −6.12 | −17.69 | −0.59 | 0.69 |
43 | Cypermethrin | 5–500 | −6.64 | 5.29 | 3.66 | −3.77 | 3.16 | −6.58 | 1.64 |
44 | Fenvalerate | 5–500 | 2.93 | 1.41 | 8.03 | −14.12 | 3.37 | −6.92 | 1.81 |
45 | Esfenvalerate | 5–500 | 12.69 | 5.08 | −3.55 | −15.66 | −14.34 | −5.73 | 2.05 |
46 | Fluvalinate-tau | 5–500 | 2.55 | 14.84 | 4.57 | −11.90 | 0.08 | 3.79 | −0.67 |
47 | Deltamethrin | 5–500 | −14.03 | 5.22 | −6.69 | −17.73 | −11.12 | −1.41 | 0.87 |
No. | Pesticides | Linearity (r2) | Limit of Detection Limit (LOD) | Limit of Quantification (LOQ) | Low (10 μg/kg) Spike Level | Medium (100 μg/kg) Spike Level | High (500 μg/kg) Spike Level | ME % | |||
---|---|---|---|---|---|---|---|---|---|---|---|
μg/kg | μg/kg | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | ||||
1 | Methamidophos | 0.9979 | 1 | 10 | 86.72 | 3.77 | 122.12 | 1.96 | 99.55 | 2.81 | 6.13 |
2 | Dichlorvos | 0.9989 | 1 | 10 | 96.39 | 2.71 | 98.09 | 2.15 | 101.26 | 2.24 | −1.60 |
3 | Acephate | 0.9939 | 2 | 10 | 64.54 | 4.77 | 94.72 | 3.32 | 100.49 | 3.40 | 14.33 |
4 | Mevinphos | 0.9948 | 1 | 10 | 100.37 | 2.57 | 87.57 | 2.39 | 98.53 | 2.23 | −15.40 |
5 | Fenobucarb | 0.9986 | 2 | 10 | 96.19 | 2.63 | 111.90 | 2.08 | 101.44 | 2.25 | −33.00 |
6 | Omethoate | 0.9936 | 3 | 15 | 88.50 | 4.42 | 85.97 | 3.72 | 100.47 | 2.99 | 24.24 |
7 | Monocrotophos | 0.9938 | 2 | 10 | 80.12 | 3.85 | 86.52 | 4.62 | 100.5 | 2.98 | −9.59 |
8 | Dicrotofos | 0.9934 | 5 | 10 | 87.40 | 2.50 | 86.65 | 3.14 | 100.51 | 3.04 | 3.13 |
9 | Carbofuran | 0.9993 | 1 | 10 | 108.27 | 3.82 | 99.35 | 2.61 | 99.91 | 2.38 | −11.80 |
10 | Dimethoate | 0.9958 | 1 | 10 | 70.38 | 4.33 | 82.73 | 2.48 | 100.4 | 2.39 | −2.18 |
11 | Atrazine | 0.9999 | 1 | 10 | 97.64 | 3.18 | 104.72 | 1.86 | 99.86 | 2.29 | −13.40 |
12 | BHC-beta | 0.9979 | 1 | 10 | 84.87 | 2.38 | 109.23 | 2.06 | 100.93 | 2.24 | −4.21 |
13 | Diazinon | 0.9991 | 2 | 10 | 104.02 | 2.47 | 91.26 | 1.90 | 98.88 | 2.16 | 9.90 |
14 | Pirimicarb | 0.9994 | 1 | 10 | 102.40 | 2.88 | 93.43 | 2.28 | 99.08 | 2.22 | 0.22 |
15 | Parathion-methyl | 0.9970 | 1 | 10 | 86.40 | 2.57 | 89.09 | 2.32 | 100.34 | 2.89 | −17.40 |
16 | Fenitrothion | 0.9975 | 3 | 10 | 85.00 | 3.23 | 81.84 | 2.43 | 100.31 | 3.07 | 6.06 |
17 | Pirimiphos-methyl | 0.9953 | 1 | 10 | 79.40 | 4.52 | 109.16 | 3.18 | 100.42 | 2.74 | −10.08 |
18 | Carbaryl | 0.9969 | 1 | 10 | 94.84 | 2.83 | 86.76 | 2.03 | 100.5 | 2.13 | 8.68 |
