D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Characterization
2.2. Optical and Electrochemical Properties
2.3. Photocatalytic Hydrogen Production Performance
3. Materials and Methods
3.1. Methods
3.2. Synthesis of bis(2-thiophene)ketone, Py-BKh0, Py-BKh1, Py-BKh2, and Py-BKh3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 2018, 92, 33–63. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Liu, S.; Li, Y.; Fan, J.; Lv, K. Effects of fluorine on photocatalysis. Chin. J. Catal. 2020, 41, 1451–1467. [Google Scholar] [CrossRef]
- Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly (p-phenylene)-catalysed photoreduction of water to hydrogen. Chem. Commun. 1985, 8, 474–475. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Cheng, R.; Wang, M.; Li, M.; Zhou, Y.; Shi, J. Construction of graphitic C3N4-based intramolecular donor–acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal. 2015, 5, 5008–5015. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. Donor-acceptor-based conjugated polymers for photocatalytic energy conversion. EnergyChem. 2024, 6, 100116. [Google Scholar] [CrossRef]
- Qiao, S.; Di, M.; Jiang, J.-X.; Han, B.-H. Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular structure to advanced applications. EnergyChem. 2022, 4, 100094. [Google Scholar] [CrossRef]
- Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52. [Google Scholar] [CrossRef]
- Zhang, G.; Lan, Z.A.; Wang, X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 15712–15727. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.; Zhang, K.A. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations. Mater. Horiz. 2020, 7, 15–31. [Google Scholar] [CrossRef]
- Yang, C.; Ma, B.C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K.A.; Wang, X. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew. Chem. Int. Ed. 2016, 55, 9202–9206. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.-X. Effect of linking pattern of dibenzothiophene-S, S-dioxide-containing conjugated microporous polymers on the photocatalytic performance. Macromolecules 2018, 51, 9502–9508. [Google Scholar] [CrossRef]
- Tan, Z.R.; Xing, Y.Q.; Cheng, J.Z.; Zhang, G.; Shen, Z.Q.; Zhang, Y.J.; Liao, G.; Chen, L.; Liu, S.Y. EDOT-based conjugated polymers accessed via C-H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci. 2022, 13, 1725–1733. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; Zhang, X.; Tang, H.; Liu, X.; Huang, F.; Cao, Y. Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution. iScience 2019, 13, 33–42. [Google Scholar] [CrossRef]
- Woods, D.J.; Hillman, S.A.J.; Pearce, D.; Wilbraham, L.; Flagg, L.Q.; Duffy, W.; McCulloch, I.; Durrant, J.R.; Guilbert, A.A.Y.; Zwijnenburg, M.A.; et al. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environ. Sci. 2020, 13, 1843–1855. [Google Scholar] [CrossRef]
- Cho, S.; Seo, J.H.; Kim, S.H.; Song, S.; Jin, Y.; Lee, K.; Suh, H.; Heeger, A.J. Effect of substituted side chain on donor-acceptor conjugated copolymers. Appl. Phys. Lett. 2008, 93, 263301. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, W. Organic donor-acceptor systems for photocatalysis. Adv. Sci. 2024, 11, 2307227. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Mondal, S.; Ghosh, A.; Banerjee, S.; Das, A.K.; Bhaumik, A. Rational design of highly porous donor–acceptor based conjugated microporous polymer for photocatalytic benzylamine coupling reaction. Small 2024, 20, 2406723. