Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Current Designing and Working Principles of Interlayers in LSBs
3. Free-Standing Conductive Polymer-Based Interlayers
3.1. Free-Standing PPy-Based Interlayers
3.2. Free-Standing PANI-Based Interlayers
3.3. Free-Standing PEDOT: Poly(styrene sulfonate)(PSS)-Based Interlayers
4. Conductive Polymer-Based Interlayer Modified Separators
4.1. PPy-Based Material Modified Separators
4.2. PANI-Based Material Modified Separators
4.3. PEDOT: PSS-Based Material Modified Separators
5. Conductive Polymer-Based Interlayer Modified Sulfur Electrode
6. Summary and Prospects
- (1)
- For the free-standing conductive polymer-based interlayers: The preparation methods mainly include vacuum filtration and vapor deposition. The inhibition of the shuttle effect is the functional groups of conductive polymers and the special structure design of materials. The main problems that confront defects are the high consumption of electrolytes and the high weight of materials, leading to low gravimetric energy density. To solve these problems, the functional interlayer materials need to be lighter and thinner.
- (2)
- For the conductive polymer-based interlayer modified separators: Their preparation methods mainly include vacuum filtration, blade scraping/coating, in situ vapor-phase polymerization, binder-free coating, spray coating, and splash coating. The inhibition of the shuttle of polysulfides is mainly attributed to the functional groups applied on conductive polymers and the special structure design of materials. The main problem conductive polymer-based materials modified separators confront is the poor uniformity of the coating. In situ vapor-phase polymerization and spray coating are the best ways to achieve uniformity of the coating. The adsorption and conversion mechanism of polysulfides needs to be further explored by in situ techniques [86,87,88], such as in situ electron microscopy, in situ FT-IR spectroscopy, etc.
- (3)
- For the conductive polymer-based interlayer modified sulfur electrode: The preparation methods mainly include oxidation polymerization, blade scraping/coating and in situ polymerization. The suppression of the shuttle of polysulfides mainly originates from the increase in functional groups and active sites in conductive polymers. The main problem of the conductive-polymer-based modified sulfur electrodes is the complexity of their preparation. Compared with the coating modification of sulfur electrode, the electrochemical performance of this modification is inferior to the former. In the future, the preparation method needs to be simpler and the interlayer materials need to be multifunctional. The coating needs a stronger adsorption and conversion effect on polysulfides than the method of using a host to load sulfur.
Author Contributions
Funding
Conflicts of Interest
References
- Islam, M.S.; Nazar, L.F. Advanced materials for lithium batteries. J. Mater. Chem. A 2011, 21, 9810. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, Z.W.; Chen, F.Z.; Peng, B.; Xu, J.; Li, J.Z.; Lv, Y.H.; Kang, Q.; Xia, A.L.; Ma, L.B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yi, L.L.; Zhang, J.P.; Wang, X.; Hu, X.C.; Wei, W.; Wang, H. Advances in flexible lithium metal batteries. Sci. China Mater. 2022, 65, 2035–2059. [Google Scholar] [CrossRef]
- Ely, T.O.; Kamzabek, D.; Chakraborty, D.; Doherty, M.F. Lithium–sulfur batteries: State of the art and future directions. ACS Appl. Energy Mater. 2018, 1, 1783–1814. [Google Scholar]
- Shao, Q.J.; Zhu, S.D.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 16, 8097–8138. [Google Scholar] [CrossRef]
- Liu, M.; Qin, X.Y.; He, Y.B.; Li, B.H.; Kang, F.Y. Recent innovative configurations in high-energy lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 5222–5234. [Google Scholar] [CrossRef]
