The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins
Abstract
:1. Introduction
2. The Role of EF-Tu and EF-Ts in Mtb
2.1. Structure Alignment of Mtb EF-Tu and EF-Ts with Those of Other Bacterial Sources
2.2. The Role of EF-G in Mycobacterium tuberculosis
2.3. Structure Alignment of Mtb EF-G with Those of Other Bacterial Sources
2.4. Computer-Aided Structure-Based Anti-Tuberculosis Drug Design
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Macalino, S.J.Y.; Billones, J.B.; Organo, V.G.; Carrillo, M.C.O. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020, 25, 665. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hong, J.; Luo, L.; Liu, K.; Meng, C.; Ji, Z.-L.; Lin, D. Biophysical Characterization and Ligand-Binding Properties of the Elongation Factor Tu from Mycobacterium Tuberculosis. Acta Biochim. Biophys. Sin. 2019, 51, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sharma, S.; Kaushal, P.S. Protein Synthesis in Mycobacterium Tuberculosis as a Potential Target for Therapeutic Interventions. Mol. Aspects Med. 2021, 81, 101002. [Google Scholar] [CrossRef] [PubMed]
- Marathe, N.; Nguyen, H.A.; Alumasa, J.N.; Kuzmishin Nagy, A.B.; Vazquez, M.; Dunham, C.M.; Keiler, K.C. Antibiotic That Inhibits Trans-Translation Blocks Binding of EF-Tu to TmRNA but Not to TRNA. MBio 2023, 14, e0146123. [Google Scholar] [CrossRef] [PubMed]
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef]
- Arenz, S.; Wilson, D.N. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Cold Spring Harb. Perspect. Med. 2016, 6, a025361. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.E.; McKinney, J.D.M. Tuberculosis Persistence, Latency, and Drug Tolerance. Tuberculosis 2004, 84, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Muriel-Millán, L.F.; Rodríguez-Martínez, K.; Ortíz-Vasco, C.; Bedoya-Pérez, L.P.; Espín, G. The Ribosome Rescue Pathways SsrA-SmpB, ArfA, and ArfB Mediate Tolerance to Heat and Antibiotic Stresses in Azotobacter Vinelandii. FEMS Microbiol. Lett. 2022, 369, fnac104. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Warshel, A. EF-Tu and EF-G Are Activated by Allosteric Effects. Proc. Natl. Acad. Sci. USA 2018, 115, 3386–3391. [Google Scholar] [CrossRef]
- Yamamoto, H.; Qin, Y.; Achenbach, J.; Li, C.; Kijek, J.; Spahn, C.M.T.; Nierhaus, K.H. EF-G and EF4: Translocation and Back-Translocation on the Bacterial Ribosome. Nat. Rev. Microbiol. 2014, 12, 89–100. [Google Scholar] [CrossRef]
- Müller, C.; Crowe-McAuliffe, C.; Wilson, D.N. Ribosome Rescue Pathways in Bacteria. Front. Microbiol. 2021, 12, 652980. [Google Scholar] [CrossRef] [PubMed]
- Simms, C.L.; Zaher, H.S. Quality Control of Chemically Damaged RNA. Cell. Mol. Life Sci. 2016, 73, 3639–3653. [Google Scholar] [CrossRef]
- Yan, L.L.; Zaher, H.S. How Do Cells Cope with RNA Damage and Its Consequences? J. Biol. Chem. 2019, 294, 15158–15171. [Google Scholar] [CrossRef]
- Thomas, E.N.; Kim, K.Q.; McHugh, E.P.; Marcinkiewicz, T.; Zaher, H.S. Alkylative Damage of MRNA Leads to Ribosome Stalling and Rescue by Trans Translation in Bacteria. eLife 2020, 9, 61984. [Google Scholar] [CrossRef]
- Kurita, D.; Himeno, H. Bacterial Ribosome Rescue Systems. Microorganisms 2022, 10, 372. [Google Scholar] [CrossRef]
