Enhanced Aquathermolysis of Water–Heavy Oil–Ethanol Catalyzed by B@Zn(II)L at Low Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aquathermolysis Reaction Condition Screening
2.2. Characterization of the Crude Oil
2.3. Analysis of Polar Substances Dissolved in Water after Heavy Oil Reaction
2.4. Characterizations of Catalyst
2.5. Reaction Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of the Catalyst
3.3. Catalysis of Complex Used in Aquathermolysis Reaction of the Heavy Oil
3.4. Evaluation and Analysis of the Heavy Oil
3.5. Thermogravimetric Analysis (TGA)
3.6. Differential Scanning Calorimetry (DSC) Analysis
3.7. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. [Google Scholar] [CrossRef]
- Sharma, S.; Mahto, V.; Sharma, V.P. Effect of Flow Improvers on Rheological and Microscopic Properties of Indian Waxy Crude Oil. Ind. Eng. Chem. Res. 2014, 53, 4525–4533. [Google Scholar] [CrossRef]
- Priyanto, S.; Mansoori, G.A.; Suwono, A. Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent. Chem. Eng. Sci. 2001, 56, 6933–6939. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Ayatollahi, S.; Riazi, M. Effect of Salinity, Resin, and Asphaltene on the Surface Properties of Acidic Crude Oil/Smart Water/Rock System. Energy Fuel 2014, 28, 6820–6829. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Q.; Li, Q.; Huang, H.; Ni, W.; Wang, Q.; Xin, X.; Zhao, B.; Chen, G. Preparation of Multifunctional Surfactants Derived from Sodium Dodecylbenzene Sulfonate and Their Use in Oil-Field Chemistry. Molecules 2023, 28, 3640. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Li, H.; Yu, Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Liu, H.; Wang, P.; Liu, F. Influences on the aquathermolysis of heavy oil catalyzed by two different catalytic ions: Cu2+ and Fe3+. Energy Fuel 2013, 27, 2555–2562. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Lu, N.; Xu, T.; Wang, K. A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking. Energy Rep. 2021, 7, 4249–4272. [Google Scholar] [CrossRef]
- Luo, P.; Yang, C.; Tharanivasan, A.K.; Gu, Y. In situ upgrading of heavy oil in a solvent-based heavy oil recovery process. J. Can. Pet. Technol. 2007, 46, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.I.; Zhu, J.H.; Jian-Hua, Q.I. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. J. Fuel Chem. Technol. 2007, 35, 176–180. [Google Scholar]
- Li, Y.; Liu, J.; Li, W.; Dou, M.; Ma, L.; Wang, Q.; Zhao, B.; Chen, G. Enhanced sorption for the oil spills by SDS-modified rice straw. Gels 2023, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Huang, C.; Jiang, W.; Yan, Q.; Li, Y.; Chen, G. Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil. Fuel 2024, 357, 130005. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; He, J.; Li, P.; Yang, C. Mechanism of Catalytic Aquathermolysis: Influences on Heavy Oil by Two Types of Efficient Catalytic Ions: Fe3+ and Mo6+. Energy Fuel 2010, 24, 1502–1510. [Google Scholar] [CrossRef]
