Identification of the Cytotoxic Transglutaminase from Mycobacterium spp. That Is Involved in RIPK1 Activation
Abstract
:1. Introduction
2. Results
2.1. MmTG Inhibits Cell Proliferation
2.2. Infection Assay of M. smegmatis
2.3. Cys159 Is Essential for Function
2.4. MmTG Is Loaded in the PVC for the Direct Killing of Murine Macrophages
2.5. TGases Are Widely Distributed and Induce the Phosphorylation of RIPK1
3. Discussion
4. Materials and Methods
4.1. Bacterial and Cell Culture
4.1.1. Bacterial Culture
4.1.2. Cell Culture
4.2. Plasmid Construction and DNA Manipulation
4.3. Western Blot Analysis
4.4. PVC Purification
4.5. Cell Transfection
4.6. Cell Viability Assay
4.7. In Vitro Infection with Recombinant M. smegmatis
4.8. Bioinformatics and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goletti, D.; Meintjes, G.; Andrade, B.B.; Zumla, A.; Lee, S.S. Insights from the 2024 Who Global Tuberculosis Report—More Comprehensive Action, Innovation, and Investments Required for Achieving Who End Tb Goals. Int. J. Infect. Dis. 2025, 150, 107325. [Google Scholar] [CrossRef]
- Nieto Ramirez, L.M.; Mehaffy, C.; Dobos, K.M. Systematic Review of Innate Immune Responses against Mycobacterium tuberculosis Complex Infection in Animal Models. Front. Immunol. 2024, 15, 1467016. [Google Scholar] [CrossRef] [PubMed]
- Helaine, S.; Conlon, B.P.; Davis, K.M.; Russell, D.G. Host Stress Drives Tolerance and Persistence: The Bane of Anti-Microbial Therapeutics. Cell Host Microbe 2024, 32, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Liebenberg, D.; Gordhan, B.G.; Kana, B.D. Drug Resistant Tuberculosis: Implications for Transmission, Diagnosis, and Disease Management. Front. Cell Infect. Microbiol. 2022, 12, 943545. [Google Scholar] [CrossRef] [PubMed]
- Cappelluti, M.A.; Poeta, V.M.; Valsoni, S.; Quarato, P.; Merlin, S.; Merelli, I.; Lombardo, A. Durable and Efficient Gene Silencing in Vivo by Hit-and-Run Epigenome Editing. Nature 2024, 627, 416–423. [Google Scholar] [CrossRef]
- Esteban, J.; Munoz-Egea, M.C. Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex. Microbiol. Spectr. 2016, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- van Soolingen, D.; van der Zanden, A.G.; de Haas, P.E.; Noordhoek, G.T.; Kiers, A.; Foudraine, N.A.; Portaels, F.; Kolk, A.H.; Kremer, K.; van Embden, J.D. Diagnosis of Mycobacterium microti Infections among Humans by Using Novel Genetic Markers. J. Clin. Microbiol. 1998, 36, 1840–1845. [Google Scholar] [CrossRef]
- Peterhans, S.; Landolt, P.; Friedel, U.; Oberhansli, F.; Dennler, M.; Willi, B.; Senn, M.; Hinden, S.; Kull, K.; Kipar, A.; et al. Mycobacterium microti: Not Just a Coincidental Pathogen for Cats. Front. Vet. Sci. 2020, 7, 590037. [Google Scholar] [CrossRef]
- Pym, A.S.; Brodin, P.; Brosch, R.; Huerre, M.; Cole, S.T. Loss of Rd1 Contributed to the Attenuation of the Live Tuberculosis Vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 2002, 46, 709–717. [Google Scholar] [CrossRef]
- Cavanagh, R.; Begon, M.; Bennett, M.; Ergon, T.; Graham, I.M.; De Haas, P.E.; Hart, C.A.; Koedam, M.; Kremer, K.; Lambin, X.; et al. Mycobacterium microti Infection (Vole Tuberculosis) in Wild Rodent Populations. J. Clin. Microbiol. 2002, 40, 3281–3285. [Google Scholar] [CrossRef]
- Anami, Y.; Tsuchikama, K. Transglutaminase-Mediated Conjugations. Methods Mol. Biol. 2020, 2078, 71–82. [Google Scholar]
- Kieliszek, M.; Misiewicz, A. Microbial Transglutaminase and Its Application in the Food Industry. A Review. Folia Microbiol. 2014, 59, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.K.; Clarke, D.D.; Waelsch, H. An Enzymically Catalyzed Incorporation of Amines into Proteins. Biochim. Biophys. Acta 1957, 25, 451–452. [Google Scholar] [CrossRef]