- Guyomar, C.; D’Urso, G.; Chat, S.; Giudice, E.; Gillet, R. Structures of TmRNA and SmpB as They Transit through the Ribosome. Nat. Commun. 2021, 12, 4909. [Google Scholar] [CrossRef] [PubMed]
- Huter, P.; Müller, C.; Beckert, B.; Arenz, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. Structural Basis for ArfA-RF2-Mediated Translation Termination on MRNAs Lacking Stop Codons. Nature 2017, 541, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.E.; Demo, G.; Madireddy, R.; Svidritskiy, E.; Korostelev, A.A. ArfB Can Displace MRNA to Rescue Stalled Ribosomes. Nat. Commun. 2020, 11, 5552. [Google Scholar] [CrossRef]
- Karzai, A.W.; Roche, E.D.; Sauer, R.T. The SsrA-SmpB System for Protein Tagging, Directed Degradation and Ribosome Rescue. Nat. Struct. Biol. 2000, 7, 449–455. [Google Scholar] [CrossRef]
- Miller, M.R.; Buskirk, A.R. An Unusual Mechanism for EF-Tu Activation during TmRNA-Mediated Ribosome Rescue. RNA 2014, 20, 228–235. [Google Scholar] [CrossRef]
- Ramadoss, N.S.; Zhou, X.; Keiler, K.C. TmRNA Is Essential in Shigella Flexneri. PLoS ONE 2013, 8, e57537. [Google Scholar] [CrossRef] [PubMed]
- Thibonnier, M.; Thiberge, J.-M.; De Reuse, H. Trans-Translation in Helicobacter Pylori: Essentiality of Ribosome Rescue and Requirement of Protein Tagging for Stress Resistance and Competence. PLoS ONE 2008, 3, e3810. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wolfgang, M.C.; Withey, J.; Koomey, M.; Friedman, D.I. Charged TmRNA but Not TmRNA-Mediated Proteolysis Is Essential for Neisseria Gonorrhoeae Viability. EMBO J. 2000, 19, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Alumasa, J.N.; Manzanillo, P.S.; Peterson, N.D.; Lundrigan, T.; Baughn, A.D.; Cox, J.S.; Keiler, K.C. Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister Mycobacterium Tuberculosis Cells. ACS Infect. Dis. 2017, 3, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, N.S.; Alumasa, J.N.; Cheng, L.; Wang, Y.; Li, S.; Chambers, B.S.; Chang, H.; Chatterjee, A.K.; Brinker, A.; Engels, I.H.; et al. Small Molecule Inhibitors of Trans-Translation Have Broad-Spectrum Antibiotic Activity. Proc. Natl. Acad. Sci. USA 2013, 110, 10282–10287. [Google Scholar] [CrossRef]
- Aron, Z.D.; Mehrani, A.; Hoffer, E.D.; Connolly, K.L.; Srinivas, P.; Torhan, M.C.; Alumasa, J.N.; Cabrera, M.; Hosangadi, D.; Barbor, J.S.; et al. Trans-Translation Inhibitors Bind to a Novel Site on the Ribosome and Clear Neisseria Gonorrhoeae in Vivo. Nat. Commun. 2021, 12, 1799. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, P.; Keiler, K.C.; Dunham, C.M. Druggable Differences: Targeting Mechanistic Differences between Trans-Translation and Translation for Selective Antibiotic Action. Bioessays 2022, 44, e2200046. [Google Scholar] [CrossRef] [PubMed]
- Maracci, C.; Rodnina, M.V. Review: Translational GTPases. Biopolymers 2016, 105, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.R.; Fredrick, K. Roles of Elusive Translational GTPases Come to Light and Inform on the Process of Ribosome Biogenesis in Bacteria. Mol. Microbiol. 2018, 107, 445–454. [Google Scholar] [CrossRef]
