Synthesis of Benzofuro[3,2-b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Experimental Procedures for Synthesis of Compounds 3 (Scheme 2 and Scheme 3)
- 10a-Methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3aa): white solid; 41.6 mg, 95% yield; m.p. 203.1–204.0 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.38 (m, 1H), 7.16 (m, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.58 (s, 1H), 6.38 (d, J = 11.7 Hz, 1H), 5.50 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.88 (dd, J = 18.1, 6.2 Hz, 1H), 2.58 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.3, 158.1, 148.3, 143.9, 140.1, 131.5, 130.1, 127.6, 127.3, 126.7, 125.1, 123.9, 119.8, 110.1, 71.0, 64.5, 52.6, 32.8, 22.2, 21.0; HRMS (ESI) m/z [M + H]+ Calcd for C22H21N2O6S: 441.1115; found 441.1116.
- 10a-Ethyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ba): white solid; 29.1 mg, 64% yield; m.p. 192.5–193.2 °C; 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.33 (m, 1H), 7.11 (m, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.56 (d, J = 10.5 Hz, 1H), 6.24 (s, 1H), 5.67 (d, J = 10.5 Hz, 1H), 3.55 (d, J = 6.2 Hz, 1H), 2.87 (d, J = 18.3 Hz, 1H), 2.57 (dd, J = 18.3, 6.4 Hz, 1H), 2.48 (s, 3H), 2.06 (m, 1H), 1.85 (m, 1H), 0.69 (t, J = 7.4 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.2, 158.6, 147.4, 144.4, 140.4, 131.8, 130.2, 129.2, 128.7, 127.1, 124.5, 124.3, 119.8, 110.5, 72.4, 68.4, 51.3, 34.2, 29.0, 21.8, 8.9; HRMS (ESI) m/z: [M + Na]+ Calcd for C23H22N2O6SNa: 477.1091, found 477.1064.
- 10a-Butyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ca): white solid; 41.6 mg, 86% yield; m.p. 182.8–183.6 °C; 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.33 (m, 1H), 7.11 (m, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.56 (d, J = 10.5 Hz, 1H), 6.24 (s, 1H), 5.67 (d, J = 10.5 Hz, 1H), 3.55 (d, J = 6.2 Hz, 1H), 2.87 (d, J = 18.3 Hz, 1H), 2.57 (dd, J = 18.3, 6.4 Hz, 1H), 2.48 (s, 3H), 2.06 (m, 1H), 1.85 (m, 1H), 0.69 (t, J = 7.4 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.2, 158.5, 147.6, 144.4, 140.3, 131.8, 130.1, 128.8, 128.7, 127.1, 124.5, 124.3, 119.7, 110.4, 72.3, 68.0, 51.5, 36.0, 34.1, 26.6, 22.9, 21.7, 13.6; HRMS (ESI) m/z: [M + H]+ Calcd for C25H27N2O6S: 483.1584, found 483.1587.
- 10a-Cyclopropyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3da): white solid; 44.2 mg, 95% yield; m.p. 231.5–232.3 °C; 1H NMR (400 MHz, CDCl3) δ 7.92 (m, 3H), 7.34 (m, 3H), 7.12 (m, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.32 (s, 1H), 6.28 (d, J = 10.5 Hz, 1H), 5.67 (d, J = 10.5 Hz, 1H), 3.65 (d, J = 5.8 Hz, 1H), 2.82 (d, J = 18.1 Hz, 1H), 2.66 (dd, J = 18.2, 6.2 Hz, 1H), 2.46 (s, 3H), 0.58 (t, J = 6.9 Hz, 2H), 0.48 (m, 1H), 0.28 (m, 1H), 0.17–0.09 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.3, 158.4, 144.3, 142.3, 140.5, 131.8, 131.6, 129.9, 128.4, 127.1, 124.7, 124.3, 119.6, 110.4, 72.5, 67.8, 55.3, 33.6, 21.7, 16.5, 3.4, 2.1; HRMS (ESI) m/z: [M + H]+ Calcd for C24H23N2O6S: 467.1271, found 467.1272.
- 4b-Nitro-10-tosyl-10a-vinyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ea): white solid; 29.0 mg, 64% yield; m.p. 194.9–195.7 °C; 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.9 Hz, 2H), 7.36 (m, 3H), 7.14 (m, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.55 (d, J = 10.4 Hz, 1H), 6.25 (s, 1H), 5.79 (d, J = 10.4 Hz, 1H), 5.52 (dd, J = 17.2, 10.4 Hz, 1H), 5.30 (d, J = 10.4 Hz, 1H), 5.20 (d, J = 17.3 Hz, 1H), 3.51 (d, J = 5.4 Hz, 1H), 2.76 (d, J = 17.8 Hz, 1H), 2.48 (s, 3H), 2.43 (dd, J = 17.9, 6.0 Hz, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.2, 158.5, 144.5, 144.3, 139.7, 134.3, 131.9, 130.5, 130.0, 128.5, 127.5, 124.4, 124.3, 121.3, 119.6, 110.6, 72.0, 68.1, 53.1, 32.3, 21.8; HRMS (ESI) m/z: [M + H]+ Calcd for C23H21N2O6S: 453.1115, found 453.1116.
- 4b-Nitro-10a-phenyl-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3fa): white solid; 17.7 mg, 35% yield; m.p. 245.3–245.8 °C; 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.6 Hz, 1H), 7.37 (m, 1H), 7.28 (d, J = 10.9 Hz, 1H), 7.26–7.07 (m, 5H), 6.98 (m, 6H), 6.36 (s, 1H), 5.86 (d, J = 10.5 Hz, 1H), 4.08 (d, J = 4.4 Hz, 1H), 2.73 (d, J = 17.8 Hz, 1H), 2.40 (s, 3H), 2.19 (dd, J = 17.8, 5.7 Hz, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.2, 158.9, 146.1, 143.6, 138.9, 133.8, 131.9, 130.1, 129.4, 129.3, 129.0, 128.1, 127.2, 124.3, 124.3, 118.9, 110.4, 73.2, 68.5, 56.6, 32.6, 21.6; HRMS (ESI) m/z: [M + H]+ Calcd for C27H23N2O6S: 503.1271, found 503.1275.
- 10a-Methyl-10-(methylsulfonyl)-4b-nitro-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ga): white solid; 35.8 mg, 98% yield; m.p. 186.1–186.5 °C; 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.6 Hz, 1H), 7.32 (m, 1H), 7.09 (m, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.47 (d, J = 10.4 Hz, 1H), 5.94 (s, 1H), 5.59 (d, J = 10.4 Hz, 1H), 3.61 (d, J = 5.7 Hz, 1H), 3.26 (s, 3H), 2.92 (d, J = 18.0 Hz, 1H), 2.71 (dd, J = 18.0, 6.1 Hz, 1H), 1.93 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.5, 158.4, 148.3, 131.9, 128.1, 128.0, 124.3, 123.7, 119.8, 110.6, 71.3, 64.8, 54.1, 44.5, 33.1, 23.9; HRMS (ESI) m/z: [M + H]+ Calcd for C16H17N2O6S: 365.0802, found 365.0806.