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, X.; Xu, X.; Zhang, C.; He, X. Donor-acceptor type triazine-based conjugated porous polymer for visible-light-driven photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 257, 117935. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H.; Chen, Z.; Zou, W.; Zhao, C.; Yang, X. Regulating donor-acceptor interactions in triazine-based conjugated polymers for boosted photocatalytic hydrogen production. Appl. Catal. B Environ. 2022, 312, 121374. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, X.; Shao, C.; Hu, Y.; Huang, W.; Li, Y. Atomistic structural engineering of conjugated microporous polymers promotes photocatalytic biomass valorization. Adv. Funct. Mater. 2023, 33, 2304604. [Google Scholar] [CrossRef]
- Yang, C.; Xiang, Y.; Wang, W.; Cheng, B.; Yang, K.; Yu, J.; Cao, S. Enhancing photocatalytic H2O2 production of donor− acceptor polymers by modulation of polymerization modes. Appl. Catal. B Environ. 2025, 365, 124856. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, W.; Wang, H.; He, Q.; Zhou, Y.; Yang, P.; Li, Y.; Li, Y. Metal-free photocatalytic hydrogenation using covalent triazine polymers. Angew. Chem. Int. Ed. 2020, 59, 14378–14382. [Google Scholar] [CrossRef]
- Hayat, A.; Rahman, M.U.; Khan, I.; Khan, J.; Sohail, M.; Yasmeen, H.; Liu, S.Y.; Qi, K.; Lv, W. Conjugated electron donor-acceptor hybrid polymeric carbon nitride as a photocatalyst for CO2 reduction. Molecules 2019, 24, 1779. [Google Scholar] [CrossRef]
- Ye, D.; Liu, L.; Zhang, Y.; Qiu, J.; Tan, Z.; Xing, Y.; Liu, S. Tunable donor-acceptor linear conjugated polymers involving cyanostyrylthiophene linkages for visible-light-driven hydrogen production. Molecules 2023, 28, 2203. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Long, X.; Jin, X.; Zhu, Y.; Duan, S.; Zhao, J. Triazine and fused thiophene-based donor-acceptor type semiconducting conjugated polymer for enhanced visible-light-induced H2 production. Molecules 2024, 29, 2807. [Google Scholar] [CrossRef]
- Szuromi, P. Tuning band gaps with three halides. Science 2020, 367, 1086–1088. [Google Scholar]
- Niu, W.; Ma, J.; Feng, X. Precise structural regulation and band-gap engineering of curved graphene nanoribbons. Acc. Chem. Res. 2022, 55, 3322–3333. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, W.; Ke, X.; Cai, X.; Chen, X.; Wang, S.; Lin, W.; Wang, X. A heptazine-based polymer photocatalyst with donor-acceptor configuration to promote exciton dissociation and charge separation. Appl. Catal. B Environ. 2023, 325, 122312. [Google Scholar] [CrossRef]
- Xu, Y.; Mao, N.; Zhang, C.; Wang, X.; Zeng, J.; Chen, Y.; Wang, F.; Jiang, J.-X. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 228, 1–9. [Google Scholar] [CrossRef]
- Shu, C.; Han, C.; Yang, X.; Zhang, C.; Chen, Y.; Ren, S.; Wang, F.; Huang, F.; Jiang, J.X. Boosting the photocatalytic hydrogen evolution activity for D–π–A conjugated microporous polymers by statistical copolymerization. Adv. Mater. 2021, 33, 2008498. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Shen, Z.-Q.; Cheng, J.-Z.; Liu, L.-L.; Yang, K.; Chen, X.; Wen, H.-R.; Liu, S.-Y. C–H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. J. Mater. Chem. A 2019, 7, 24222–24230. [Google Scholar] [CrossRef]
- Gong, H.; Li, J.; Xie, Z.-H.; Lang, C.; Liu, S.-Y. Accessing poly (DA-ran-Dπ) ternary copolymers via direct C–H arylation for ultrahigh photocatalytic hydrogen production. Macromolecules 2024, 57, 7208–7218. [Google Scholar] [CrossRef]