- Blanchard, S.C.; Gonzalez, R.L.; Kim, H.D.; Chu, S.; Puglisi, J.D. TRNA Selection and Kinetic Proofreading in Translation. Nat. Struct. Mol. Biol. 2004, 11, 1008–1014. [Google Scholar] [CrossRef]
- Ogle, J.M.; Murphy, F.V.; Tarry, M.J.; Ramakrishnan, V. Selection of TRNA by the Ribosome Requires a Transition from an Open to a Closed Form. Cell 2002, 111, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Gromadski, K.B.; Daviter, T.; Rodnina, M.V. A Uniform Response to Mismatches in Codon-Anticodon Complexes Ensures Ribosomal Fidelity. Mol. Cell 2006, 21, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kothe, U.; Rodnina, M.V. Delayed Release of Inorganic Phosphate from Elongation Factor Tu Following GTP Hydrolysis on the Ribosome. Biochemistry 2006, 45, 12767–12774. [Google Scholar] [CrossRef] [PubMed]
- Loveland, A.B.; Demo, G.; Grigorieff, N.; Korostelev, A.A. Ensemble Cryo-EM Elucidates the Mechanism of Translation Fidelity. Nature 2017, 546, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Thirup, S.S.; Van, L.B.; Nielsen, T.K.; Knudsen, C.R. Structural Outline of the Detailed Mechanism for Elongation Factor Ts-Mediated Guanine Nucleotide Exchange on Elongation Factor Tu. J. Struct. Biol. 2015, 191, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Mudryi, V.; Peske, F.; Rodnina, M. Translation Factor Accelerating Peptide Bond Formation on the Ribosome: EF-P and EIF5A as Entropic Catalysts and a Potential Drug Targets. BBA Adv. 2023, 3, 100074. [Google Scholar] [CrossRef]
- Volkwein, W.; Krafczyk, R.; Jagtap, P.K.A.; Parr, M.; Mankina, E.; Macošek, J.; Guo, Z.; Fürst, M.J.L.J.; Pfab, M.; Frishman, D.; et al. Switching the Post-Translational Modification of Translation Elongation Factor EF-P. Front. Microbiol. 2019, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Holm, M.; Natchiar, S.K.; Rundlet, E.J.; Myasnikov, A.G.; Watson, Z.L.; Altman, R.B.; Wang, H.-Y.; Taunton, J.; Blanchard, S.C. MRNA Decoding in Human Is Kinetically and Structurally Distinct from Bacteria. Nature 2023, 617, 200–207. [Google Scholar] [CrossRef]
- Noel, J.K.; Whitford, P.C. How EF-Tu Can Contribute to Efficient Proofreading of Aa-TRNA by the Ribosome. Nat. Commun. 2016, 7, 13314. [Google Scholar] [CrossRef]
- Vallejos-Sánchez, K.; Lopez, J.M.; Antiparra, R.; Toscano, E.; Saavedra, H.; Kirwan, D.E.; Amzel, L.M.; Gilman, R.H.; Maruenda, H.; Sheen, P.; et al. Mycobacterium Tuberculosis Ribosomal Protein S1 (RpsA) and Variants with Truncated C-Terminal End Show Absence of Interaction with Pyrazinoic Acid. Sci. Rep. 2020, 10, 8356. [Google Scholar] [CrossRef]
- Cole, S.T. Microbiology. Pyrazinamide-Old TB Drug Finds New Target. Science 2011, 333, 1583–1584. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E., 3rd; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide Inhibits Trans-Translation in Mycobacterium Tuberculosis. Science 2011, 333, 1630–1632. [Google Scholar] [CrossRef] [PubMed]