- 10-((2-Fluorophenyl)sulfonyl)-10a-methyl-4b-nitro-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ha): white solid; 42.8 mg, 96% yield; m.p. 224.9–225.6 °C; 1H NMR (400 MHz, CDCl3) δ 8.00 (m, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.68 (m, 1H), 7.40–7.30 (m, 3H), 7.13 (m, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 10.4 Hz, 1H), 6.34 (s, 1H), 5.61 (d, J = 10.4 Hz, 1H), 3.57 (d, J = 5.8 Hz, 1H), 2.89 (d, J = 18.1 Hz, 1H), 2.60 (dd, J = 18.1, 6.2 Hz, 1H), 1.47 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.7, 158.9 (d, JCF = 255.4 Hz), 158.6, 148.2, 135.8 (d, JCF = 8.7 Hz), 131.9, 130.9 (d, JCF = 13.5 Hz), 129.9, 128.2 (d, JCF = 29.3 Hz), 125.0 (d, JCF = 3.7 Hz), 124.3, 124.3, 119.6, 117.6 (d, JCF = 21.4 Hz), 110.5, 71.2 (d, JCF = 7.2 Hz), 64.6, 52.8, 32.9, 23.3; HRMS(ESI) m/z: [M + H]+ Calcd for C21H18FN2O6S:445.0864, found 445.0865.
- 10-((4-(tert-Butyl)phenyl)sulfonyl)-10a-methyl-4b-nitro-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ia): white solid; 37.3 mg, 77% yield; m.p. 239.7–240.5 °C; 1H NMR (400 MHz, CDCl3) δ 7.90 (m, 3H), 7.60 (d, J = 8.1 Hz, 2H), 7.34 (m, 1H), 7.13 (m, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 10.4 Hz, 1H), 6.27 (s, 1H), 5.56 (d, J = 10.4 Hz, 1H), 3.45 (d, J = 5.6 Hz, 1H), 2.86 (d, J = 18.1 Hz, 1H), 2.58 (dd, J = 18.1, 6.1 Hz, 1H), 1.50 (s, 3H), 1.38 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.7, 158.4, 157.3, 148.6, 140.2, 131.8, 128.2, 127.8, 126.6, 126.6, 124.3, 124.3, 119.8, 110.5, 72.3, 64.5, 53.8, 35.4, 32.9, 31.2, 23.0; HRMS (ESI) m/z: [M + H]+ Calcd for C25H27N2O6S: 483.1584, found 483.1591.
- 10a-Methyl-4b-nitro-10-((2,4,6-triisopropylphenyl)sulfonyl)-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ja): white solid; 51.0 mg, 92% yield; m.p. 204.7–205.6 °C; 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.6 Hz, 1H), 7.32 (m, 1H), 7.24 (s, 2H), 7.10 (m, 1H), 6.99 (d, J = 10.5 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.24 (s, 1H), 5.59 (d, J = 10.5 Hz, 1H), 4.16 (m, 2H), 3.44 (d, J = 5.5 Hz, 1H), 2.93 (dd, J = 15.9, 9.1 Hz, 2H), 2.61 (dd, J = 18.2, 6.0 Hz, 1H), 1.32 (d, J = 6.7 Hz, 12H), 1.28 (d, J = 6.9 Hz, 6H), 1.24 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.0, 158.7, 154.3, 151.0, 147.5, 134.2, 131.7, 128.6, 128.5, 124.4, 124.1, 123.7, 119.2, 110.3, 71.1, 64.1, 53.1, 34.2, 32.8, 29.6, 25.2, 24.4, 23.9, 23.6, 23.5; HRMS (ESI) m/z: [M + H]+ Calcd for C30H37N2O6S: 553.2367, found 553.2369.
- 10a-Methyl-10-(naphthalen-2-ylsulfonyl)-4b-nitro-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ka): white solid; 45.4 mg, 95% yield; m.p. 167.9–168.5 °C; 1H NMR (400 MHz, CDCl3) δ 8.57 (s, 1H), 8.07 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.95 (m, 3H), 7.69 (m, 2H), 7.36 (m, 1H), 7.16 (m, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 10.4 Hz, 1H), 6.38 (s, 1H), 5.57 (d, J = 10.4 Hz, 1H), 3.43 (d, J = 5.7 Hz, 1H), 2.86 (d, J = 18.1 Hz, 1H), 2.55 (dd, J = 18.1, 6.1 Hz, 1H), 1.48 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.6, 158.5, 148.5, 140.0, 135.1, 132.3, 132.0, 130.2, 129.5, 129.5, 128.3, 128.3, 128.2, 128.1, 127.9, 124.5, 124.2, 121.7, 119.8, 110.6, 72.6, 64.6, 54.0, 32.9, 23.1; HRMS (ESI) m/z: [M + H]+ Calcd for C25H21N2O6S: 477.1115, found 477.1125.
- 10a-Methyl-4b-nitro-10-(thiophen-2-ylsulfonyl)-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3la): white solid; 30.8 mg, 71% yield; m.p. 190.4–191.1 °C; 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 2.6 Hz, 1H), 7.70 (d, J = 4.9 Hz, 1H), 7.35 (m, 1H), 7.19–7.08 (m, 2H), 6.88 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 10.3 Hz, 1H), 6.16 (s, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.51 (d, J = 5.7 Hz, 1H), 2.87 (d, J = 18.1 Hz, 1H), 2.63 (dd, J = 18.1, 6.2 Hz, 1H), 1.71 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.5, 158.4, 148.3, 143.6, 132.8, 132.7, 132.0, 128.1, 127.8, 127.6, 124.3, 123.9, 119.7, 110.6, 71.6, 65.3, 53.4, 32.9, 22.7; HRMS (ESI) m/z: [M + H]+ Calcd for C19H17N2O6S2: 433.0523, found 433.0524.
- 9-Fluoro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ab): white solid; 35.0 mg, 76% yield; m.p. 207.8–208.7 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.92 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.43 (m, 1H), 6.96 (m, 1H), 6.82 (s, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.31 (d, J = 10.4 Hz, 1H), 5.45 (d, J = 10.3 Hz, 1H), 3.46 (d, J = 5.8 Hz, 1H), 2.88 (dd, J = 18.2, 6.1 Hz, 1H), 2.56 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.52 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.1, 159.8 (d, JCF = 7.5 Hz), 159.1 (d, JCF = 255.2 Hz), 148.7, 144.1, 139.5, 133.6 (d, JCF = 8.9 Hz), 130.1, 127.4, 127.1, 120.5, 112.1 (d, JCF = 20.4 Hz), 111.1 (d, JCF = 20.6 Hz), 106.4 (d, JCF = 3.7 Hz), 69.3, 65.1, 53.1, 32.9, 22.1, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20FN2O6S: 459.1021, found 459.1027.
- 8,10a-Dimethyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ac): white solid; 42.2 mg, 93% yield; m.p. 227.7–228.6 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 8.3 Hz, 2H), 7.53 (s, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.52 (s, 1H), 6.40 (d, J = 10.3 Hz, 1H), 5.51 (d, J = 10.3 Hz, 1H), 3.57 (d, J = 5.9 Hz, 1H), 2.87 (dd, J = 18.1, 6.1 Hz, 1H), 2.57 (d, J = 18.0 Hz, 1H), 2.44 (s, 3H), 2.30 (s, 3H), 1.45 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.3, 156.2, 148.3, 143.9, 140.2, 132.9, 131.9, 130.1, 127.7, 127.3, 126.7, 125.0, 120.0, 109.7, 71.1, 64.5, 52.6, 32.8, 22.2, 21.0, 20.6; HRMS (ESI) m/z: [M + H]+ Calcd for C23H23N2O6S: 455.1271, found 455.1270.