- Liang, L.; Tang, M.Y.; Zhu, Q.N.; Wei, W.; Wang, S.C.; Wang, J.W.; Chen, J.C.; Yu, D.D.; Wang, H. Chemical Prepotassiation Realizes Scalable KC8 Foil Anodes for Potassium-Ion Pouch Cells. Adv. Energy Mater. 2023, 13, 2300453. [Google Scholar] [CrossRef]
- Lang, S.Y.; Xiao, R.J.; Gu, L.; Guo, Y.G.; Wen, R.; Wan, L.J. Interfacial mechanism in lithium–sulfur batteries: How salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155. [Google Scholar] [CrossRef]
- Fang, X.; Peng, H.S. A revolution in electrodes: Recent progress in rechargeable lithium–sulfur batteries. Small 2015, 11, 1488–1511. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Zeng, Q.H.; Chen, P.P.; Li, Z.F.; Wen, X.; Wen, W.; Li, Z.X.; Zhang, L.Y. Sulfur-rich poly (ionic liquid) cathode materials combining chemical connecting and cation electrostatic trapping of polysulfides for ultralong-life lithium sulfur batteries. ChemSusChem 2020, 13, 715–723. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, N.; Wang, M.R.; Qu, C.; Yang, X.F.; Zhang, H.Z.; Li, X.F.; Zhang, H.M. Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl. Mater. 2015, 7, 25002–25006. [Google Scholar] [CrossRef]
- Dong, S.H.; Liu, H.J.; Hu, Y.Z.; Chong, S.K. Cathode materials for rechargeable lithium-sulfur batteries: Current progress and future prospects. ChemElectroChem 2022, 9, e202101564. [Google Scholar] [CrossRef]
- Lama, F.L.; Caballero, A.; Morales, J. Synergistic effect between PPy: PSS copolymers and biomass-derived activated carbons: A simple strategy for designing sustainable high-performance Li–S batteries. Sustain. Energy Fuels 2022, 6, 1568–1586. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965. [Google Scholar] [CrossRef]
- Jeong, T.G.; Moon, Y.H.; Chun, H.H.; Kim, H.S.; Cho, B.W.; Kim, Y.T. Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. Chem. Commun. 2013, 49, 11107–11109. [Google Scholar] [CrossRef]
- Zhang, K.; Qin, F.R.; Fang, J.; Li, Q.; Jia, M.; Lai, Y.Q.; Zhang, Z.A.; Li, J. Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J. Solid State Electrochem. 2014, 18, 1025–1029. [Google Scholar] [CrossRef]
- Zhu, H.F.; Sha, M.; Zhao, H.P.; Nie, Y.T.; Sun, X.H.; Lei, Y. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries. J. Semicond. 2020, 41, 092701. [Google Scholar] [CrossRef]
- Zhou, J.H.; Wu, T.; Zhou, X.; Xi, J.Y. Advanced cathodic free-standing interlayers for lithium–sulfur batteries: Understanding, fabrication, and modification. Phys. Chem. Chem. Phys. 2022, 24, 17383–17396. [Google Scholar] [CrossRef]
- Long, X.; Zhu, S.K.; Song, Y.; Zheng, M.; Shi, B.; Shao, J.J. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. New Carbon Mater. 2022, 37, 527–543. [Google Scholar] [CrossRef]
- Tan, J.; Matz, J.; Dong, P.; Ye, M.X.; Shen, J.F. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Mater. 2021, 42, 645–678. [Google Scholar] [CrossRef]
- Wang, L.L.; Ye, Y.S.; Chen, N.; Huang, Y.X.; Li, L.; Wu, F.; Chen, R.J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919. [Google Scholar] [CrossRef]
- Zhu, D.M.; Long, T.; Xu, B.; Zhao, Y.X.; Hong, H.T.; Liu, R.J.; Meng, F.C.; Liu, J.H. Recent advances in interlayer and separator engineering for lithium-sulfur batteries. J. Energy Chem. 2021, 57, 41–60. [Google Scholar] [CrossRef]
- Weret, M.A.; Su, W.N.; Hwang, B.J. Strategies towards High Performance Lithium-Sulfur Batteries. Batter. Supercaps 2022, 5, e202200059. [Google Scholar] [CrossRef]
- Ma, G.Q.; Wen, Z.Y.; Wang, Q.S.; Shen, C.; Peng, P.; Jin, J.; Wu, X.W. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J. Power Sources 2015, 273, 511–516. [Google Scholar] [CrossRef]
- Cao, J.Y.; Chen, P.; Liu, M.L.; Yuan, H.X.; Geng, H.; Xu, L.Y.; Li, Y.L.; Zhang, C.Y.; Fu, Y.S.; Song, Y.Q. Vanadium disulfide-coated carbon nanotube film as an interlayer for high-performance lithium-sulfur batteries. J. Energy Storage 2022, 52, 104818. [Google Scholar] [CrossRef]