- Lang, C.; Gong, H.; Ye, G.; Murugan, P.; Xie, Z.-H.; Dai, Y.-F.; Yang, K.; Yu, C.; Liu, S.-Y. D1-D2-Aternary conjugated microporous polymers synthesized via direct CH arylation for enhancing photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 688, 818–829. [Google Scholar] [CrossRef]
- Wu, K.; Liu, X.-Y.; Xie, M.; Cheng, P.-W.; Zheng, J.; Lu, W.; Li, D. Rational design of D−π−A−π−D porous organic polymer with polarized π for photocatalytic aerobic oxidation. Appl. Catal. B Environ. 2023, 334, 122847. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, Z.; Wang, S.; Wang, J.; Xu, Z.; Song, F.; Dong, Z.; Zhang, Z. Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI). Appl. Catal. B Environ. 2022, 301, 120819. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, C.; Zhao, D.; Wang, Z.; Mao, D. Adsorption behavior of a ternary covalent organic polymer anchored with SO3H for ciprofloxacin. Molecules 2023, 28, 6941. [Google Scholar] [CrossRef]
- Sprick, R.S.; Jiang, J.X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Niu, Y.; Razzaque, S.; Tan, B.; Jin, S. Design of D–A1–A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438–9445. [Google Scholar] [CrossRef]
- Wu, Y.; He, X.-Y.; Huang, X.-M.; Yang, L.-J.; Liu, P.; Chen, N.; Li, C.-Z.; Liu, S.-Y. Synthesis of Long Chain Oligomeric Donor and Acceptors via Direct Arylation for Organic Solar Cells. Chin. J. Chem. 2024, 42, 523–532. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Chen, N.; Liu, S.-Y. Stepwise Extended π−Conjugation Lengths of Chlorinated Oligomeric Non-fullerene Acceptors Accessed via Direct C−H Arylation. Acta Polym. Sin. 2023, 54, 1122–1130. [Google Scholar]
- Xie, Z.H.; Ye, G.; Gong, H.; Pachaiyappan, M.; Lang, C.; Dai, Y.F.; Liu, S.Y. Ultrahigh photocatalytic hydrogen evolution of linear conjugated terpolymer enabled by an ultra-low ratio of benzothiadiazole monomer. Chem. Sci. 2025. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Ding, C.; Xu, J. Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT. Chem. Eng. J. 2021, 419, 129543. [Google Scholar] [CrossRef]
- Biswal, B.P.; Vignolo-González, H.A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B.V. Sustained solar H2 evolution from a thiazolo, [.5.; 4-d] thiazole-bridged covalent organic framework nickel-thiolate cluster in water. J. Am. Chem. Soc. 2019, 141, 11082–11092. [Google Scholar] [CrossRef]
- Xu, J.; Yang, C.; Bi, S.; Wang, W.; He, Y.; Wu, D.; Liang, Q.; Wang, X.; Zhang, F. Vinylene-linked covalent organic frameworks (COFs) with symmetry-tuned polarity and photocatalytic activity. Angew. Chem. 2020, 132, 24053–24061. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, L.; Cong, M.; Liu, X.; Zhang, Z.; Bahri, M.; Li, B.; Yang, J.; Yu, M.; Liu, L.; et al. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat. Commun. 2024, 15, 6482. [Google Scholar] [CrossRef]
- Li, L.; Cai, Z.; Wu, Q.; Lo, W.Y.; Zhang, N.; Chen, L.X.; Yu, L. Rational design of porous conjugated polymers roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 7681–7686. [Google Scholar] [CrossRef]
- Cervo, R.; Brandl, C.A.; Bortolotto, T.; Cechin, C.N.; Daudt, N.D.F.; Iglesias, B.A.; Lang, E.S.; Tirloni, B.; Cargnelutti, R. Structural Analysis of Selenium Coordination Compounds and Mesoporous TiO2-Based Photocatalysts for Hydrogen Generation. Inorg. Chem. 2025, 64, 7902–7919. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wu, Y.; Yu, C.; Wang, Z.; Jin, C.; Li, Z.; Yin, S. Impact of the Donor–Acceptor Structure on Photocatalytic Hydrogen Generation by Polyfluorene Polymer Dots. ACS Appl. Polym. Mater. 2025, 7, 3399–3408. [Google Scholar] [CrossRef]