- 8-(tert-Butyl)-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ad): white solid; 44.8 mg, 90% yield; m.p. 228.9–229.5 °C; 1H NMR (400 MHz, CDCl3) δ 7.93–7.83 (m, 3H), 7.37 (m, 3H), 6.79 (d, J = 8.6 Hz, 1H), 6.48 (d, J = 10.4 Hz, 1H), 6.22 (s, 1H), 5.58 (d, J = 10.4 Hz, 1H), 3.42 (d, J = 5.5 Hz, 1H), 2.84 (d, J = 18.1 Hz, 1H), 2.57 (dd, J = 18.1, 6.1 Hz, 1H), 2.47 (s, 3H), 1.52 (s, 3H), 1.32 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.7, 156.3, 148.5, 147.7, 144.4, 140.4, 130.2, 128.9, 127.8, 126.9, 125.0, 123.9, 120.3, 109.8, 72.4, 64.6, 53.8, 34.8, 32.9, 31.7, 23.2, 21.7; HRMS (ESI) m/z: [M + Na]+ Calcd for C26H28N2O6SNa: 519.1560, found 519.1568.
- 8-Methoxy-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ae): white solid; 43.4 mg, 92% yield; m.p. 223.7–224.3 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 2.6 Hz, 1H), 6.95 (m, 1H), 6.85 (d, J = 8.9 Hz, 1H), 6.53 (s, 1H), 6.43 (d, J = 10.4 Hz, 1H), 5.53 (d, J = 10.3 Hz, 1H), 3.73 (s, 3H), 3.56 (d, J = 5.8 Hz, 1H), 2.87 (dd, J = 18.1, 6.1 Hz, 1H), 2.56 (d, J = 18.0 Hz, 1H), 2.44 (s, 3H), 1.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.7, 156.1, 152.5, 148.7, 144.4, 140.5, 130.5, 127.8, 127.1, 126.4, 120.7, 117.1, 113.1, 111.0, 71.7, 65.1, 56.1, 53.1, 33.3, 22.7, 21.5; HRMS (ESI) m/z: [M + H]+ Calcd for C23H23N2O7S: 471.1220, found 471.1219.
- 8-Fluoro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3af): white solid; 39.8 mg, 87% yield; m.p. 209.2–210.0 °C; 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.44 (m, 1H), 7.25 (m, 1H), 6.98 (m, 1H), 6.60 (s, 1H), 6.46 (m, 1H), 5.55 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.89 (dd, J = 18.1, 6.2 Hz, 1H), 2.58 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.45 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 193.2, 158.2 (d, JCF = 238.8 Hz), 154.3 (d, JCF = 1.6 Hz), 148.2, 144.1, 139.9, 130.1, 127.5, 126.8 (d, J = 9.0 Hz), 126.7, 120.4, 118.3 (d, JCF = 24.7 Hz), 114.1 (d, JCF = 26.2 Hz), 111.4 (d, JCF = 8.6 Hz), 70.8 (d, JCF = 2.0 Hz), 64.8, 52.7, 32.8, 22.2, 21.0; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20FN2O6S: 459.1021, found 459.1012.
- 8-Chloro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ag): white solid; 39.5 mg, 83% yield; m.p. 231.2–231.8 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 2.2 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.45 (m, 1H), 7.00 (d, J = 8.7 Hz, 1H), 6.46 (m, 1H), 5.56 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.90 (dd, J = 18.1, 6.2 Hz, 1H), 2.58 (d, J = 18.0 Hz, 1H), 2.44 (s, 3H), 1.46 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.2, 156.9, 148.2, 144.1, 139.8, 131.4, 130.1, 127.5, 127.4, 127.2, 126.7, 120.1, 111.9, 70.6, 64.8, 52.7, 32.7, 22.1, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20ClN2O6S: 475.0725, found 475.0733.
- 8-Bromo-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ah): white solid; 43.7 mg, 84% yield; m.p. 214.6–215.1 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 2.0 Hz, 1H), 7.57 (m, 1H), 7.50 (d, J = 8.2 Hz, 2H), 6.95 (d, J = 8.7 Hz, 1H), 6.61 (s, 1H), 6.46 (d, J = 10.3 Hz, 1H), 5.56 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.89 (dd, J = 18.1, 6.2 Hz, 1H), 2.58 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.46 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 193.2, 157.4, 148.2, 144.1, 139.8, 134.2, 130.1, 130.0, 127.9, 127.5, 126.7, 120.0, 115.0, 112.4, 70.5, 64.8, 52.6, 32.7, 22.1, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20BrN2O6S: 519.0220, found 519.0187.
- 10a-Methyl-4b,8-dinitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ai): white solid; 29.7 mg, 61% yield; m.p. 242.3–243.0 °C; 1H NMR (400 MHz, CDCl3) δ 8.78 (s, 1H), 8.31 (d, J = 8.9 Hz, 1H), 7.87 (d, J = 7.8 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.01 (d, J = 8.9 Hz, 1H), 6.61 (d, J = 10.3 Hz, 1H), 6.26 (s, 1H), 5.61 (d, J = 10.3 Hz, 1H), 3.47 (d, J = 5.7 Hz, 1H), 2.88 (d, J = 18.1 Hz, 1H), 2.63 (dd, J = 18.1, 6.0 Hz, 1H), 2.49 (s, 3H), 1.54 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.1, 162.5, 148.4, 145.0, 144.9, 139.7, 130.4, 128.6, 128.1, 126.9, 126.1, 124.9, 120.6, 111.1, 71.0, 64.9, 53.6, 32.8, 23.1, 21.7; HRMS (ESI) m/z: [M + Na]+ Calcd for C22H19N3O8SNa: 508.0785, found 508.0792.
- 7,10a-Dimethyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3aj): white solid; 42.4 mg, 93% yield; m.p. 238.0–238.6 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 6.97 (d, J = 7.8 Hz, 1H), 6.75 (s, 1H), 6.50 (s, 1H), 6.40 (d, J = 10.3 Hz, 1H), 5.53 (d, J = 10.3 Hz, 1H), 3.58 (d, J = 5.9 Hz, 1H), 2.88 (dd, J = 18.1, 6.2 Hz, 1H), 2.57 (d, J = 18.0 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 3H), 1.43 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.8, 158.9, 148.7, 144.3, 142.3, 140.6, 130.5, 127.8, 127.7, 127.1, 125.1, 122.6, 120.5, 110.9, 71.3, 64.8, 52.9, 33.2, 22.7, 21.5, 21.5; HRMS (ESI) m/z: [M + H]+ Calcd for C23H23N2O6S: 455.1271, found 455.1270.
- 7-Methoxy-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ak): white solid; 43.1 mg, 92% yield; m.p. 229.6–230.2 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 6.72 (m, 1H), 6.52 (d, J = 2.1 Hz, 1H), 6.46 (s, 1H), 6.43 (d, J = 10.3 Hz, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.75 (s, 3H), 3.58 (d, J = 6.0 Hz, 1H), 2.88 (dd, J = 18.2, 6.2 Hz, 1H), 2.57 (d, J = 18.1 Hz, 1H), 2.43 (s, 3H), 1.43 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.7, 162.7, 160.0, 148.8, 144.3, 140.6, 130.5, 128.5, 127.7, 127.1, 120.9, 117.3, 110.6, 96.4, 71.1, 64.7, 56.2, 52.9, 33.2, 22.7, 21.5; HRMS (ESI) m/z: [M + H]+ Calcd for C23H23N2O7S: 471.1220, found 471.1222.