- Lerner, A.; Benzvi, C.; Vojdani, A. The Frequently Used Industrial Food Process Additive, Microbial Transglutaminase: Boon or Bane. Nutr. Rev. 2025, 83, e1286–e1294. [Google Scholar] [CrossRef]
- Jiang, F.; Li, N.; Wang, X.; Cheng, J.; Huang, Y.; Yang, Y.; Yang, J.; Cai, B.; Wang, Y.P.; Jin, Q.; et al. Cryo-Em Structure and Assembly of an Extracellular Contractile Injection System. Cell 2019, 177, 370–383.e315. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, J.; Jiang, F.; Jin, Q. The Photorhabdus Virulence Cassettes RRSP-Like Effector Interacts with Cyclin-Dependent Kinase 1 and Causes Mitotic Defects in Mammalian Cells. Front. Microbiol. 2020, 11, 366. [Google Scholar] [CrossRef]
- Huard, R.C.; Lazzarini, L.C.; Butler, W.R.; van Soolingen, D.; Ho, J.L. Pcr-Based Method to Differentiate the Subspecies of the Mycobacterium tuberculosis Complex on the Basis of Genomic Deletions. J. Clin. Microbiol. 2003, 41, 1637–1650. [Google Scholar] [CrossRef]
- Chakaya, J.; Khan, M.; Ntoumi, F.; Aklillu, E.; Fatima, R.; Mwaba, P.; Kapata, N.; Mfinanga, S.; Hasnain, S.E.; Katoto, P.; et al. Global Tuberculosis Report 2020—Reflections on the Global Tb Burden, Treatment and Prevention Efforts. Int. J. Infect. Dis. 2021, 113 (Suppl. S1), S7–S12. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; Rentenaar, R.J.; van Pelt, R.; de Lange, W.; Schreurs, W.; van Soolingen, D.; Sturm, P.D. Two Cases of Mycobacterium microti-Induced Culture-Negative Tuberculosis. J. Clin. Microbiol. 2009, 47, 3038–3040. [Google Scholar] [CrossRef]
- van de Weg, C.A.M.; de Steenwinkel, J.E.M.; Miedema, J.R.; Bakker, M.; van Ingen, J.; Hoefsloot, W. The Tough Process of Unmasking the Slow-Growing Mycobacterium: Case Report of Mycobacterium microti Infection. Access Microbiol. 2020, 2, acmi000074. [Google Scholar] [CrossRef]
- Foudraine, N.A.; van Soolingen, D.; Noordhoek, G.T.; Reiss, P. Pulmonary Tuberculosis Due to Mycobacterium microti in a Human Immunodeficiency Virus-Infected Patient. Clin. Infect. Dis. 1998, 27, 1543–1544. [Google Scholar] [CrossRef] [PubMed]
- Niemann, S.; Richter, E.; Dalugge-Tamm, H.; Schlesinger, H.; Graupner, D.; Konigstein, B.; Gurath, G.; Greinert, U.; Rusch-Gerdes, S. Two Cases of Mycobacterium microti Derived Tuberculosis in HIV-Negative Immunocompetent Patients. Emerg. Infect. Dis. 2000, 6, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Michelet, L.; Richomme, C.; Reveillaud, E.; De Cruz, K.; Moyen, J.L.; Boschiroli, M.L. Mycobacterium microti Infection in Red Foxes in France. Microorganisms 2021, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Nikolayevskyy, V.; Kranzer, K.; Niemann, S.; Drobniewski, F. Whole Genome Sequencing of Mycobacterium tuberculosis for Detection of Recent Transmission and Tracing Outbreaks: A Systematic Review. Tuberculosis 2016, 98, 77–85. [Google Scholar] [CrossRef]
- Perez de Val, B.; Sanz, A.; Soler, M.; Allepuz, A.; Michelet, L.; Boschiroli, M.L.; Vidal, E. Mycobacterium microti Infection in Free-Ranging Wild Boar, Spain, 2017–2019. Emerg. Infect. Dis. 2019, 25, 2152–2154. [Google Scholar] [CrossRef]
- Smith, N.H.; Crawshaw, T.; Parry, J.; Birtles, R.J. Mycobacterium microti: More Diverse Than Previously Thought. J. Clin. Microbiol. 2009, 47, 2551–2559. [Google Scholar] [CrossRef]
- Orgeur, M.; Frigui, W.; Pawlik, A.; Clark, S.; Williams, A.; Ates, L.S.; Ma, L.; Bouchier, C.; Parkhill, J.; Brodin, P.; et al. Pathogenomic Analyses of Mycobacterium microti, an Esx-1-Deleted Member of the Mycobacterium tuberculosis Complex Causing Disease in Various Hosts. Microb. Genom. 2021, 7, 505. [Google Scholar] [CrossRef]