- Kong, W.B.; Yan, L.J.; Luo, Y.F.; Wang, D.T.; Jiang, K.L.; Li, Q.Q.; Fan, S.S.; Wang, J.P. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 2017, 27, 1606663. [Google Scholar] [CrossRef]
- Liang, G.M.; Wu, J.X.; Qin, X.Y.; Liu, M.; Li, Q.; He, Y.B.; Kim, J.K.; Li, B.H.; Kang, F.Y. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery. ACS Appl. Mater. Interfaces 2016, 8, 23105–23113. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, H.J.; Zhai, X.L.; Wang, F.; Ren, X.Y.; Xiong, Y.; Akiyoshi, O.; Pan, K.M.; Ren, F.Z.; Wei, S.Z. Graphene-based interlayer for high-performance lithium–sulfur batteries: A review. Mater. Design 2021, 211, 110171. [Google Scholar] [CrossRef]
- Wei, H.J.; Liu, Y.; Zhai, X.L.; Wang, F.; Ren, X.Y.; Tao, F.; Li, T.F.; Wang, G.X.; Ren, F.Z. Application of carbon nanotube-based materials as interlayers in high-performance lithium-sulfur batteries: A review. Front. Energy Res. 2020, 8, 585795. [Google Scholar] [CrossRef]
- Hong, X.D.; Liu, Y.; Li, Y.; Wang, X.; Fu, J.W.; Wang, X.L. Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries. Polymers 2020, 12, 331. [Google Scholar] [CrossRef]
- Xiang, H.Y.; Deng, N.P.; Zhao, H.J.; Wang, X.X.; Wei, L.Y.; Wang, M.; Chen, B.W.; Kang, W.M. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects. J. Energy Chem. 2021, 58, 523–556. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, C.C.; Yang, K.; Sun, S.Y.; Bi, J.X.; Zhu, N.R.; Cai, Q.; Wang, J.N.; Yan, W. Conducting Polymers Meet Lithium-Sulfur Batteries: Progress, Challenges and Perspectives. Energy Environ. Mater. 2022, 6, e12483. [Google Scholar] [CrossRef]
- Li, F.; Kaiser, M.R.; Ma, J.M.; Guo, Z.P.; Liu, H.K.; Wang, J.Z. Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li–S batteries. Energy Storage Mater. 2018, 13, 312–322. [Google Scholar] [CrossRef]
- Moon, S.; Yoo, J.K.; Jung, Y.H.; Kim, J.H.; Jung, Y.S.; Kim, D.K. Effective suppression of polysulfide dissolution by uniformly transfer-printed conducting polymer on sulfur cathode for Li–S batteries. J. Electrochem. Soc. 2017, 164, A6417–A6421. [Google Scholar] [CrossRef]
- Liu, E.T.; Mei, S.L.; Chen, X.H.; Yao, C.J. Conducting Polymers with Redox Active Pendant Groups: The Application Progress as Organic Electrode Materials for Rechargeable Batteries. J. Mater. Chem. C 2022, 10, 13570–13589. [Google Scholar] [CrossRef]
- Wang, A.X.; Xu, G.Y.; Ding, B.; Chang, Z.; Wang, Y.; Dou, H.; Zhang, X.G. Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2017, 4, 362–368. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, R.; Yang, J.; Wang, K.; Gao, R.T.; Liu, D.; Liu, Y.D.; Yang, J.R.; Pan, F. 3D-hybrid material design with electron/lithium-ion dual-conductivity for high-performance Li-sulfur batteries. J. Power Sources 2017, 340, 160–167. [Google Scholar] [CrossRef]
- Fan, L.L.; Li, M.; Li, X.F.; Xiao, W.; Chen, Z.W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Stephan, A.M. Mitigation of polysulfide shuttling by interlayer/permselective separators in lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 8095–8129. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Li, W.X.; Dirican, M.; Liu, Y.; Zhang, X.W. Interlayer design based on carbon materials for lithium-sulfur batteries: A review. J. Mater. Chem. A 2020, 8, 10709–10735. [Google Scholar] [CrossRef]
- Huang, J.Q.; Zhang, Q.; Wei, F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127–145. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, L.S.; Liu, T.X. Multifunctional second barrier layers for lithium-sulfur batteries. Mater. Chem. Front. 2018, 2, 235–252. [Google Scholar] [CrossRef]
- Wu, F.; Li, W.H.; Guan, L.L.; Ye, Y.S.; Qian, J.; Yang, X.G.; Xu, Y.H.; Chen, R.J. A polypyrrole-supported carbon paper acting as a polysulfide trap for lithium-sulfur batteries. RSC Adv. 2015, 5, 94479–94485. [Google Scholar] [CrossRef]