- 7-Fluoro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3al): white solid; 38.1 mg, 83% yield; m.p. 223.0–223.6 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.74 (m, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.01 (m, 1H), 6.95 (m, 1H), 6.57 (s, 1H), 6.47–6.38 (m, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.60 (d, J = 5.9 Hz, 1H), 2.90 (dd, J = 18.2, 6.2 Hz, 1H), 2.58 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.45 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.17, 163.99 (d, JCF = 246.7 Hz), 159.10 (d, JCF = 13.7 Hz), 148.33, 144.00, 140.01, 130.08, 128.80 (d, JCF = 10.6 Hz), 127.4, 126.7, 121.5 (d, JCF = 2.6 Hz), 120.5, 110.9 (d, JCF = 22.9 Hz), 98.7 (d, JCF = 27.6 Hz), 70.3, 64.5, 52.6, 32.7, 22.2, 21.0; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20FN2O6S: 459.1021, found 459.1013.
- 7-Chloro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3am): white solid; 39.3 mg, 83% yield; m.p. 253.1–253.5 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.25 (m, 1H), 7.15 (d, J = 1.6 Hz, 1H), 6.59 (s, 1H), 6.42 (m, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.90 (dd, J = 18.2, 6.2 Hz, 1H), 2.57 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.2, 158.8, 148.3, 144.0, 139.9, 135.6, 130.1, 128.7, 127.5, 126.7, 124.5, 124.2, 120.2, 110.6, 70.3, 64.6, 52.6, 32.7, 22.1, 21.0; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20ClN2O6S: 475.0725, found 475.0731.
- 7-Bromo-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3an): white solid; 43.5 mg, 84% yield; m.p. 253.4–254.1 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.39 (m, 1H), 7.26 (d, J = 1.4 Hz, 1H), 6.57 (s, 1H), 6.43 (d, J = 10.3 Hz, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H), 2.90 (dd, J = 18.2, 6.2 Hz, 1H), 2.58 (d, J = 18.0 Hz, 1H), 2.44 (s, 3H), 1.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.2, 158.8, 148.3, 144.0, 139.9, 130.1, 129.1, 127.5, 127.1, 126.7, 124.9, 123.8, 120.1, 113.4, 70.4, 64.6, 52.6, 32.7, 22.1, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20BrN2O6S: 519.0220, found 519.0242.
- 6,10a-Dimethyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ao): white solid; 43.3 mg, 95% yield; m.p. 215.6–216.2 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.48 (s, 2H), 7.21 (d, J = 7.4 Hz, 1H), 7.04 (m, 1H), 6.57 (s, 1H), 6.34 (d, J = 9.0 Hz, 1H), 5.50 (d, J = 10.3 Hz, 1H), 3.57 (d, J = 5.8 Hz, 1H), 2.89 (dd, J = 17.9, 6.0 Hz, 1H), 2.62 (d, J = 17.8 Hz, 1H), 2.44 (s, 3H), 2.06 (s, 3H), 1.43 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.7, 156.6, 148.2, 143.9, 140.2, 132.2, 130.0, 127.3, 126.7, 124.8, 124.5, 123.7, 120.1, 119.4, 71.4, 64.4, 52.8, 33.0, 22.1, 21.0, 14.1; HRMS (ESI) m/z: [M + Na]+ Calcd for C23H22N2O6SNa: 477.1091, found 477.1094.
- 6-(tert-Butyl)-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ap): white solid; 43.8 mg, 88% yield; m.p. 210.6–211.5 °C; 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.7 Hz, 1H), 7.01 (m, 1H), 6.52 (d, J = 10.3 Hz, 1H), 6.10 (s, 1H), 5.54 (d, J = 10.3 Hz, 1H), 3.39 (d, J = 6.5 Hz, 1H), 2.81 (d, J = 18.8 Hz, 1H), 2.53 (dd, J = 18.8, 6.7 Hz, 1H), 2.40 (s, 3H), 1.44 (s, 3H), 1.24 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.3, 156.2, 149.3, 144.4, 140.5, 134.9, 130.3, 128.8, 128.0, 126.9, 125.9, 125.0, 124.4, 120.0, 71.9, 64.5, 53.3, 34.3, 32.3, 29.9, 23.5, 21.7; HRMS (ESI) m/z: [M + Na]+ Calcd for C26H28N2O6SNa: 519.1560, found 519.1567.
- 6-Methoxy-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3aq): white solid; 44.2 mg, 94% yield; m.p. 232.4–233.0 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 6.8 Hz, 1H), 7.09 (d, J = 6.8 Hz, 2H), 6.57 (s, 1H), 6.36 (d, J = 10.4 Hz, 1H), 5.54 (d, J = 10.3 Hz, 1H), 3.77 (s, 3H), 3.57 (d, J = 5.9 Hz, 1H), 2.86 (dd, J = 18.3, 6.2 Hz, 1H), 2.59 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.43 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 192.9, 148.1, 146.6, 144.0, 143.9, 140.1, 130.1, 127.3, 126.7, 126.3, 124.6, 120.0, 118.9, 115.1, 71.4, 64.5, 56.4, 52.4, 32.5, 22.3, 21.0; HRMS (ESI) m/z: [M + H]+ Calcd for C23H23N2O7S:471.1220, found 471.1221.
- 6-Ethoxy-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3ar): white solid; 41.5 mg, 86% yield; m.p. 218.9–219.4 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.31 (m, 1H), 7.11–7.00 (m, 2H), 6.57 (s, 1H), 6.36 (d, J = 10.3 Hz, 1H), 5.52 (d, J = 10.3 Hz, 1H), 4.05 (m, 2H), 3.57 (d, J = 5.9 Hz, 1H), 2.85 (dd, J = 18.2, 6.2 Hz, 1H), 2.63 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.43 (s, 3H), 1.27 (t, J = 7.0 Hz, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 192.9, 148.0, 147.1, 143.9, 143.0, 140.2, 130.0, 127.3, 126.7, 126.4, 124.6, 119.9, 118.9, 116.5, 71.4, 64.8, 64.4, 52.5, 32.5, 22.3, 21.0, 14.6; HRMS (ESI) m/z: [M + H]+ Calcd for C24H25N2O7S: 485.1377, found 485.1372.
- 6-Fluoro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3as): white solid; 45.0 mg, 98% yield; m.p. 214.3–214.7 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.42–7.30 (m, 1H), 7.18 (m, 1H), 6.69 (s, 1H), 6.40 (m, 1H), 5.58 (d, J = 10.3 Hz, 1H), 3.62 (d, J = 5.9 Hz, 1H), 2.90 (dd, J = 18.2, 6.2 Hz, 1H), 2.64 (d, J = 18.1 Hz, 1H), 2.44 (s, 3H), 1.45 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.1, 148.2, 145.8 (d, JCF = 263.4 Hz), 144.6 (d, JCF = 5.1 Hz), 144.1, 139.9, 130.1, 128.8, 127.4, 126.7, 125.1 (d, JCF = 5.4 Hz), 123.2 (d, JCF = 3.6 Hz), 120.4, 118.2 (d, JCF = 15.9 Hz), 71.1 (d, JCF = 2.1 Hz), 64.7, 52.7, 32.7, 22.2, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20FN2O6S: 459.1021, found 459.1024.
