Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Derivatisation of the Samples
2.2. Variations in the Diagnostic Values
2.3. Artificial Ageing
2.4. Fatty Acids and Diagnostic Values
2.5. Other Characteristic Markers
2.6. PCA
3. Materials and Methods
3.1. Chemicals
3.2. Binders and Pigments
3.3. Preparation of the Reference Wall Painting Samples
3.4. Accelerated Artificial Ageing
3.5. Sample Preparation
3.6. GC-MS Instrumentation and Conditions
3.7. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sotiropoulou, S.; Sciutto, G.; Tenorio, A.L.; Mazurek, J.; Bonaduce, I.; Prati, S.; Mazzeo, R.; Schilling, M.; Colombini, M.P. Advanced Analytical Investigation on Degradation Markers in Wall Paintings. Microchem. J. 2018, 139, 278–294. [Google Scholar] [CrossRef]
- Geddes Da Filicaia, E.; Evershed, R.P.; Peggie, D.A. Review of Recent Advances on the Use of Mass Spectrometry Techniques for the Study of Organic Materials in Painted Artworks. Anal. Chim. Acta 2023, 1246, 340575. [Google Scholar] [CrossRef]
- Holclajtner-Antunović, I.; Stojanović-Marić, M.; Bajuk-Bogdanović, D.; Žikić, R.; Uskoković-Marković, S. Multi-Analytical Study of Techniques and Palettes of Wall Paintings of the Monastery of Žiča, Serbia. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 156, 78–88. [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Tortora, M.; Arrizza, L.; Cerichelli, G.; Nardi, I.; Maldague, X. Diagnostics of Wall Paintings: A Smart and Reliable Approach. J. Cult. Herit. 2016, 18, 229–241. [Google Scholar] [CrossRef]
- Daffara, C.; Ambrosini, D.; Pezzati, L.; Paoletti, D. Thermal Quasi-Reflectography: A New Imaging Tool in Art Conservation. Opt. Express 2012, 20, 14746. [Google Scholar] [CrossRef]
- Stout, S.; Cosentino, A.; Scandurra, C. Non-Invasive Materials Analysis Using Portable X-ray Fluorescence (XRF) in the Examination of Two Mural Paintings in the Catacombs of San Giovanni, Syracuse. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.-Y., Quak, E., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8740, pp. 697–705. [Google Scholar] [CrossRef]
- Piqué, F.; Verri, G. Organic Materials in Wall Paintings: Project Report; The Getty Conservation Institute: Los Angeles, CA, USA, 2015; ISBN 978-1-937433-29-1. [Google Scholar]
- Borg, B.; Dunn, M.; Ang, A.; Villis, C. The Application of State-of-the-Art Technologies to Support Artwork Conservation: Literature Review. J. Cult. Herit. 2020, 44, 239–259. [Google Scholar] [CrossRef]
- Mora, P.; Mora, L.; Philippot, P. La Conservazione Delle Pitture Murali, 2nd ed.; Compositori: Bologna, Italy, 2001. [Google Scholar]
- Cennini, C. Il Libro Dell’arte, 7th ed.; Frezzato, F., Ed.; Neri Pozza: Vicenza, Italy, 2012. [Google Scholar]
- Cennini, C.; Broecke, L. Cennino Cennini’s ‘Il Libro Dell’Arte’: A New English Translation and Commentary with Italian Transcription; Archetype: London, UK, 2015. [Google Scholar]
- Mills, J.S.; White, R. The Organic Chemistry of Museum Objects, 2nd ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 1994. [Google Scholar]
- Schilling, M.; Khanjian, H. Gas Chromatographic Determination of the Fatty Acid and Glycerol Content of Lipids. I. The Effects of Pigments and Aging on the Composition of Oil Paints. In Proceedings of the ICOM Committee for Conservation Preprints, 11th Triennial Meeting, Edinburgh, UK, 1–6 September 1996; pp. 220–227. [Google Scholar]
- Vallance, S.L. Critical Review Applications of Chromatography in Art Conservation: Techniques Used for the Analysis and Identification of Proteinaceous and Gum Binding Media. Analyst 1997, 122, 75R–81R. [Google Scholar] [CrossRef]