- Li, P.Y.; Deng, J.N.; Li, J.; Guo, J.Q.; Zeng, M.; Wang, L.G.; Wang, R.; Tang, M.Q. Bifunctional interlayer for capturing polysulfide in Li–S battery. J. Mater. Sci. 2019, 54, 11983–11990. [Google Scholar] [CrossRef]
- Deng, J.N.; Guo, J.Q.; Li, J.; Zeng, M.; Yang, Z. Functional separator with VGCF/PPY coating for high cyclic stability lithium-sulfur battery. Mater. Lett. 2019, 234, 35–37. [Google Scholar] [CrossRef]
- Yin, L.X.; Dou, H.; Wang, A.X.; Xu, G.Y.; Nie, P.; Chang, Z.; Zhang, X.G. A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries. New J. Chem. 2018, 42, 1431–1436. [Google Scholar] [CrossRef]
- Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615. [Google Scholar] [CrossRef]
- He, Y.B.; Qiao, Y.; Zhou, H. Recent advances in functional modification of separators in lithium–sulfur batteries. Dalton T. 2018, 47, 6881–6887. [Google Scholar] [CrossRef]
- Batyrgali, N.; Yerkinbekova, Y.; Tolganbek, N.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Recent Advances on Modification of Separator for Li/S Batteries. ACS Appl. Energy Mater. 2022, 6, 588–604. [Google Scholar] [CrossRef]
- Zhang, B.W.; Sun, B.; Fu, P.; Liu, F.; Zhu, C.; Xu, B.M.; Pan, Y.; Chen, C. A Review of the Application of Modified Separators in Inhibiting the “shuttle effect” of Lithium–Sulfur Batteries. Membranes 2022, 12, 790. [Google Scholar] [CrossRef]
- Yang, M.; Nan, J.; Chen, W.; Hu, A.J.; Sun, H.; Chen, Y.F.; Wu, C.Y. Interfacial engineering of polypropylene separator with outstanding high-temperature stability for highly safe and stable lithium-sulfur batteries. Electrochem. Commun. 2021, 125, 106971. [Google Scholar] [CrossRef]
- Li, H.M.; Lv, R.H.; Zeng, R.; Na, B.; Zhang, S.; Liu, H.S.; Lin, S. In Situ Template-Sacrificing Approach to a Highly Conductive 3D Hybrid Interlayer of an Advanced Lithium-Sulfur Battery Separator. Energy Technol. 2020, 8, 2000118. [Google Scholar] [CrossRef]
- Ma, G.Q.; Huang, F.F.; Wen, Z.Y.; Wang, Q.S.; Hong, X.H.; Jin, J.; Wu, X.W. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J. Mater. Chem. A 2016, 4, 16968–16974. [Google Scholar] [CrossRef]
- Li, B.E.; Sun, Z.H.; Zhao, Y.; Bakenov, Z. A novel hierarchically porous polypyrrole sphere modified separator for Lithium-sulfur batteries. Polymers 2019, 11, 1344. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, W.Y.; Liu, X.X.; Mao, E.Y.; Wang, M.T.; Li, G.C.; Fu, L.; Li, Z.; Eng, A.Y.S.; She, Z.W.; et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li–S batteries. Energy Storage Mater. 2019, 23, 261–268. [Google Scholar] [CrossRef]
- Fu, X.W.; Dunne, F.; Chen, M.; Zhong, W.H. A wet-processed, binder-free sulfur cathode integrated with a dual-functional separator for flexible Li–S batteries. Nanoscale 2020, 12, 5483–5493. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.X.; Ren, J.; Zhang, Y.G.; Tan, T.Z.; Chen, Z.H. A PPy/ZnO functional interlayer to enhance electrochemical performance of lithium/sulfur batteries. Nanoscale Res. Lett. 2018, 13, 307. [Google Scholar] [CrossRef]
- Ma, L.M.; Yue, B.; Li, X.Y.; Liu, H.Y.; Wang, X.; Wang, J.X.; Liu, G.X.; Yu, W.S.; Dong, X.T. NiCo2O4@ PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries. Ceram. Int. 2022, 48, 22328–22337. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, H.S.; Ning, S.L.; Lin, J.J.; Wen, J.B.; Kang, X.W. Polypyrrole/Graphene Composite Interlayer: High Redox Kinetics of Polysulfides and Electrochemical Performance of Lithium–Sulfur Batteries Enabled by Unique Pyrrolic Nitrogen Sites. ChemElectroChem 2021, 8, 1798–1806. [Google Scholar] [CrossRef]
- Kiai, M.S.; Kizil, H. Enhanced performance of Li-S battery with polymer doped potassium functionalized graphene interlayers as effective polysulfide barrier. J. Electroanal. Chem. 2019, 851, 113405. [Google Scholar] [CrossRef]