- 6-Chloro-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3at): white solid; 34.9 mg, 74% yield; m.p. 223.0–223.8 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.57–7.39 (m, 3H), 7.19 (m, 1H), 6.70 (s, 1H), 6.41–6.32 (m, 1H), 5.56 (d, J = 10.3 Hz, 1H), 3.61 (d, J = 5.9 Hz, 1H), 2.89 (dd, J = 18.2, 6.2 Hz, 1H), 2.65 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.45 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 192.8, 153.8, 148.0, 144.1, 139.9, 131.2, 130.1, 127.5, 127.3, 126.7, 126.2, 125.3, 119.6, 114.4, 71.4, 64.6, 52.5, 32.6, 22.1, 21.0; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20ClN2O6S: 475.0725, found 475.0726.
- 6-Bromo-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3au): white solid; 42.7 mg, 82% yield; m.p. 218.6–219.0 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.12 (m, 1H), 6.70 (s, 1H), 6.37 (d, J = 10.3 Hz, 1H), 5.55 (d, J = 10.3 Hz, 1H), 3.59 (d, J = 5.8 Hz, 1H), 2.88 (dd, J = 18.3, 6.2 Hz, 1H), 2.63 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 192.7, 155.2, 148.0, 144.1, 139.9, 134.1, 130.1, 127.6, 126.9, 126.8, 126.7, 125.6, 119.3, 102.1, 71.6, 64.6, 52.5, 32.5, 22.2, 21.1; HRMS (ESI) m/z: [M + Na]+ Calcd for C22H19BrN2O6SNa: 541.0039, found 541.0041.
- 6,8-Di-tert-butyl-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3av): white solid; 45.4 mg, 82% yield; m.p. 194.4–195.2 °C; 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.9 Hz, 2H), 7.77 (s, 1H), 7.38 (d, J = 7.9 Hz, 2H), 7.32 (s, 1H), 6.54 (d, J = 10.3 Hz, 1H), 6.16 (s, 1H), 5.63 (d, J = 10.3 Hz, 1H), 3.46 (d, J = 6.3 Hz, 1H), 2.87 (d, J = 18.7 Hz, 1H), 2.61 (dd, J = 18.8, 6.6 Hz, 1H), 2.47 (s, 3H), 1.55 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.5, 154.0, 149.2, 147.4, 144.3, 140.5, 133.8, 130.2, 128.0, 126.9, 125.9, 124.5, 122.6, 120.3, 72.0, 64.6, 53.2, 35.0, 34.4, 32.3, 31.7, 29.9, 23.7, 21.7; HRMS (ESI) m/z: [M + H]+ Calcd for C30H37N2O6S: 553.2367, found 553.2361.
- 8-Bromo-6-methoxy-10a-methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-one (3aw): white solid; 47.4 mg, 86% yield; m.p. 224.8–225.2 °C; 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 8.0 Hz, 2H), 7.61 (s, 1H), 7.39 (d, J = 7.9 Hz, 2H), 7.03 (s, 1H), 6.57 (d, J = 10.4 Hz, 1H), 6.21 (s, 1H), 5.63 (d, J = 10.4 Hz, 1H), 3.84 (s, 3H), 3.40 (d, J = 5.7 Hz, 1H), 2.90 (d, J = 18.2 Hz, 1H), 2.57 (dd, J = 18.2, 6.2 Hz, 1H), 2.48 (s, 3H), 1.50 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 192.3, 148.4, 146.2, 145.0, 144.6, 140.1, 130.3, 127.9, 127.1, 126.9, 122.2, 120.1, 118.7, 116.8, 72.2, 64.8, 57.1, 53.7, 32.7, 23.0, 21.7; HRMS (ESI) m/z: [M + Na]+ Calcd for C23H21BrN2O7SNa: 571.0145, found 571.0153.
- 11a-Methyl-7a-nitro-12-tosyl-7a,7b,8,11a,12,12a-hexahydro-9H-naphtho[1′,2′:4,5]furo[3,2-b]indol-9-one (3ax): white solid; 42.3 mg, 86% yield; m.p. 264.7–265.2 °C; 1H NMR (400 MHz, DMSO-d6) δ 8.79 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.66 (m, 1H), 7.50 (m, 3H), 7.24 (s, 1H), 7.13 (d, J = 8.9 Hz, 1H), 6.02 (d, J = 11.7 Hz, 1H), 5.30 (d, J = 10.3 Hz, 1H), 3.45 (d, J = 5.4 Hz, 1H), 2.91 (dd, J = 18.3, 5.9 Hz, 1H), 2.66 (d, J = 18.2 Hz, 1H), 2.44 (s, 3H), 1.57 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 193.2, 156.6, 149.1, 144.5, 138.5, 133.7, 130.5, 130.2, 130.0, 129.2, 128.1, 127.6, 127.1, 124.7, 123.2, 121.2, 115.8, 111.2, 71.7, 65.8, 52.8, 32.8, 22.0, 21.1; HRMS (ESI) m/z: [M + H]+ Calcd for C26H23N2O6S: 491.1271, found 491.1262.
- 10a-Methyl-4b-nitro-5,10-ditosyl-4a,4b,5,9b,10,10a-hexahydroindolo[3,2-b]indol-3(4H)-one (3ay): white solid; 35.6 mg, 60% yield; m.p. 206.5–207.4 °C; 1H NMR (400 MHz, CDCl3) δ 7.77 (m, 3H), 7.63 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.35–7.26 (m, 5H), 7.12 (m, 1H), 6.42 (d, J = 10.4 Hz, 1H), 6.21 (s, 1H), 5.45 (d, J = 10.4 Hz, 1H), 4.13 (d, J = 5.1 Hz, 1H), 3.57 (d, J = 18.7 Hz, 1H), 2.70 (dd, J = 18.8, 6.3 Hz, 1H), 2.46 (s, 3H), 2.40 (s, 3H), 1.56 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 193.0, 149.8, 145.7, 144.6, 141.9, 139.5, 134.6, 131.0, 130.3, 129.6, 128.7, 127.8, 127.4, 126.7, 126.6, 125.3, 113.5, 112.1, 75.8, 65.6, 51.7, 34.0, 23.3, 21.8, 21.7; HRMS (ESI) m/z: [M + H]+ Calcd for C29H28N3O7S2: 594.1363, found 594.1366.
3.3. Scale-Up Experiment for Preparation of Compound 3aa
3.4. Procedure for Synthesis of Compound 4
- 10a-Methyl-4b-nitro-10-tosyl-4,4a,4b,9b,10,10a-hexahydro-3H-benzofuro[3,2-b]indol-3-ol (4): white solid; 42.1 mg, 95% yield; m.p. 187.5–188.1 °C; 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.35 (m, 3H), 7.14 (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.24 (s, 1H), 5.60 (d, J = 10.4 Hz, 1H), 5.46 (d, J = 10.4 Hz, 1H), 4.01 (s, 1H), 3.07 (d, J = 5.6 Hz, 2H), 2.44 (s, 3H), 2.35 (m, 1H), 2.15 (d, J = 16.6 Hz, 1H), 1.32 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 157.6, 144.0, 140.6, 131.6, 131.4, 130.0, 129.5, 128.6, 126.8, 125.0, 124.4, 120.3, 110.1, 72.0, 65.2, 59.7, 50.1, 26.9, 24.3, 21.6; HRMS (ESI) m/z: [M + Na]+ Calcd for C22H22N2O6SNa: 465.1091, found 465.1100.