- Regazzoni, L.; Cavallo, G.; Biondelli, D.; Gilardi, J. Microscopic Analysis of Wall Painting Techniques: Laboratory Replicas and Romanesque Case Studies in Southern Switzerland. Stud. Conserv. 2018, 63, 326–341. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F.; Fuoco, R.; Tognazzi, A. A GC-MS Study on the Deterioration of Lipidic Paint Binders. Microchem. J. 2002, 73, 175–185. [Google Scholar] [CrossRef]
- Chiavari, G.; Gandini, N.; Russo, P.; Fabbri, D. Characterisation of Standard Tempera Painting Layers Containing Proteinaceous Binders by Pyrolysis (/Methylation)-Gas Chromatography-Mass Spectrometry. Chromatographia 1998, 47, 420–426. [Google Scholar] [CrossRef]
- Silva, R.H.D. The Problem of The Binding Medium Particularly in Wall Painting. Archaeometry 1963, 6, 56–64. [Google Scholar] [CrossRef]
- Casadio, F.; Giangualano, I.; Piqué, F. Organic Materials in Wall Paintings: The Historical and Analytical Literature. Stud. Conserv. 2004, 49 (Suppl. S1), 63–80. [Google Scholar] [CrossRef]
- Kouloumpi, E.; Lawson, G.; Pavlidis, V. The Contribution of Gas Chromatography to the Resynthesis of the Post-Byzantine Artist’s Technique. Anal. Bioanal. Chem. 2007, 387, 803–812. [Google Scholar] [CrossRef]
- Mills, J.S. The Gas Chromatographic Examination of Paint Media. Part I. Fatty Acid Composition and Identification of Dried Oil Films. Stud. Conserv. 1966, 11, 92–107. [Google Scholar] [CrossRef]
- Laurie, A.P. The Painter’s Methods; Dover Publications, Inc.: Mineola, NY, USA, 1988. [Google Scholar]
- Theophilus. On Divers Arts—The Foremost Medieval Treatise on Painting, Glassmaking and Metalwork; Dover Publications, Inc.: New York, NY, USA, 1979. [Google Scholar]
- van den Berg, J.D.J. Analytical Chemical Studies on Traditional Linseed Oil Paints; Molart: Amsterdam, The Netherlands, 2002. [Google Scholar]
- White, R.; Pilc, J. Analyses of Paint Media. Natl. Gallery Technol. Bull. 1996, 17, 91–103. [Google Scholar]
- Bensi, P.; Danti, C.; Matteini, M.; Moles, A. La Pellicola Pittorica Nella Pittura Murale in Italia: Materiali e Tecniche Esecutive Dall’alto Medioevo al XIX Secolo. In Le Pitture Murali: Tecniche, Problemi, Conservazione; Centro Di: Firenze, Italy, 1990; pp. 73–102. [Google Scholar]
- Hess, M. Hess’s Paint Film Defects, Their Causes and Cure, 3rd ed.; Chapman and Hall: London, UK, 1979. [Google Scholar]
- Levison, H.W. Yellowing and Bleaching of Paint Films. J. Am. Inst. Conserv. 1985, 24, 69–76. [Google Scholar] [CrossRef]
- Mills, J.; White, R. Organic Mass-Spectrometry of Art Materials: Work in Progress. Natl. Gallery Technol. Bull. 1982, 6, 3–18. [Google Scholar]
- Manzano, E.; Rodriguez-Simón, L.R.; Navas, N.; Checa-Moreno, R.; Romero-Gámez, M.; Capitan-Vallvey, L.F. Study of the GC–MS Determination of the Palmitic–Stearic Acid Ratio for the Characterisation of Drying Oil in Painting: La Encarnación by Alonso Cano as a Case Study. Talanta 2011, 84, 1148–1154. [Google Scholar] [CrossRef]
- Schilling, M.; Khanjian, H.; Carson, D. Fatty Acid and Glycerol Content of Lipids; Effects of Ageing and Solvent Extraction on the Composition of Oil Paints. J. Technol. Archit. Environ. 1997, 5, 71–78. [Google Scholar]
- Manzano, E.; Rodríguez-Simón, L.R.; Navas, N.; Capitán-Vallvey, L.F. Non-Invasive and Spectroscopic Techniques for the Study of Alonso Cano’s Visitation from the Golden Age of Spain. Stud. Conserv. 2021, 66, 298–312. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F. (Eds.) Organic Materials in Art and Archaeology. In Organic Mass Spectrometry in Art and Archaeology; Wiley: Hoboken, NJ, USA, 2009; pp. 1–36. [Google Scholar] [CrossRef]
- Colombini, M.P.; Andreotti, A.; Bonaduce, I.; Modugno, F.; Ribechini, E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc. Chem. Res. 2010, 43, 715–727. [Google Scholar] [CrossRef]