- Kalinda, A.S.; Aldrich, C.C. Pyrazinamide: A Frontline Drug Used for Tuberculosis. Molecular Mechanism of Action Resolved after 50 Years? ChemMedChem 2012, 7, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Y.; Meyering-Voss, M.; Sprinzl, M.; Sigler, P.B. Crystal Structure of the EF-Tu.EF-Ts Complex from Thermus Thermophilus. Nat. Struct. Biol. 1997, 4, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Neumann, P.; Konevega, A.L.; Bock, L.V.; Ficner, R.; Rodnina, M.V.; Stark, H. Structure of the E. Coli Ribosome-EF-Tu Complex at <3 Å Resolution by Cs-Corrected Cryo-EM. Nature 2015, 520, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.E.; Loveland, A.B.; Gamper, H.B.J.; Hou, Y.-M.; Demo, G.; Korostelev, A.A. Time-Resolved Cryo-EM Visualizes Ribosomal Translocation with EF-G and GTP. Nat. Commun. 2021, 12, 7236. [Google Scholar] [CrossRef]
- Scotti, J.S.; Leung, I.K.H.; Ge, W.; Bentley, M.A.; Paps, J.; Kramer, H.B.; Lee, J.; Aik, W.; Choi, H.; Paulsen, S.M.; et al. Human Oxygen Sensing May Have Origins in Prokaryotic Elongation Factor Tu Prolyl-Hydroxylation. Proc. Natl. Acad. Sci. USA 2014, 111, 13331–13336. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.C.; Quentin, D.; Sawai, S.; LeRoux, M.; Harding, B.N.; Ledvina, H.E.; Tran, B.Q.; Robinson, H.; Goo, Y.A.; Goodlett, D.R.; et al. An Interbacterial NAD(P)(+) Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells. Cell 2015, 163, 607–619. [Google Scholar] [CrossRef]
- Zhan, B.; Gao, Y.; Gao, W.; Li, Y.; Li, Z.; Qi, Q.; Lan, X.; Shen, H.; Gan, J.; Zhao, G.; et al. Structural Insights of the Elongation Factor EF-Tu Complexes in Protein Translation of Mycobacterium Tuberculosis. Commun. Biol. 2022, 5, 1052. [Google Scholar] [CrossRef]
- Vitagliano, L.; Masullo, M.; Sica, F.; Zagari, A.; Bocchini, V. The Crystal Structure of Sulfolobus Solfataricus Elongation Factor 1alpha in Complex with GDP Reveals Novel Features in Nucleotide Binding and Exchange. EMBO J. 2001, 20, 5305–5311. [Google Scholar] [CrossRef]
- Okafor, C.D.; Pathak, M.C.; Fagan, C.E.; Bauer, N.C.; Cole, M.F.; Gaucher, E.A.; Ortlund, E.A. Structural and Dynamics Comparison of Thermostability in Ancient, Modern, and Consensus Elongation Factor Tus. Structure 2018, 26, 118–129.e3. [Google Scholar] [CrossRef] [PubMed]
- Schmeing, T.M.; Voorhees, R.M.; Kelley, A.C.; Gao, Y.-G.; Murphy, F.V., 4th; Weir, J.R.; Ramakrishnan, V. The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-TRNA. Science 2009, 326, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Kjeldgaard, M.; Nyborg, J. Refined Structure of Elongation Factor EF-Tu from Escherichia coli. J. Mol. Biol. 1992, 223, 721–742. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Berthet-Colominas, C.; Wulff, M.; Cusack, S.; Leberman, R. The Structure of the Escherichia coli EF-Tu.EF-Ts Complex at 2.5 A Resolution. Nature 1996, 379, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Zuurmond, A.M.; Olsthoorn-Tieleman, L.N.; Martien de Graaf, J.; Parmeggiani, A.; Kraal, B. Mutant EF-Tu Species Reveal Novel Features of the Enacyloxin IIa Inhibition Mechanism on the Ribosome. J. Mol. Biol. 1999, 294, 627–637. [Google Scholar] [CrossRef]
- Murase, K.; Morrison, K.L.; Tam, P.Y.; Stafford, R.L.; Jurnak, F.; Weiss, G.A. EF-Tu Binding Peptides Identified, Dissected, and Affinity Optimized by Phage Display. Chem. Biol. 2003, 10, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, A.; Krab, I.M.; Okamura, S.; Nielsen, R.C.; Nyborg, J.; Nissen, P. Structural Basis of the Action of Pulvomycin and GE2270 A on Elongation Factor Tu. Biochemistry 2006, 45, 6846–6857. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Umetsu, S.; Inahashi, Y.; Nonaka, K.; Dairi, T. Identification of Pulvomycin as an Inhibitor of the Futalosine Pathway. J. Antibiot. 2021, 74, 825–829. [Google Scholar] [CrossRef]