19 | Heptachlor | 0.9961 | 1 | 10 | 92.88 | 4.49 | 101.72 | 4.64 | 102.34 | 3.10 | 4.74 |
20 | Malathion | 0.9978 | 1 | 10 | 100.00 | 2.45 | 91.96 | 2.12 | 100.29 | 2.25 | 4.63 |
21 | Aldrin | 0.9975 | 3 | 10 | 106.12 | 4.16 | 88.20 | 2.04 | 98.09 | 2.14 | −3.57 |
22 | Chlorpyrifos | 0.9996 | 3 | 10 | 93.90 | 2.69 | 101.05 | 1.96 | 100.22 | 2.21 | −5.01 |
23 | Methidathion | 0.9957 | 1 | 10 | 72.25 | 2.54 | 86.92 | 2.37 | 100.41 | 2.36 | −4.82 |
24 | DDE-o,p′ | 0.9975 | 1 | 10 | 108.06 | 3.11 | 88.30 | 1.94 | 98.14 | 2.19 | 6.32 |
25 | Endosulfan | 0.9957 | 3 | 10 | 118.97 | 5.14 | 107.55 | 3.48 | 99.14 | 4.95 | 23.70 |
26 | Prothiofos | 0.9994 | 5 | 10 | 93.46 | 2.33 | 104.05 | 1.94 | 100.35 | 2.17 | −33.01 |
27 | Profenofos | 0.9944 | 5 | 10 | 74.99 | 2.89 | 111.71 | 2.28 | 101.06 | 2.31 | 1.02 |
28 | DDE-p,p′ | 0.9980 | 1 | 10 | 105.47 | 2.72 | 86.74 | 2.04 | 98.29 | 2.29 | −1.30 |
29 | DDT-o,p′ | 0.9967 | 1 | 10 | 83.10 | 2.61 | 118.98 | 1.97 | 101.84 | 2.14 | 2.16 |
30 | Ethion | 0.9941 | 1 | 10 | 79.60 | 2.33 | 118.70 | 2.07 | 102.34 | 2.11 | 10.49 |
31 | Triazophos | 0.9967 | 2 | 10 | 83.45 | 2.49 | 90.74 | 2.40 | 100.37 | 2.32 | 3.07 |
32 | Cabosulfan | 0.9959 | 3 | 10 | 77.80 | 2.36 | 115.80 | 2.37 | 100.91 | 2.48 | −2.53 |
33 | EPN | 0.9926 | 1 | 10 | 78.23 | 3.52 | 98.62 | 3.74 | 102.81 | 4.02 | 3.45 |
34 | Phosmet | 0.9968 | 3 | 10 | 64.54 | 2.88 | 111.61 | 2.43 | 100.47 | 2.38 | −5.33 |
35 | Amitraz | 0.9996 | 1 | 10 | 93.58 | 2.45 | 101.09 | 1.95 | 100.29 | 2.17 | 5.85 |
36 | Azinphos-methyl | 0.9909 | 3 | 10 | 85.02 | 2.83 | 83.23 | 2.41 | 97.24 | 2.71 | 19.98 |
37 | Cyhalothrin (Lambda) | 0.9960 | 3 | 10 | 83.66 | 2.67 | 118.73 | 1.82 | 101.97 | 2.14 | −0.88 |
38 | Fenpropatrin | 0.9966 | 3 | 10 | 82.39 | 2.62 | 117.54 | 2.03 | 101.57 | 2.21 | 3.62 |
39 | Azinphos-ethyl | 0.9954 | 1 | 10 | 80.30 | 2.82 | 99.28 | 2.43 | 100.43 | 2.39 | 9.48 |
40 | Permethrin | 0.9996 | 5 | 10 | 95.47 | 2.87 | 99.66 | 2.21 | 99.64 | 2.06 | 14.19 |
41 | Coumaphos | 0.9940 | 1 | 10 | 89.40 | 2.53 | 87.80 | 2.50 | 100.5 | 2.25 | −20.58 |
42 | Cyfluthrin | 0.9961 | 2 | 10 | 92.01 | 3.61 | 106.86 | 2.97 | 101.56 | 6.02 | −0.40 |
43 | Cypermethrin | 0.9976 | 2 | 10 | 84.20 | 4.08 | 109.24 | 2.62 | 101.17 | 2.45 | 15.64 |
44 | Fenvalerate | 0.9967 | 1 | 10 | 77.04 | 2.63 | 109.37 | 1.91 | 101.76 | 2.25 | −16.40 |
45 | Esfenvalerate | 0.9959 | 2 | 10 | 85.66 | 2.54 | 120.45 | 1.97 | 102.05 | 2.33 | 3.56 |