- Bonaduce, I.; Carlyle, L.; Colombini, M.P.; Duce, C.; Ferrari, C.; Ribechini, E.; Selleri, P.; Tiné, M.R. New Insights into the Ageing of Linseed Oil Paint Binder: A Qualitative and Quantitative Analytical Study. PLoS ONE 2012, 7, e49333. [Google Scholar] [CrossRef]
- Schilling, M.; Carson, D.; Khanjian, H. Gas Chromatographic Determination of the Fatty Acid and Glycerol Content of Lipids. IV. Evaporation of Fatty Acids and the Formation of Ghost Images by Framed Oil Paintings. In Proceedings of the ICOM Committee for Conservation Preprints, 12th Triennial Meeting, Lyon, France, 29 August–3 September 1999; pp. 242–247. [Google Scholar]
- Tsakalof, A.K.; Bairachtari, K.A.; Chryssoulakis, I.D. Pitfalls in Drying Oils Identification in Art Objects by Gas Chromatography. J. Sep. Sci. 2006, 29, 1642–1646. [Google Scholar] [CrossRef]
- Rampazzi, L.; Cariati, F.; Tanda, G.; Colombini, M.P. Characterisation of Wall Paintings in the Sos Furrighesos Necropolis (Anela, Italy). J. Cult. Herit. 2002, 3, 237–240. [Google Scholar] [CrossRef]
- Tammekivi, E.; Vahur, S.; Vilbaste, M.; Leito, I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules 2021, 26, 2218. [Google Scholar] [CrossRef]
- Pitthard, V.; Griesser, M.; Stanek, S. Methodology and Application of GC-MS to Study Altered Organic Binding Media from Objects of the Kunsthistorisches Museum, Vienna. Ann. Chim. 2006, 96, 561–573. [Google Scholar] [CrossRef]
- Wei, S. A Study of Natural Organic Binding Media Used in Artworks and of Their Ageing Behaviour by GC/FID and GC/MS. Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2007. [Google Scholar]
- Pitthard, V.; Finch, P.; Bayerová, T. Direct Chemolysis-Gas Chromatography-Mass Spectrometry for Analysis of Paint Materials. J. Sep. Sci. 2004, 27, 200–208. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F.; Giacomelli, M.; Francesconi, S. Characterisation of Proteinaceous Binders and Drying Oils in Wall Painting Samples by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 1999, 846, 113–124. [Google Scholar] [CrossRef]
- Schlenk, H.; Gellerman, J.L. Esterification of Fatty Acids with Diazomethane on a Small Scale. Anal. Chem. 1960, 32, 1412–1414. [Google Scholar] [CrossRef]
- Glastrup, J. A Note on the Analysis of the Binding Medium from a Phoenician Shipwreck. Stud. Conserv. 1995, 40, 65–68. [Google Scholar] [CrossRef]
- Blau, K.; Halket, M.J. Handbook of Derivatives for Chromatography, 2nd ed.; John Wiley & Sons: Chichester, UK, 1993. [Google Scholar]
- Seppänen-Laakso, T.; Laakso, I.; Hiltunen, R. Analysis of Fatty Acids by Gas Chromatography, and Its Relevance to Research on Health and Nutrition. Anal. Chim. Acta 2002, 465, 39–62. [Google Scholar] [CrossRef]
- Eder, K. Gas Chromatographic Analysis of Fatty Acid Methyl Esters. J. Chromatogr. B Biomed. Sci. App. 1995, 671, 113–131. [Google Scholar] [CrossRef]
- Pitthard, V.; Stanek, S.; Griesser, M.; Muxeneder, T. Gas Chromatography—Mass Spectrometry of Binding Media from Early 20th Century Paint Samples from Arnold Schönberg’s Palette. Chromatographia 2005, 62, 175–182. [Google Scholar] [CrossRef]
- Challinor, J.M. Review: The Development and Applications of Thermally Assisted Hydrolysis and Methylation Reactions. J. Anal. Appl. Pyrolysis 2001, 61, 3–34. [Google Scholar] [CrossRef]
- MACHEREY-NAGEL GmbH & Co., KG. Available online: https://www.mn-net.com/gc-column-nonpolar-low-polar-optima-5-ms-30-m-l-0.25-mm-id-0.25-m-df-726220.30 (accessed on 14 February 2024).
- Agilent Technologies. Available online: https://www.agilent.com/en/product/gc-columns/low-bleed-gc-ms-columns/db-5ms-columns (accessed on 14 February 2024).