- Moens, C.; Bogaerts, B.; Lorente-Leal, V.; Vanneste, K.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; Mostin, L.; Fretin, D.; Marche, S. Genomic Comparison between Mycobacterium bovis and Mycobacterium microti and in Silico Analysis of Peptide-Based Biomarkers for Serodiagnosis. Front. Vet. Sci. 2024, 11, 1446930. [Google Scholar] [CrossRef]
- Russell, D.G.; Simwela, N.V.; Mattila, J.T.; Flynn, J.; Mwandumba, H.C.; Pisu, D. How Macrophage Heterogeneity Affects Tuberculosis Disease and Therapy. Nat. Rev. Immunol. 2025, 25, 370–384. [Google Scholar] [CrossRef]
- Chen, C.; Lin, H.; Karanes, C.; Pettit, G.R.; Chen, B.D. Human Thp-1 Monocytic Leukemic Cells Induced to Undergo Monocytic Differentiation by Bryostatin 1 Are Refractory to Proteasome Inhibitor-Induced Apoptosis. Cancer Res. 2000, 60, 4377–4385. [Google Scholar]
- Ren, Y.; You, X.; Zhu, R.; Li, D.; Wang, C.; He, Z.; Hu, Y.; Li, Y.; Liu, X.; Li, Y. Mutation of Pseudomonas Aeruginosa Lasi/Rhli Diminishes Its Cytotoxicity, Oxidative Stress, Inflammation, and Apoptosis on Thp-1 Macrophages. Microbiol. Spectr. 2024, 12, e0414623. [Google Scholar] [CrossRef]
- Zhu, H.; Dinsdale, D.; Alnemri, E.S.; Cohen, G.M. Apoptosis in Human Monocytic Thp.1 Cells Involves Several Distinct Targets of N-Tosyl-L-Phenylalanyl Chloromethyl Ketone (Tpck). Cell Death Differ. 1997, 4, 590–599. [Google Scholar] [CrossRef]
- Green, E.R.; Mecsas, J.J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Shen, J.; Cheng, J.; Wang, X.; Yang, J.; Li, N.; Gao, N.; Jin, Q. N-Terminal Signal Peptides Facilitate the Engineering of Pvc Complex as a Potent Protein Delivery System. Sci. Adv. 2022, 8, eabm2343. [Google Scholar] [CrossRef] [PubMed]
- Pasternack, R.; Dorsch, S.; Otterbach, J.T.; Robenek, I.R.; Wolf, S.; Fuchsbauer, H.L. Bacterial Pro-Transglutaminase from Streptoverticillium Mobaraense–Purification, Characterisation and Sequence of the Zymogen. Eur. J. Biochem. 1998, 257, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Degterev, A.; Ofengeim, D.; Yuan, J. Targeting Ripk1 for the Treatment of Human Diseases. Proc. Natl. Acad. Sci. USA 2019, 116, 9714–9722. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Feng, X.; Wang, X.; Jin, Q.; Jiang, F. Purification of Photorhabdus Virulence Cassette (Pvc) Protein Complexes from Escherichia Coli for Artificial Translocation of Heterologous Cargo Proteins. Bio Protoc. 2024, 14, e4966. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, Y.; Feng, X.; Wang, Y.; Li, S.-S.; Yan, M.-Y.; Sun, Y.-C.; Jin, Q.; Jiang, F. Identification of the Cytotoxic Transglutaminase from Mycobacterium spp. That Is Involved in RIPK1 Activation. Molecules 2025, 30, 2251. https://doi.org/10.3390/molecules30102251
Zhang X, Zhang Y, Feng X, Wang Y, Li S-S, Yan M-Y, Sun Y-C, Jin Q, Jiang F. Identification of the Cytotoxic Transglutaminase from Mycobacterium spp. That Is Involved in RIPK1 Activation. Molecules. 2025; 30(10):2251. https://doi.org/10.3390/molecules30102251
Chicago/Turabian StyleZhang, Xinting, Yikai Zhang, Xiao Feng, Yueying Wang, Si-Shang Li, Mei-Yi Yan, Yi-Cheng Sun, Qi Jin, and Feng Jiang. 2025. "Identification of the Cytotoxic Transglutaminase from Mycobacterium spp. That Is Involved in RIPK1 Activation" Molecules 30, no. 10: 2251. https://doi.org/10.3390/molecules30102251
APA StyleZhang, X., Zhang, Y., Feng, X., Wang, Y., Li, S.-S., Yan, M.-Y., Sun, Y.-C., Jin, Q., & Jiang, F. (2025). Identification of the Cytotoxic Transglutaminase from Mycobacterium spp. That Is Involved in RIPK1 Activation. Molecules, 30(10), 2251. https://doi.org/10.3390/molecules30102251