46 | Fluvalinate-tau | 0.9982 | 3 | 10 | 100.08 | 2.71 | 104.57 | 1.86 | 99.33 | 2.38 | −3.01 |
47 | Deltamethrin | 0.9982 | 5 | 10 | 88.88 | 2.52 | 98.63 | 2.11 | 100.87 | 3.84 | 0.48 |
Parameter | Condition | ||
---|---|---|---|
Inlet | MMI Injection mode Spitless | ||
Carrier gas | Helium | ||
Inlet flow | 1 mL/min | ||
Inlet temperature | 280 °C | ||
Injection volume | 1 µL | ||
MS transfer line temperature | 280 °C | ||
Oven program | Ramp | Temp | Hold |
Time | |||
60 °C | 1 min | 40 °C/min | |
170 °C | 0 min | 10 °C/min | |
310 °C | 3 min | ||
Total Run Time | 20.75 min |
Parameter | Condition |
---|---|
Mode | Electron impact |
Transfer line temperature | 280 °C |
Source temperature | 280 °C |
Quadrupole temperature | Q1 and Q2 = 150 °C |
MS1 resolution | Wind |
MS2 resolution | Wind |
Collision gas flow | Nitrogen at 1.5 mL/min |
Quenching gas flow | Helium at 2.25 mL/min |
Detector Gain | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tongchai, P.; Sawarng, N.; Wongta, A.; Jaitham, U.; Sutan, K.; Kawichai, S.; Jung, C.; Chuttong, B.; Hongsibsong, S. Optimization and Validation of a QuEChERS-Based Method Combined with Gas Chromatography–Tandem Mass Spectrometry for Analyzing Pesticide Residues in Edible Insect Samples. Molecules 2025, 30, 2293. https://doi.org/10.3390/molecules30112293
Tongchai P, Sawarng N, Wongta A, Jaitham U, Sutan K, Kawichai S, Jung C, Chuttong B, Hongsibsong S. Optimization and Validation of a QuEChERS-Based Method Combined with Gas Chromatography–Tandem Mass Spectrometry for Analyzing Pesticide Residues in Edible Insect Samples. Molecules. 2025; 30(11):2293. https://doi.org/10.3390/molecules30112293
Chicago/Turabian StyleTongchai, Phannika, Nootchakarn Sawarng, Anurak Wongta, Udomsap Jaitham, Kunrunya Sutan, Saweang Kawichai, Chuleui Jung, Bajaree Chuttong, and Surat Hongsibsong. 2025. "Optimization and Validation of a QuEChERS-Based Method Combined with Gas Chromatography–Tandem Mass Spectrometry for Analyzing Pesticide Residues in Edible Insect Samples" Molecules 30, no. 11: 2293. https://doi.org/10.3390/molecules30112293
APA StyleTongchai, P., Sawarng, N., Wongta, A., Jaitham, U., Sutan, K., Kawichai, S., Jung, C., Chuttong, B., & Hongsibsong, S. (2025). Optimization and Validation of a QuEChERS-Based Method Combined with Gas Chromatography–Tandem Mass Spectrometry for Analyzing Pesticide Residues in Edible Insect Samples. Molecules, 30(11), 2293. https://doi.org/10.3390/molecules30112293