- Rexroad, G.; Donohue, J.P.; Lancaster, L.; Noller, H.F. The Role of GTP Hydrolysis by EF-G in Ribosomal Translocation. Proc. Natl. Acad. Sci. USA 2022, 119, e2212502119. [Google Scholar] [CrossRef]
- Ero, R.; Kumar, V.; Chen, Y.; Gao, Y.-G. Similarity and Diversity of Translational GTPase Factors EF-G, EF4, and BipA: From Structure to Function. RNA Biol. 2016, 13, 1258–1273. [Google Scholar] [CrossRef] [PubMed]
- Rodnina, M.V.; Peske, F.; Peng, B.-Z.; Belardinelli, R.; Wintermeyer, W. Converting GTP Hydrolysis into Motion: Versatile Translational Elongation Factor G. Biol. Chem. 2019, 401, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Koripella, R.K.; Sanyal, S.; Selmer, M. Staphylococcus Aureus Elongation Factor G--Structure and Analysis of a Target for Fusidic Acid. FEBS J. 2010, 277, 3789–3803. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Peisker, K.; Bäckbro, K.; Chen, Y.; Koripella, R.K.; Mandava, C.S.; Sanyal, S.; Selmer, M. Structure and Function of FusB: An Elongation Factor G-Binding Fusidic Acid Resistance Protein Active in Ribosomal Translocation and Recycling. Open Biol. 2012, 2, 120016. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Tanzawa, T.; Lin, J.; Gagnon, M.G. Structural Basis for Ribosome Recycling by RRF and TRNA. Nat. Struct. Mol. Biol. 2020, 27, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Ramrath, D.J.F.; Yamamoto, H.; Rother, K.; Wittek, D.; Pech, M.; Mielke, T.; Loerke, J.; Scheerer, P.; Ivanov, P.; Teraoka, Y.; et al. The Complex of TmRNA-SmpB and EF-G on Translocating Ribosomes. Nature 2012, 485, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Dunkle, J.A.; Wang, L.; Feldman, M.B.; Pulk, A.; Chen, V.B.; Kapral, G.J.; Noeske, J.; Richardson, J.S.; Blanchard, S.C.; Cate, J.H.D. Structures of the Bacterial Ribosome in Classical and Hybrid States of TRNA Binding. Science 2011, 332, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yu, X.; Zhu, K.; Qin, B.; Wang, W.; Han, P.; Aleksandra Wojdyla, J.; Wang, M.; Cui, S. Crystal Structure of Mycobacterium Tuberculosis Elongation Factor G1. Front. Mol. Biosci. 2021, 8, 667638. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb. Perspect. Med. 2016, 6, a025437. [Google Scholar] [CrossRef]
- Demo, G.; Gamper, H.B.; Loveland, A.B.; Masuda, I.; Carbone, C.E.; Svidritskiy, E.; Hou, Y.-M.; Korostelev, A.A. Structural Basis for +1 Ribosomal Frameshifting during EF-G-Catalyzed Translocation. Nat. Commun. 2021, 12, 4644. [Google Scholar] [CrossRef]
- Njoroge, M.; Kaur, G.; Espinoza-Moraga, M.; Wasuna, A.; Dziwornu, G.A.; Seldon, R.; Taylor, D.; Okombo, J.; Warner, D.F.; Chibale, K. Semisynthetic Antimycobacterial C-3 Silicate and C-3/C-21 Ester Derivatives of Fusidic Acid: Pharmacological Evaluation and Stability Studies in Liver Microsomes, Rat Plasma, and Mycobacterium Tuberculosis Culture. ACS Infect. Dis. 2019, 5, 1634–1644. [Google Scholar] [CrossRef]