3.5. Procedure for Synthesis of Product 5
- 9a-Methyl-3b-nitro-9-tosyl-1a,3,3a,3b,8b,9,9a,9b-octahydro-2H-benzofuro[3,2-b]oxireno[2,3-g]indol-2-one (5): white solid; 44.8 mg, 98% yield; m.p. 200.4–200.9 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.98 (d, J = 7.9 Hz, 2H), 7.80 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.46 (m, 1H), 7.23 (m, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.65 (s, 1H), 3.44 (s, 1H), 3.22 (s, 1H), 2.87 (s, 1H), 2.77 (dd, J = 17.2, 4.5 Hz, 1H), 2.45 (s, 3H), 2.37 (d, J = 17.1 Hz, 1H), 1.47 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 200.3, 156.9, 144.1, 139.9, 131.7, 130.1, 127.8, 126.8, 125.4, 124.3, 119.5, 110.3, 71.7, 62.6, 61.6, 55.6, 53.4, 30.6, 21.1, 19.9; HRMS (ESI) m/z: [M + Na]+ Calcd for C22H20N2O7SNa: 479.0883, found 479.0880.
3.6. Procedure for Synthesis of Product 6
- 10a-Methyl-4b-nitro-10-tosyl-1,2,4,4a,4b,9b,10,10a-octahydro-3H-benzofuro[3,2-b]indol-3-one (6): white solid; 39.1 mg, 44% yield; m.p. 184.3–185.1 °C; 1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 7.6 Hz, 2H), 7.36 (m, 3H), 7.16 (m, 1H), 7.05 (d, J = 8.1 Hz, 1H), 6.11 (s, 1H), 3.41 (d, J = 7.5 Hz, 1H), 2.67 (d, J = 16.8 Hz, 1H), 2.45 (m, 4H), 2.26–2.10 (m, 2H), 2.00 (d, J = 13.9 Hz, 1H), 1.80 (m, 1H), 1.62 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 204.8, 158.1, 144.1, 140.4, 131.9, 130.1, 128.6, 126.9, 126.6, 124.5, 120.7, 111.3, 71.8, 66.2, 54.5, 36.5, 35.6, 34.4, 23.1, 21.7; HRMS (ESI) m/z: [M + Na]+ Calcd for C22H22N2O6SNa: 465.1091, found 465.1095.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, R.A., II; Stoltz, B.M. Polycyclic Furanobutenolide-Derived Cembranoid and Norcembranoid Natural Products: Biosynthetic Connections and Synthetic Efforts. Chem. Rev. 2017, 117, 7878–7909. [Google Scholar] [CrossRef]
- Schinke, C.; Martins, T.; Queiroz, S.C.N.; Melo, I.S.; Reyes, F.G.R. Antibacterial Compounds from Marine Bacteria, 2010–2015. J. Nat. Prod. 2017, 80, 1215–1228. [Google Scholar] [CrossRef]
- Liu, W.; Hong, B.; Wang, J.; Lei, X. New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products. Acc. Chem. Res. 2020, 53, 2569–2586. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-Q.; Tang, J.-J.; Gao, J.-M. Picrotoxane sesquiterpenoids: Chemistry, chemo- and bio-syntheses and biological activities. Nat. Prod. Rep. 2022, 39, 2096–2131. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-H.; Li, X.; Wang, B.-G. Natural products with 1,2-oxazine scaffold: Occurrence, chemical diversity, bioactivity, synthesis, and biosynthesis. Nat. Prod. Rep. 2023, 40, 1874–1900. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.W.; Rees, D.C. Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD). Angew. Chem. Int. Ed. 2016, 55, 488–492. [Google Scholar] [CrossRef]
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: The impact of fragments on drug discovery. Nat. Rev. Drug Discov. 2016, 15, 605–619. [Google Scholar] [CrossRef]
- Jhoti, H.; Williams, G.; Rees, D.C.; Murray, C.W. The ‘rule of three’ for fragment-based drug discovery: Where are we now? Nat. Rev. Drug Discov. 2013, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kang, C. Perspectives on Fragment-based Drug Discovery: A Strategy Applicable to Diverse Targets. Curr. Top. Med. Chem. 2021, 21, 1099–1112. [Google Scholar] [CrossRef]
- Troelsen, N.S.; Clausen, M.H. Library Design Strategies to Accelerate Fragment-Based Drug Discover. Chem. Eur. J. 2020, 26, 11391–11403. [Google Scholar] [CrossRef]
- She, Z.; Wang, Y.; Wang, D.; Zhao, Y.; Wang, T.; Zheng, X.; Yu, Z.-X.; Gao, G.; You, J. Two-Fold C–H/C–H Cross-Coupling Using RhCl3·3H2O as the Catalyst: Direct Fusion of N-(Hetero)arylimidazolium Salts and (Hetero)arenes. J. Am. Chem. Soc. 2018, 140, 12566–12573. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Tang, J.; Zhang, L.; Liu, Q.; Li, Q.; Gao, G.; You, J. Ir-Catalyzed Cascade C–H Fusion of Aldoxime Ethers and Heteroarenes: Scope and Mechanisms. ACS Catal. 2020, 10, 203–209. [Google Scholar] [CrossRef]
- Wilson, A.M.; Waldman, T.E.; Rheingold, A.L.; Ernst, R.D. Ring fusion and polycyclic ring constructions via half-open titanocenes. J. Am. Chem. Soc. 1992, 114, 6252–6254. [Google Scholar] [CrossRef]
- Kiel, G.R.; Bergman, H.M.; Samkian, A.E.; Schuster, N.J.; Handford, R.C.; Rothenberger, A.J.; Gomez-Bombarelli, R.; Nuckolls, C.; Tilley, T.D. Expanded [23]-Helicene with Exceptional Chiroptical Properties via an Iterative Ring-Fusion Strategy. J. Am. Chem. Soc. 2022, 144, 23421–23427. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, V.; Shehadeh, I.; Khanfar, M.A.; Malik, O.G.; Tarazi, H.; Abu-Yousef, I.A.; Sebastian, A.; Baniowda, N.; O’Connor, M.J.; Al-Tel, T.H. One-Pot Synthesis of Diverse Collections of Benzoxazepine and Indolopyrazine Fused to Heterocyclic Systems. J. Org. Chem. 2019, 84, 934–948. [Google Scholar] [CrossRef]
- Manna, S.K.; Das, T.; Samanta, S. Polycyclic Benzimidazole: Synthesis and Photophysical Properties. ChemistrySelect 2019, 4, 8781–8790. [Google Scholar] [CrossRef]
- Chawla, A.S.; Jackson, A.H. Erythrina and related alkaloids. Nat. Prod. Rep. 1989, 6, 55–66. [Google Scholar] [CrossRef]
- Tomita, M.; Okamoto, Y.; Kikuchi, T.; Osaki, K.; Nishikawa, M.; Kamiya, K.; Sasaki, Y.; Matoba, K.; Goto, K. Studies on the Alkaloids of Menispermaceous Plants. CCLIX. Alkaloids of Menispermum dauricum DC. (Suppl. 7). Structures of Acutumine and Acutumidine, Chlorine-Containing Alkaloids with a Novel Skeleton. Chem. Pharm. Bull. 1971, 19, 770–791. [Google Scholar] [CrossRef]
- Min, Z.-D.; Lin, G.; Xu, G.-X.; Munekazu, I.; Toshiyuki, T.; Mizuo, M. Alkaloids of Stephania sinica. Phytochemistry 1985, 24, 3084–3085. [Google Scholar]