- Sahai, M.; Singh, R.K.; Kukrety, A.; Kumar, A.; Ray, S.S.; Chhibber, V.K.; Kumar, S. Application of Triazine-Based Gemini Surfactants as Viscosity Reducing Agents of Tar Sand Derived Bituminous Crude. Energy Fuel 2018, 32, 3031–3038. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, M.; Li, X.; Su, C.; Liu, X.; Zhang, Z. Preparation of silica-supported nanoFe/Ni alloy and its application in viscosity reduction of heavy oil. Micro Nano Lett. 2015, 10, 167–171. [Google Scholar]
- Fan, H.F.; Liu, Y.J.; Zhong, L.G. Studies on the Synergetic Effects of Mineral and Steam on the Composition Changes of Heavy Oils. Energy Fuel 2001, 15, 1475–1479. [Google Scholar] [CrossRef]
- Aliev, F.A.; Mukhamatdinov, I.I.; Sitnov, S.A.; Ziganshina, M.R.; Onishchenko, Y.V.; Sharifullin, A.V.; Vakhin, A.V. In-situ heavy oil aquathermolysis in the presence of nanodispersed catalysts based on transition metals. Processes 2021, 9, 127. [Google Scholar] [CrossRef]
- Mironova, E.Y.; Lytkina, A.A.; Ermilova, M.M.; Efimov, M.N.; Zemtsov, L.M.; Orekhova, N.V.; Karpacheva, G.P.; Bondarenko, G.N.; Muraviev, D.N.; Yaroslavtsev, A.B. Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production. Int. J. Hydrogen Energy 2015, 40, 3557–3565. [Google Scholar] [CrossRef]
- Kayukova, G.P.; Mikhailova, A.N.; Kosachev, I.P.; Nasyrova, Z.R.; Gareev, B.I.; Vakhin, A.V. Catalytic Hydrothermal Conversion of Heavy Oil in the Porous Media. Energy Fuel 2021, 35, 1297–1307. [Google Scholar] [CrossRef]
- Muraza, O.; Galadima, A. Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel 2015, 157, 219–231. [Google Scholar] [CrossRef]
- Hao, H.; Su, H.; Chen, G.; Zhao, J.; Hong, L. Viscosity Reduction of Heavy Oil by Aquathermolysis with Coordination Complex at Low Temperature. Open Fuels Energy Sci. J. 2015, 8, 93–98. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, W.; Yan, J.; Meng, M.; Guo, Z.; Gu, X.; Zhang, J.; Qu, C.; Song, H.; Jeje, A. Zn(II) Complex Catalyzed Coupling Aquathermolysis of Water-Heavy Oil-Methanol at Low Temperature. Pet. Chem. 2018, 58, 197–202. [Google Scholar] [CrossRef]
- Vakhin, A.V.; Aliev, F.A.; Mukhamatdinov, I.I.; Sitnov, S.A.; Kudryashov, S.I.; Afanasiev, I.S.; Petrashov, O.V.; Nurgaliev, D.K. Extra-Heavy Oil Aquathermolysis Using Nickel-Based Catalyst: Some Aspects of In-Situ Transformation of Catalyst Precursor. Catalysts 2021, 11, 189. [Google Scholar] [CrossRef]
- Chao, K.; Chen, Y.; Li, J.; Zhang, X.; Dong, B. Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper. Fuel Process. Technol. 2012, 104, 174–180. [Google Scholar] [CrossRef]
- Frost, R.L.; Makó, é.; Kristóf, J.; Kloprogge, J.T. Modification of kaolinite surfaces through mechanochemical treatment—A mid-IR and near-IR spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 2849–2859. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoo, H.-Y.; Choi, J.; Nam, I.-H.; Lee, S.; Lee, S.; Kim, J.-H.; Lee, C.; Lee, J. Oxidizing Capacity of Periodate Activated with Iron-Based Bimetallic Nanoparticles. Environ. Sci. Technol. 2014, 48, 8086–8093. [Google Scholar] [CrossRef]
- Kapadia, P.R.; Kallos, M.S.; Gates, I.D. A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen. Fuel Process. Technol. 2015, 131, 270–289. [Google Scholar] [CrossRef]