- Long, J.; Ji, W.; Zhang, D.; Zhu, Y.; Bi, Y. Bioactivities and Structure-Activity Relationships of Fusidic Acid Derivatives: A Review. Front. Pharmacol. 2021, 12, 759220. [Google Scholar] [CrossRef]
- Cicek-Saydam, C.; Cavusoglu, C.; Burhanoglu, D.; Hilmioglu, S.; Ozkalay, N.; Bilgic, A. In Vitro Susceptibility of Mycobacterium Tuberculosis to Fusidic Acid. Clin. Microbiol. Infect. 2001, 7, 700–702. [Google Scholar] [CrossRef]
- Jones, A.K.; Woods, A.L.; Takeoka, K.T.; Shen, X.; Wei, J.-R.; Caughlan, R.E.; Dean, C.R. Determinants of Antibacterial Spectrum and Resistance Potential of the Elongation Factor G Inhibitor Argyrin B in Key Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2017, 61, e02400-16. [Google Scholar] [CrossRef] [PubMed]
- Wieland, M.; Holm, M.; Rundlet, E.J.; Morici, M.; Koller, T.O.; Maviza, T.P.; Pogorevc, D.; Osterman, I.A.; Müller, R.; Blanchard, S.C.; et al. The Cyclic Octapeptide Antibiotic Argyrin B Inhibits Translation by Trapping EF-G on the Ribosome during Translocation. Proc. Natl. Acad. Sci. USA 2022, 119, e2114214119. [Google Scholar] [CrossRef]
- Ejalonibu, M.A.; Ogundare, S.A.; Elrashedy, A.A.; Ejalonibu, M.A.; Lawal, M.M.; Mhlongo, N.N.; Kumalo, H.M. Drug Discovery for Mycobacterium Tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int. J. Mol. Sci. 2021, 22, 13259. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational Approaches Streamlining Drug Discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- Cesaro, A.; Bagheri, M.; Torres, M.; Wan, F.; de la Fuente-Nunez, C. Deep Learning Tools to Accelerate Antibiotic Discovery. Expert Opin. Drug Discov. 2023, 18, 1245–1257. [Google Scholar] [CrossRef]
- Liu, G.; Catacutan, D.B.; Rathod, K.; Swanson, K.; Jin, W.; Mohammed, J.C.; Chiappino-Pepe, A.; Syed, S.A.; Fragis, M.; Rachwalski, K.; et al. Deep Learning-Guided Discovery of an Antibiotic Targeting Acinetobacter Baumannii. Nat. Chem. Biol. 2023, 19, 1342–1350. [Google Scholar] [CrossRef]
- Wong, F.; Zheng, E.J.; Valeri, J.A.; Donghia, N.M.; Anahtar, M.N.; Omori, S.; Li, A.; Cubillos-Ruiz, A.; Krishnan, A.; Jin, W.; et al. Discovery of a Structural Class of Antibiotics with Explainable Deep Learning. Nature 2023, 626, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, J.; Yang, X.; Wu, L.; Zhang, J.; Yang, Y.; Zhao, Y.; Zhang, L.; Yang, X.; Yang, X.; et al. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 2019, 176, 636–648.e13. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Yang, X.; Liu, F.; Sun, S.; Xiong, Z.; Liang, J.; Yang, X.; Wang, H.; Yang, X.; Guddat, L.W.; et al. Structure-Based Design of Anti-Mycobacterial Drug Leads That Target the Mycolic Acid Transporter MmpL3. Structure 2022, 30, 1395–1402.e4. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Hu, J.; Zhan, B.; Chi, M.; Li, Z.; Wang, S.; Shan, C.; Zhao, Z.; Guo, Y.; Ding, X.; et al. Structural Insights into RNase J That Plays an Essential Role in Mycobacterium Tuberculosis RNA Metabolism. Nat. Commun. 2023, 14, 2280. [Google Scholar] [CrossRef]