- Zhang, H.; Qiu, S.; Tamez, P.; Tan, G.T.; Aydogmus, Z.; Hung, N.V.; Cuong, N.M.; Angerhofer, C.; Soejarto, D.D.; Pezzuto, J.M.; et al. Antimalarial Agents from Plants II. Decursivine, A New Antimalarial Indole Alkaloid from Rhaphidophora decursiva. Pharm. Biol. 2002, 40, 221–224. [Google Scholar] [CrossRef]
- Johnson, G.; Sunderwirth, S.G.; Gibian, H.; Coulter, A.W.; Gassner, F.X. Lithospermum ruderale: Partial characterization of the principal polyphenol isolated from the roots. Phytochemistry 1963, 2, 145–150. [Google Scholar] [CrossRef]
- Celoy, R.M.; VanEtten, H.D. (+)-Pisatin biosynthesis: From (-) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′,5′-methylenedioxyisoflav-3-ene. Pytochemistry 2014, 98, 120–127. [Google Scholar] [CrossRef]
- Yu, B.-W.; Chen, J.-Y.; Wang, Y.-P.; Cheng, K.-F.; Li, X.-Y.; Qin, G.-W. Alkaloids from Menispermum dauricum. Phytochemistry 2002, 61, 439–442. [Google Scholar] [CrossRef]
- Abd-Elazem, I.S.; Chen, H.S.; Bates, R.B.; Huang, R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res. 2002, 55, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Vidal, B.; Conan, J.-Y.; Lamar, G. Remarks on the Near W Spectrum of Pterocarpin. Spectrosc. Lett. 1987, 20, 233–247. [Google Scholar] [CrossRef]
- Nair, S.R.; Baire, B. Recent Dearomatization Strategies of Benzofurans and Benzothiophenes. Asian J. Org. Chem. 2021, 10, 932–948. [Google Scholar] [CrossRef]
- Li, Y.-L.; Wang, K.-K.; He, X.-L. Recent Progress of Electron-Withdrawing-Group-Tethered Arenes Involved Asymmetric Nucleophilic Aromatic Functionalizations. Adv. Synth. Catal. 2022, 364, 3630–3650. [Google Scholar] [CrossRef]
- Wang, N.; Ren, J.; Li, K. Dearomatization of Nitro(hetero)arenes through Annulation. Eur. J. Org. Chem. 2022, 2022, e202200039. [Google Scholar] [CrossRef]
- Laviós, A.; Sanz-Marco, A.; Vila, C.; Muñoz, M.C.; Pedro, J.R.; Blay, G. Metal-Free Diastereo- and Enantioselective Dearomative Formal [3 + 2] Cycloaddition of 2-Nitrobenzofurans and Isocyanoacetate Esters. Org. Lett. 2022, 24, 2149–2154. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, T.; Li, X.; Wu, J.-D.; Liu, J. Asymmetric decarboxylative [3 + 2] cycloaddition for the diastereo- and enantioselective synthesis of spiro [2.4]heptanes via cyclopropanation. Org. Chem. Front. 2022, 9, 2121–2128. [Google Scholar] [CrossRef]
- Zhou, P.; Yi, Y.; Hua, Y.-Z.; Jia, S.-K.; Wang, M.-C. Dinuclear Zinc Catalyzed Enantioselective Dearomatization [3+2] Annulation of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes. Chem. Eur. J. 2022, 28, e202103688. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Tu, Y.; Zhang, J. Phosphine-Catalyzed Enantioselective Dearomative [3+2]-Cycloaddition of 3-Nitroindoles and 2-Nitrobenzofurans. Angew. Chem. Int. Ed. 2019, 58, 5422–5426. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Yang, L.; Zhou, X.-J.; You, Y.; Wang, Z.-H.; Zhou, M.-Q.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Organocatalyzed Dearomative Cycloaddition of 2-Nitrobenzofurans and Isatin-Derived Morita–Baylis–Hillman Carbonates: Highly Stereoselective Construction of Cyclopenta[b]benzofuran Scaffolds. Org. Lett. 2019, 21, 660–664. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.-C.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Enantioselective Synthesis of Fused Polycyclic Tropanes via Dearomative [3 + 2] Cycloaddition Reactions of 2-Nitrobenzofurans. Org. Lett. 2020, 22, 164–167. [Google Scholar] [CrossRef]
- Tan, J.-P.; Li, X.; Chen, Y.; Rong, X.; Zhu, L.; Jiang, C.; Xiao, K.; Wang, T. Highly stereoselective construction of polycyclic benzofused tropane scaffolds and their latent bioactivities: Bifunctional phosphonium salt-enabled cyclodearomatization process. Sci. China Chem. 2020, 63, 1091–1099. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Zhou, S.; Wang, Z.-H.; You, Y.; Chen, S.; Liu, X.-L.; Zhou, M.-Q.; Yuan, W.-C. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones: Stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org. Chem. Front. 2021, 8, 6330–6336. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, H.-J.; Yue, W.-J.; You, S.-L. Palladium-Catalyzed Highly Stereoselective Dearomative [3 + 2] Cycloaddition of Nitrobenzofurans. Chem 2017, 3, 428–436. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Zhao, J.-Q.; Chen, X.-M.; Zhuo, J.-R.; Zhang, Y.-P.; Chen, Y.-Z.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. J. Org. Chem. 2019, 84, 4381–4391. [Google Scholar] [CrossRef]
- Rao, G.A.; Gurubrahamam, R.; Chen, K. Base-Catalysed (4+2)-Annulation Between 2-Nitrobenzofurans and N-Alkoxyacrylamides: Synthesis of [3,2-b]Benzofuropyridinones. Eur. J. Org. Chem. 2022, 2022, e202200657. [Google Scholar] [CrossRef]
- Thopate, S.B.; Phanindrudu, M.; Jadhav, S.B.; Chegondi, R. Site-selective and stereoselective transformations on p-quinols & p-quinamines. Chem. Commun. 2023, 59, 3795–3811. [Google Scholar]
- Al-Tel, T.H.; Srinivasulu, V.; Ramanathan, M.; Soares, N.C.; Sebastian, A.; Bolognesi, M.L.; Abu-Yousef, I.A.; Majdalawieh, A. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org. Biomol. Chem. 2020, 18, 8526–8571. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Li, H.; He, Y.; Xu, W.; Duan, X.; Sun, H.; Wang, T.; Zhai, H. Synthesis of Hydrobenzoimidazoles from para-Quinamines and 1,3,5-Triazinanes via a Formal [3+2] Annulation Reaction. Adv. Synth. Catal. 2021, 363, 565–569. [Google Scholar] [CrossRef]
- Jin, H.; Lai, J.; Huang, Y. Phosphine-Catalyzed Domino [3 + 3] Cyclization of para-Quinamines with Morita–Baylis–Hillman Carbonates: Access to Hydroquinoline Derivatives. Org. Lett. 2019, 21, 2843–2846. [Google Scholar] [CrossRef]