- Gao, T.; Liu, X.; Wang, K.; Wang, J.; Wu, X.; Wang, G. Sponge-like inorganic–organic S-scheme heterojunction for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 692, 137475. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, L.; Sheng, Y.; Song, L.; Zhou, H.; Jian, J.; Huang, T.; Liu, B.; Li, X. Defects enriched carbon nitride sponge with high surface area for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 688, 59–66. [Google Scholar] [CrossRef]
- Yang, S.; Liu, W.; Zhang, Y.; Jia, X.; Sun, J.; Zhang, C.; Liu, M. Apost-modified donor–acceptor covalent organic framework for enhanced photocatalytic H2 production high proton transport. J. Mater. Chem. A 2024, 12, 28161–28169. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, X.; Zhang, C.; Yang, Y.; Ding, X.; Ding, D.; Chai, B.; Dai, K.; Chen, H. Thienyl-fused dibenzothiophene-S, S-dioxide based conjugated polymer toward highly efficient photocatalytic hydrogen production. Int. J. Hydrog. Energy 2024, 80, 115–124. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.E.; Wang, W.R.; Li, Q.; Liu, L.N.; Xu, Z.W.; Gao, T.; Wang, Y.; Li, W.S. Conjugated diacetylene polymers with intrachain DA block heterostructure for efficient photocatalytic hydrogen production. Polymer 2024, 308, 127334. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Zhang, G.; Chen, Y. Interface molecular wires induce electron transfer from COFs to Pt for enhanced photocatalytic H2 evolution. J. Mater. Chem. A 2023, 11, 26052–26062. [Google Scholar] [CrossRef]
- Zhang, G.; Elewa, A.M.; Rashad, M.; Helali, S.; Chou, H.H.; EL-Mahdy, A.F. Triazine-and porphyrin-based donor-acceptor microporous conjugated polymers for enhanced photocatalytic hydrogen production activity. Microporous Mesoporous Mater. 2023, 363, 112824. [Google Scholar] [CrossRef]
Material | Pd2(dba)3 a (mol%) | W (Pd) b (wt%) | H2 Evolution Rate (mmol h−1 g−1) |
---|---|---|---|
Py-BKh1-2 | 2.0 | 0.6636 | 8.8 |
Py-BKh1-4 | 4.0 | 0.6154 | 10.2 |
Py-BKh1-6 | 6.0 | 0.6347 | 12.5 |
Pub Date | Materials | H2 Yield (mmol h−1 g−1) | AQY | Ref. |
---|---|---|---|---|
This Work | Py-BKh1 | 10.2 | 9.5% (500 nm) | - |
2025.4 | M-TiO2-7 | 1.3 | - | [51] |
2025.3 | ST@BTTA-120 | 3.69 | - | [52] |
2025.3 | PFBT-Pdots | 2.23 | - | [53] |
2025.2 | SCN-0.5 | 1.67 | 5.8% (420 nm) | [54] |
2024.9 | PyBT-COF-COOH | 8.15 | 5.1% (420 nm) | [55] |
2024.7 | Py-T-BTDO-3 | 8.66 | 4.42% (420 nm) | [56] |
2024.6 | PDTPDPA-BP | 2.16 | - | [57] |
2023.11 | NPs-TpPa-1 | 1.13 | 13.5% (450 nm) | [58] |
2023.9 | Zn-Por-TPT | 11.45 | - | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.-H.; Zhang, Y.-J.; Li, J.; Liu, S.-Y. D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production. Molecules 2025, 30, 2190. https://doi.org/10.3390/molecules30102190
Xie Z-H, Zhang Y-J, Li J, Liu S-Y. D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production. Molecules. 2025; 30(10):2190. https://doi.org/10.3390/molecules30102190
Chicago/Turabian StyleXie, Zheng-Hui, Yu-Jie Zhang, Jinhua Li, and Shi-Yong Liu. 2025. "D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production" Molecules 30, no. 10: 2190. https://doi.org/10.3390/molecules30102190
APA StyleXie, Z.-H., Zhang, Y.-J., Li, J., & Liu, S.-Y. (2025). D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production. Molecules, 30(10), 2190. https://doi.org/10.3390/molecules30102190