- Kuhn, M.L.; Alexander, E.; Minasov, G.; Page, H.J.; Warwrzak, Z.; Shuvalova, L.; Flores, K.J.; Wilson, D.J.; Shi, C.; Aldrich, C.C.; et al. Structure of the Essential Mtb FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infect. Dis. 2016, 2, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Punetha, A.; Ngo, H.X.; Holbrook, S.Y.L.; Green, K.D.; Willby, M.J.; Bonnett, S.A.; Krieger, K.; Dennis, E.K.; Posey, J.E.; Parish, T.; et al. Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium Tuberculosis. ACS Chem. Biol. 2020, 15, 1581–1594. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, B.; Chen, A.; Zhang, Z.; Wang, S.; Lv, L.; Zhao, G.; Li, J. Structural Analysis of the Housecleaning Nucleoside Triphosphate Pyrophosphohydrolase MazG from Mycobacterium Tuberculosis. Front. Microbiol. 2023, 14, 1137279. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chang, J.Y.; Cui, Z.; Li, X.; Meng, R.; Duan, L.; Thongchol, J.; Jakana, J.; Huwe, C.M.; Sacchettini, J.C.; et al. Structural Insights into Species-Specific Features of the Ribosome from the Human Pathogen Mycobacterium Tuberculosis. Nucleic Acids Res. 2017, 45, 10884–10894. [Google Scholar] [CrossRef]
- Valle, M.; Gillet, R.; Kaur, S.; Henne, A.; Ramakrishnan, V.; Frank, J. Visualizing TmRNA Entry into a Stalled Ribosome. Science 2003, 300, 127–130. [Google Scholar] [CrossRef]
- Lin, J.; Gagnon, M.G.; Bulkley, D.; Steitz, T.A. Conformational Changes of Elongation Factor G on the Ribosome during TRNA Translocation. Cell 2015, 160, 219–227. [Google Scholar] [CrossRef]
- Park, C.W.; Seo, S.W.; Kang, N.; Ko, B.; Choi, B.W.; Park, C.M.; Chang, D.K.; Kim, H.; Kim, H.; Lee, H.; et al. Artificial Intelligence in Health Care: Current Applications and Issues. J. Korean Med. Sci. 2020, 35, e379. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.; Silla, Y.; Borah, K.; Ramachandran, S.; Bajpai, U. Repurposing of FDA-Approved Drugs to Target MurB and MurE Enzymes in Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2020, 38, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Guo, S.; Cui, H.; Qi, J. Virtual Screening of Small Molecular Inhibitors against DprE1. Molecules 2018, 23, 524. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, R.; Ridzwan, N.F.W.; Mohamad, S. Bin Ensemble-Based High-Throughput Virtual Screening of Natural Ligands Using the Super Natural-II Database against Cell-Wall Protein DTDP-4-Dehydrorhamnose Reductase (RmlD) in Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2022, 40, 5069–5078. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Pandey, B.; Kumar, A.; Garewal, N.; Grover, A.; Kaur, J. Drug Targeted Virtual Screening and Molecular Dynamics of LipU Protein of Mycobacterium Tuberculosis and Mycobacterium Leprae. J. Biomol. Struct. Dyn. 2019, 37, 1254–1269. [Google Scholar] [CrossRef]
- Kuldeep, J.; Sharma, S.K.; Sharma, T.; Singh, B.N.; Siddiqi, M.I. Targeting Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein Reductase Using Computational Tools for Identification of Potential Inhibitor and Their Biological Activity. Mol. Inform. 2021, 40, e2000211. [Google Scholar] [CrossRef]
Source | Components | PDB ID | Resolution (Å) | Method |
---|---|---|---|---|
E. coli | EF-Tu + L11 + S12 + S13 | 1MJ1 | 13.0 | EM |
EF-Tu + S12 + L11 | 3EQ3; 3EQ4 | 9.0; 12.0 | EM | |