- Hu, K.-W.; You, X.; Wang, J.-Z.; Wen, X.; Sun, H.; Xu, Q.-L.; Lai, Z. Chiral Phosphoric Acid Catalyzed Asymmetric Desymmetrization of para-Quinamines with Isocyanates: Access to Functionalized Imidazolidin-2-one Derivatives. Org. Lett. 2021, 23, 7873–7877. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Chegondi, R. Diastereoselective Desymmetrization of p-Quinamines through Regioselective Ring Opening of Epoxides and Aziridines. Org. Lett. 2019, 21, 10115–10119. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, H.; Huang, Y. DABCO-mediated [3+3] annulation of para-quinamines: Access to functionalized 1,2,4-triazinone derivatives. Chem. Commun. 2019, 55, 10135–10137. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Dai, C.; Huang, Y. DBU-Catalyzed Desymmetrization of Cyclohexadienones: Access to Vicinal Diamine-Containing Heterocycles. Org. Lett. 2018, 20, 5006–5009. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, Y.; Song, D.; Zhong, Z.; Feng, S.; Xie, X.; Wang, X.; She, X. (3 + 2)-Annulation of p-Quinamine and Aryne: A Strategy To Construct the Multisubstituted Hydrocarbazoles. Org. Lett. 2017, 19, 3600–3603. [Google Scholar] [CrossRef] [PubMed]
- Carreño, M.C.; Ribagorda, M.; Posne, G.H. Titanium-Promoted Stereoselective Synthesis of Hydroindolones from p-Quinamines by Domino Conjugate Additions. Angew. Chem. Int. Ed. 2002, 41, 2753–2755. [Google Scholar] [CrossRef]
- Kishi, K.; Arteaga, F.A.; Takizawa, S.; Sasai, H. Multifunctional catalysis: Stereoselective construction of α-methylidene-γ-lactams via an amidation/Rauhut–Currier sequence. Chem. Commun. 2017, 53, 7724–7727. [Google Scholar] [CrossRef] [PubMed]
- Pantaine, L.; Coeffard, V.; Moreau, X.; Greck, C. Enantioselective Desymmetrization of para-Quinamines through an Aminocatalyzed Aza-Michael/Cyclization Cascade Reaction. Org. Lett. 2015, 17, 3674–3677. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, B.; Jiang, H.; Cheng, Y.; Xiao, W.-J.; Lu, L.-Q. Synthesis of hydroindoles via desymmetric [3+2] cycloadditions of para-quinamines with photogenerated ketenes. Chem. Commun. 2021, 57, 8496–8499. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, R.; Prakash, M.; Samanta, S. Diastereoselective desymmetrization reactions of prochiral para-quinamines with cyclopropenes generated in situ: Access to fused hydroindoline-5-one scaffolds. Org. Biomol. Chem. 2021, 19, 7129–7133. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Zhao, J.-Q.; Lai, Y.-Q.; You, Y.; Wang, Z.-H.; Yuan, W.-C. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022, 34, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Dou, P.-H.; Chen, Y.; You, Y.; Wang, Z.-H.; Zhao, J.-Q.; Zhou, M.-Q.; Yuan, W.-C. Organocatalyzed Asymmetric Dearomative [3+2] Annulation of Electron-Deficient 2-Nitrobenzo Heteroarenes with 3-Isothiocyanato Oxindoles. Adv. Synth. Catal. 2021, 363, 4047–4053. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.-Q.; Zhang, Y.-P.; Zhou, M.-Q.; Zhang, X.-M.; Yuan, W.-C. Copper-Catalyzed Asymmetric Dearomative [3+2] Cycloaddition of Nitroheteroarenes with Azomethines. Molecules 2023, 28, 2765. [Google Scholar] [CrossRef]
- Ge, Z.-Z.; Yang, L.; You, Y.; Wang, Z.-H.; Xie, K.-X.; Zhou, M.-Q.; Zhao, J.-Q.; Yuan, W.-C. Asymmetric dearomatization of 2-nitrobenzofurans by organocatalyzed one-step Michael addition to access 3,3′-disubstituted oxindoles. Chem. Commun. 2020, 56, 2586–2589. [Google Scholar] [CrossRef]
- Yang, F.; Rauch, K.; Kettelhoit, K.; Ackermann, L. Aldehyde-Assisted Ruthenium(II)-Catalyzed C-H Oxygenations. Angew. Chem. Int. Ed. 2014, 53, 11285–11288. [Google Scholar] [CrossRef]
- Wales, S.M.; Adcock, H.V.; Lewis, W.; Hamza, D.; Moody, C.J. Nitrogen-Bridged, Natural Product-Like Octahydrobenzofurans and Octahydroindoles: Scope and Mechanism of Bridge-Forming Reductive Amination via Caged Heteroadamantanes. Eur. J. Org. Chem. 2018, 2018, 4696–4704. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Entry | Base | Solvent | Time (day) | dr [b] | Yield (%) [c] |
---|---|---|---|---|---|
1 | tBuOK | CH3CN | 2 | >20:1 | 51 |
2 | K3PO4 | CH3CN | 2 | >20:1 | 75 |
3 | KOH | CH3CN | 2 | >20:1 | 51 |
4 | K2CO3 | CH3CN | 2 | >20:1 | 84 |
5 | DBU | CH3CN | 5 | >20:1 | 9 |
6 | DIPEA | CH3CN | 5 | - | n.r. |
7 | Na2CO3 | CH3CN | 7 | >20:1 | 52 |
8 | Cs2CO3 | CH3CN | 5 | >20:1 | 52 |
9 | K2CO3 | DCM | 7 | >20:1 | 58 |
10 | K2CO3 | THF | 7 | >20:1 | 48 |
11 | K2CO3 | MTBE | 7 | >20:1 | 49 |
12 | K2CO3 | toluene | 7 | >20:1 | 14 |
13 | K2CO3 | EtOH | 3 | >20:1 | 6 |
14 | K2CO3 | acetone | 3 | >20:1 | 71 |
15 | K2CO3 | EA | 7 | >20:1 | 58 |
16 [d] | K2CO3 | CH3CN | 2 | >20:1 | 88 |
17 [e] | K2CO3 | CH3CN | 2 | >20:1 | 95 |
18 [e,f] | K2CO3 | CH3CN | 2 | >20:1 | 84 |
19 [e,f,g] | K2CO3 | CH3CN | 2 | >20:1 | 95 |
20 [h] | NaH | CH3CN | 8 h | >20:1 | 75 |
21 [i] | LiHMDS | THF | 12 h | >20:1 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.-C.; Zeng, H.-Y.; Zhang, Y.-P.; Zhao, J.-Q.; You, Y.; Yin, J.-Q.; Zhou, M.-Q.; Wang, Z.-H. Synthesis of Benzofuro[3,2-b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines. Molecules 2024, 29, 1163. https://doi.org/10.3390/molecules29051163
Yuan W-C, Zeng H-Y, Zhang Y-P, Zhao J-Q, You Y, Yin J-Q, Zhou M-Q, Wang Z-H. Synthesis of Benzofuro[3,2-b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines. Molecules. 2024; 29(5):1163. https://doi.org/10.3390/molecules29051163
Chicago/Turabian StyleYuan, Wei-Cheng, Hai-Ying Zeng, Yan-Ping Zhang, Jian-Qiang Zhao, Yong You, Jun-Qing Yin, Ming-Qiang Zhou, and Zhen-Hua Wang. 2024. "Synthesis of Benzofuro[3,2-b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines" Molecules 29, no. 5: 1163. https://doi.org/10.3390/molecules29051163
APA StyleYuan, W. -C., Zeng, H. -Y., Zhang, Y. -P., Zhao, J. -Q., You, Y., Yin, J. -Q., Zhou, M. -Q., & Wang, Z. -H. (2024). Synthesis of Benzofuro[3,2-b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines. Molecules, 29(5), 1163. https://doi.org/10.3390/molecules29051163