- Izzo, F.C. 20th Century Artist’s Oil Paints: A Chemical-Physical Survey. Ph.D. Thesis, Ca’ Foscari University, Venice, Italy, 2011. [Google Scholar]
- Colombini, M.P.; Modugno, F.; Menicagli, E.; Fuoco, R.; Giacomelli, A. GC-MS Characterization of Proteinaceous and Lipid Binders in UV Aged Polychrome Artifacts. Microchem. J. 2000, 67, 291–300. [Google Scholar] [CrossRef]
- Degano, I.; La Nasa, J.; Ghelardi, E.; Modugno, F.; Colombini, M.P. Model Study of Modern Oil-Based Paint Media by Triacylglycerol Profiling in Positive and Negative Ionization Modes. Talanta 2016, 161, 62–70. [Google Scholar] [CrossRef]
- Pitthard, V.; Griesser, M.; Stanek, S.; Bayerova, T. Study of Complex Organic Binding Media Systems on Artworks Applying GC-MS Analysis: Selected Examples from the Kunsthistorisches Museum, Vienna. Macromol. Symp. 2006, 238, 37–45. [Google Scholar] [CrossRef]
- Antova, G.A.; Gerzilov, V.T.; Petkova, Z.Y.; Boncheva, V.N.; Bozhichkova, I.N.; St Penkov, D.; Petrov, P.B. Comparative Analysis of Nutrient Content and Energy of Eggs from Different Chicken Genotypes. J. Sci. Food Agric. 2019, 99, 5890–5898. [Google Scholar] [CrossRef]
- Andreotti, A.; Bonaduce, I.; Colombini, M.P.; Gautier, G.; Modugno, F.; Ribechini, E. Combined GC/MS Analytical Procedure for the Characterization of Glycerolipid, Waxy, Resinous, and Proteinaceous Materials in a Unique Paint Microsample. Anal. Chem. 2006, 78, 4490–4500. [Google Scholar] [CrossRef]
- Serefidou, M.; Bracci, S.; Tapete, D.; Andreotti, A.; Biondi, L.; Colombini, M.P.; Giannini, C.; Parenti, D. Microchemical and Microscopic Characterization of the Pictorial Quality of Egg-Tempera Polyptych, Late 14th Century, Florence, Italy. Microchem. J. 2016, 127, 187–198. [Google Scholar] [CrossRef]
- Mills, J.S.; White, R. The Identification of Paint Media from the Analysis of Their Sterol Composition: A Critical View. Stud. Conserv. 1975, 20, 176. [Google Scholar] [CrossRef]
- Van Den Brink, O.F.; Ferreira, E.S.B.; Van Der Horst, J.; Boon, J.J. A Direct Temperature-Resolved Tandem Mass Spectrometry Study of Cholesterol Oxidation Products in Light-Aged Egg Tempera Paints with Examples from Works of Art. Int. J. Mass. Spectrom. 2009, 284, 12–21. [Google Scholar] [CrossRef]
- Boon, J.J.; Peulvé, S.; Van Den Brink, O.F.; Duursma, M.; Rainford, D. Molecular Aspects of Mobile and Stationary Phases in Ageing Tempera and Oil Paint Films. In Early Italian Paintings—Techniques and Analysis; Bakkenist, T., Hoppenbrouwers, R., Dubois, H., Eds.; Limburg Conservation Institute: Maastricht, The Netherlands, 1997; pp. 35–56. [Google Scholar]
- Buckley, S.A.; Stott, A.W.; Evershed, R.P. Studies of Organic Residues from Ancient Egyptian Mummies Using High Temperature-Gas Chromatography-Mass Spectrometry and Sequential Thermal Desorption-Gas Chromatography-Mass Spectrometry and Pyrolysis-Gas Chromatography-Mass Spectrometry. Analys 1999, 124, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Herchi, W.; Harrabi, S.; Sebei, K.; Rochut, S.; Boukhchina, S.; Pepe, C.; Kallel, H. Phytosterols Accumulation in the Seeds of Linum usitatissimum L. Plant Physiol. Biochem. 2009, 47, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Rubner-Institut, M. Fatty Acid Composition, Tocopherol and Sterol Contents in Linseed (Linum usitatissimum L.) Varieties. Iran. J. Chem. Chem. Eng. 2017, 36, 147–152. [Google Scholar]