EF-Tu + Ribosome | 1QZA; 1QZB; 1QZD | 10.0 | EM | |
EF-Tu + Ribosome + SmpB | 7ABZ | 3.2 | EM | |
EF-Tu + GE2270A | 1D8T | 2.35 | X-ray | |
EF-Tu + GDP | 1DG1; 1EFC; 1ETU | 2.5; 2.05; 2.9 | X-ray | |
EF-Tu + GDP | 1EFM; 2FX3; 2HCJ | 2.7; 3.4; 2.12 | X-ray | |
EF-Tu + GDP + KKL55 | 8FR3 | 2.23 | X-ray | |
EF-Tu + EF-Ts | 1EFU; 4PC3; 4PC6 | 2.5; 1.83; 2.2 | X-ray | |
EF-Tu + GNP + kirromycin | 1OB2 | 3.35 | X-ray | |
EF-Tu + GNP + enacyloxin IIa | 2BVN | 2.3 | X-ray | |
M. tuberculosis | EF-Tu + EF-Ts | 7VMX | 2.8 | X-ray |
EF-Tu + GDP | 7VOK | 3.4 | X-ray | |
T. thermophilus | EF-Tu + Ribosome + SmpB | 1ZC8 | 13.0 | EM |
EF-Tu + Ribosome + GNP | 2P8W | 11.3 | EM | |
EF-Tu + Ribosome + kirromycin | 4V68 | 6.4 | EM | |
EF-Tu + Ribosome + GCP | 4V5L | 3.1 | X-ray | |
EF-Tu + EF-Ts | 1AIP | 3.0 | X-ray | |
EF-Tu + GNP | 1EXM | 1.7 | X-ray | |
EF-Tu + GNP + GE2270 A | 2C77; 2C78 | 1.6; 1.4 | X-ray | |
EF-Tu + Aurodox | 1HA3 | 2.0 | X-ray | |
T. aquaticus | EF-Tu + GDP | 1B23; 1TUI | 2.6; 2.7 | X-ray |
EF-Tu + GNP | 1EFT; 1TTT | 2.5; 2.7 | X-ray | |
EF-Tu + GNP + enacyloxin IIa | 1OB5 | 3.1 | X-ray | |
P. aeruginosa | EF-Tu + Tse6 + GDP | 4ZV4 | 3.5 | X-ray |
P. putida | EF-Tu + GDP | 4J0Q | 2.29 | X-ray |
S. solfataricus | EF-Tu + GDP | 1JNY; 1SKQ | 1.9; 1.8 | X-ray |
Source | Proteins | Antibiotics | PDB ID | Binding Domain |
---|---|---|---|---|
E. coli | EF-Tu | Kirromycin | 1OB2 | Domain I & III |
EF-Tu | Enacyloxin IIa | 2BVN | Domain I & III | |
T. thermophilus | EF-Tu | GE2270A | 2C77 | Domain II |
EF-Tu | Pulvomycin | 2C78 | Domain II |
Source | Components | PDB ID | Resolution (Å) | Method |
---|---|---|---|---|
E. coli | Ribosome + EF-G + GDP | 4V7B | 6.8 | EM |
50S + EF-G + GDP analogs + RRF | 2RDO | 9.1 | EM | |
S12 + EF-G + RRF | 3J0E | 9.9 | EM | |
Ribosome + EF-G + tRNA | 4V7D | 7.6 | EM | |
Ribosome + EF-G + GTP | 3J9Z; 3JA1 | 3.6 | EM | |
EF-G + RRF | 1PN6; 1ZN0 | 15.5 | EM | |
T. thermophilus | EF-G + GDP | 1FNM; 1DAR | 2.8; 2.4 | X-ray |
EF-G + GDP | 1EFG; 2EFG | 2.7; 2.6 | X-ray | |
EF-G + GDP | 2BM0; 2BM1 | 2.4; 2.6 | X-ray | |
EF-G + GNP | 2BV3; 2J7K | 2.5; 2.9 | X-ray | |
Ribosome + EF-G + GDP | 4V8U; 4V90 | 3.7; 2.95 | X-ray | |
EF-G + L11 | 1JQM;1JQS | 18.0 | EM | |
EF-G + Ribosome + GDP | 4V5M; 4V5N | 7.8; 7.6 | EM | |
M. tuberculosis | EF-G + GDP | 7CDW | 3.0 | X-ray |
S. aureus | EF-G | 2XEX; 3ZZ0; 3ZZT; | 1.9; 2.8 | X-ray |
S. aureus | EF-G | 3ZZU | 2.95; 2.9 | X-ray |
B. subtilis | EF-G | 5VH6 | 2.61 | X-ray |
E. faecalis | EF-G | 6BK7 | 1.83 | X-ray |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, N.; Wu, L.; Duan, S.; Li, J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024, 29, 2058. https://doi.org/10.3390/molecules29092058
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules. 2024; 29(9):2058. https://doi.org/10.3390/molecules29092058
Chicago/Turabian StyleFang, Ning, Lingyun Wu, Shuyan Duan, and Jixi Li. 2024. "The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins" Molecules 29, no. 9: 2058. https://doi.org/10.3390/molecules29092058
APA StyleFang, N., Wu, L., Duan, S., & Li, J. (2024). The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules, 29(9), 2058. https://doi.org/10.3390/molecules29092058