- Khalil, M.; Lee, R.L.; Liu, N. Hematite nanoparticles in aquathermolysis: A desulfurization study of thiophene. Fuel 2015, 145, 214–220. [Google Scholar] [CrossRef]
- Li, G.-R.; Chen, Y.; An, Y.; Chen, Y.-L. Catalytic aquathermolysis of super-heavy oil: Cleavage of CS bonds and separation of light organosulfurs. Fuel Process. Technol. 2016, 153, 94–100. [Google Scholar] [CrossRef]
- Núñez-Méndez, K.S.; Salas-Chia, L.M.; Molina, V.D.; Muñoz, S.F.; León, P.A.; León, A.Y. Effect of the Catalytic Aquathermolysis Process on the Physicochemical Properties of a Colombian Crude Oil. Energy Fuel 2021, 35, 5231–5240. [Google Scholar] [CrossRef]
- Shokrlu, Y.H.; Babadagli, T. Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. J. Pet. Sci. Eng. 2014, 119, 210–220. [Google Scholar] [CrossRef]
- Chao, K.; Chen, Y.; Liu, H.; Zhang, X.; Li, J. Laboratory Experiments and Field Test of a Difunctional Catalyst for Catalytic Aquathermolysis of Heavy Oil. Energy Fuel 2012, 26, 1152–1159. [Google Scholar] [CrossRef]
- Maity, S.K.; Ancheyta, J.; Marroquín, G. Catalytic Aquathermolysis Used for Viscosity Reduction of Heavy Crude Oils: A Review. Energy Fuel 2010, 24, 2809–2816. [Google Scholar] [CrossRef]
Sample | Saturated HC % | Aromatic HC, % | Resin % | Asphaltene % |
---|---|---|---|---|
Blank | 24.76 | 31.28 | 25.39 | 18.57 |
Oil + water | 32.01 | 33.27 | 19.13 | 15.59 |
Oil + water + B@Zn(II)L | 38.76 | 39.24 | 12.31 | 9.69 |
Oil + water + B@Zn(II)L + ethanol | 39.97 | 40.06 | 11.03 | 8.94 |
Group | Composition, % | |||||
---|---|---|---|---|---|---|
C | H | N | S | O | H/C | |
Blank | 75.93 | 9.05 | 1.54 | 1.48 | 12.00 | 0.12 |
Oil + water | 77.45 | 9.12 | 1.37 | 0.89 | 11.17 | 0.12 |
Oil + water + B@Zn(II)L | 79.11 | 10.05 | 1.04 | 0.53 | 9.27 | 0.13 |
Oil + water + B@Zn(II)L + ethanol | 81.18 | 11.04 | 0.99 | 0.46 | 6.19 | 0.14 |
Name | Pore Size (nm) | Pore Volume (cm3/g) | Surface Area (cm2/g) |
---|---|---|---|
B | 4.60 | 0.08 | 68.24 |
B@Zn(II)L | 6.53 | 0.12 | 68.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Fang, X.; He, W.; Zhang, L.; Li, Y.; Qi, G.; Xin, X.; Zhao, B.; Chen, G. Enhanced Aquathermolysis of Water–Heavy Oil–Ethanol Catalyzed by B@Zn(II)L at Low Temperature. Molecules 2024, 29, 2057. https://doi.org/10.3390/molecules29092057
Shen Z, Fang X, He W, Zhang L, Li Y, Qi G, Xin X, Zhao B, Chen G. Enhanced Aquathermolysis of Water–Heavy Oil–Ethanol Catalyzed by B@Zn(II)L at Low Temperature. Molecules. 2024; 29(9):2057. https://doi.org/10.3390/molecules29092057
Chicago/Turabian StyleShen, Zhe, Xiangqing Fang, Wenbo He, Le Zhang, Yongfei Li, Guobin Qi, Xin Xin, Bin Zhao, and Gang Chen. 2024. "Enhanced Aquathermolysis of Water–Heavy Oil–Ethanol Catalyzed by B@Zn(II)L at Low Temperature" Molecules 29, no. 9: 2057. https://doi.org/10.3390/molecules29092057
APA StyleShen, Z., Fang, X., He, W., Zhang, L., Li, Y., Qi, G., Xin, X., Zhao, B., & Chen, G. (2024). Enhanced Aquathermolysis of Water–Heavy Oil–Ethanol Catalyzed by B@Zn(II)L at Low Temperature. Molecules, 29(9), 2057. https://doi.org/10.3390/molecules29092057