- Colombini, M.P.; Modugno, F.; Giacomelli, A. Two Procedures for Suppressing Interference from Inorganic Pigments in the Analysis by Gas Chromatography–Mass Spectrometry of Proteinaceous Binders in Paintings. J. Chromatogr. A 1999, 846, 101–111. [Google Scholar] [CrossRef]
- Cennini d’Andrea, C.; Thompson, D.V. The Craftman’s Handbook: The Italian “Il Libro Dell’Arte”; Dover Publications, Inc.: New York, NY, USA, 1954. [Google Scholar]
- Jarque, C.M.; Bera, A.K. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. A Test for Normality of Observations and Regression Residuals. Int. Stat. Rev./Rev. Int. Stat. 1987, 55, 163. [Google Scholar] [CrossRef]
- Kolmogorov, A. Sulla Determinazione Empirica Di Una Legge Di Distribuzione. G. Dell’ist. Ital. Degli Attuari 1933, 4, 83–91. [Google Scholar]
- Smirnov, N. Sur Les Ecarts de La Courbe de Distribution Empirique. Recl. Mathématique (Mat. Sb.) 1939, 6, 3–26. [Google Scholar]
- Poulin, J. A New Methodology for the Characterisation of Natural Dyes on Museum Objects Using Gas Chromatography–Mass Spectrometry. Stud. Conserv. 2018, 63, 36–61. [Google Scholar] [CrossRef]
GC-MS 1 | GC-MS 2 | |||||||
---|---|---|---|---|---|---|---|---|
LO | NA | UV1 | UV2 | UV3 | NA | UV1 | UV2 | UV3 |
P/S | 1.3 ± 0.1 | 1.3 ± 0.2 | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 |
A/P | 0.4 ± 0.1 | 0.7 ± 0.3 | 0.9 ± 0.3 | 0.8 ± 0.3 | 0.2 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.2 |
O/S | 1.8 ± 0.4 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.3 | 2.2 ± 0.5 | 0.3 ± 0.1 | 0.19 ± 0.06 | 0.11 ± 0.07 |
A/Su | 3.8 ± 1.1 | 1.8 ± 0.4 | 1.9 ± 0.4 | 1.9 ± 0.3 | 4.2 ± 1.3 | 2.1 ± 0.4 | 2.4 ± 0.4 | 2.1 ± 0.4 |
∑D | 9.0 ± 3.5 | 13.4 ± 3.2 | 22.5 ± 3.3 | 25.7 ± 4.8 | 6.0 ± 2.6 | 29.5 ± 4.7 | 31.3 ± 7.3 | 35.4 ± 4.0 |
Egg | NA | UV1 | UV2 | UV3 | NA | UV1 | UV2 | UV3 |
P/S | 1.9 ± 0.2 | 1.8 ± 0.3 | 1.8 ± 0.3 | 1.8 ± 0.3 | 2.8 ± 0.4 | 2.9 ± 0.3 | 2.7 ± 0.3 | 2.9 ± 0.2 |
A/P | 0.07 ± 0.01 | 0.2 ± 0.1 | 0.2 ± 0.05 | 0.2 ± 0.1 | 0.02 ± 0.01 | 0.12 ± 0.03 | 0.1 ± 0.04 | 0.13 ± 0.03 |
O/S | 2.7 ± 0.3 | 0.2 ± 0.1 | 0.2 ± 0.05 | 0.2 ± 0.1 | 4.0 ± 0.8 | 0.05 ± 0.03 | 0.04 ± 0.02 | 0.05 ± 0.02 |
A/Su | 3.1 ± 0.6 | 1.4 ± 0.2 | 1.3 ± 0.2 | 1.2 ± 0.1 | 4.4 ± 0.6 | 1.3 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.3 |
∑D | 2.0 ± 0.8 | 7.4 ± 3.1 | 7.9 ± 2.7 | 9.3 ± 2.1 | 0.9 ± 0.7 | 12.2 ± 1.9 | 13.5 ± 1.7 | 13.5 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nádvorníková, J.; Pitthard, V.; Kurka, O.; Kučera, L.; Barták, P. Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis. Molecules 2024, 29, 1520. https://doi.org/10.3390/molecules29071520
Nádvorníková J, Pitthard V, Kurka O, Kučera L, Barták P. Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis. Molecules. 2024; 29(7):1520. https://doi.org/10.3390/molecules29071520
Chicago/Turabian StyleNádvorníková, Jana, Václav Pitthard, Ondřej Kurka, Lukáš Kučera, and Petr Barták. 2024. "Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis" Molecules 29, no. 7: 1520. https://doi.org/10.3390/molecules29071520
APA StyleNádvorníková, J., Pitthard, V., Kurka, O., Kučera, L., & Barták, P. (2024). Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis. Molecules, 29(7), 1520. https://doi.org/10.3390/molecules29071520