- Shi, M.J.; Liu, Z.; Zhang, S.; Liang, S.C.; Jiang, Y.T.; Bai, H.; Jiang, Z.M.; Chang, J.; Feng, J.; Chen, W.S.; et al. A Mott-Schottky Heterogeneous Layer for Li–S Batteries: Enabling Both High Stability and Commercial-Sulfur Utilization. Adv. Energy Mater. 2022, 12, 2103657. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; Li, Q.; Fang, J.; Zhang, Z.A.; Lai, Y.Q.; Tian, Y.J. Improvement on electrochemical performance by electrodeposition of polyaniline nanowires at the top end of sulfur electrode. Appl. Surf. Sci. 2013, 285, 900–906. [Google Scholar] [CrossRef]
- Luo, Y.N.; Guo, R.S.; Li, T.T.; Li, F.Y.; Liu, Z.C.; Zheng, M.; Wang, B.Y.; Yang, Z.W.; Luo, H.L.; Wan, Y.Z. Application of polyaniline for Li-ion batteries, lithium-sulfur batteries, and supercapacitors. ChemSusChem 2019, 12, 1591–1611. [Google Scholar] [CrossRef]
- Tubtimkuna, S.; Krittayavathananon, A.; Chiochan, P.; Duangdangchote, S.; Wutthiprom, J.; Limtrakul, J.; Sawangphruk, M. Polyaniline-grafted hydrolysed polyethylene as a dual functional interlayer/separator for high-performance Li–S@ C core–shell batteries. Chem. Commun. 2019, 55, 14263–14266. [Google Scholar] [CrossRef]
- Chang, C.H.; Chung, S.H.; Manthiram, A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li–S batteries with pure sulfur cathodes. J. Mater. Chem. A 2015, 3, 18829–18834. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, F.L.; Cheng, X.; Lam, K.H.; Wang, W.K.; Wang, A.B.; Jin, Z.Q.; Wu, F.; Yang, Y.S. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator. Chem. Eng. J. 2018, 334, 305–312. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, G.D.; Xiao, L.P.; Li, P.W.; Li, W.L.; Xu, Q.C.; Xu, J. Polyaniline Encapsulated Amorphous V2O5 Nanowire-Modified Multi-Functional Separators for Lithium-Sulfur Batteries. Small Methods 2021, 5, 2001056. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Ma, L.; Choudhury, S.; Archer, L.A. Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries. Adv. Mater. Interfaces 2016, 3, 1600450. [Google Scholar] [CrossRef]
- Jo, H.; Cho, Y.; Yoo, T.; Jeon, Y.; Hong, H.; Piao, Y.Z. Polyaniline-Encapsulated Hollow Co–Fe Prussian Blue Analogue Nanocubes Modified on a Polypropylene Separator to Improve the Performance of Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 47593–47602. [Google Scholar] [CrossRef]
- Lan, Q.; Yang, Y.B.; Song, Z.P.; Liu, N.; Qin, J.; Men, F.; Zhan, H. PEDOT: PSS dual-function film initiated 1,3-dioxolane polymerization in Li/S cells. ACS Appl. Energy Mater. 2020, 3, 3586–3595. [Google Scholar] [CrossRef]
- Kato, M.; Sano, H.; Kiyobayashi, T.; Takeichi, N.; Yao, M. Improvement of the battery performance of indigo, an organic electrode material, using PEDOT/PSS with d-sorbitol. ACS Omega 2020, 5, 18565–18572. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.Z.; Yao, Y.C.; Tu, J.X.; Tian, Z.R.; Zou, J.Z.; Zeng, X.R.; Zhu, H.O.; Kong, L.B.; Han, P.G. Improving the low-rate stability of lithium-sulfur battery through the coating of conductive polymer. Ionics 2021, 27, 3887–3893. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.H.; Wei, H.J.; Zhai, X.L.; Wang, F.; Zhou, Y.Z.; Tao, F.; Zhai, P.H.; Liu, Y. Recent advances and perspective in conductive-polymer-based composites as cathode materials for high-performance lithium-sulfur batteries. Sustain. Energy Fuels 2022, 6, 2901–2923. [Google Scholar]
- Li, J.; Jin, Q.; Yin, F.; Zhu, C.C.; Zhang, X.T.; Zhang, Z.G. Effect of Ti3C2Tx–PEDOT: PSS modified-separators on the electrochemical performance of Li–S batteries. RSC Adv. 2020, 10, 40276–40283. [Google Scholar] [CrossRef] [PubMed]
- Hareendrakrishnakumar, H.; Chulliyote, R.; Joseph, M.G. Ion-selective PEDOT: PSS-decorated separator as a potential polysulfide immobilizer for lithium-sulfur batteries. Ionics 2021, 27, 1087–1099. [Google Scholar] [CrossRef]
- Abbas, S.A.; Ibrahem, M.A.; Hu, L.H.; Lin, C.N.; Fang, J.; Boopathi, K.M.; Wang, P.C.; Li, L.J.; Chu, C.W. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. J. Mater. Chem. A 2016, 4, 9661–9669. [Google Scholar] [CrossRef]
- Shi, Q.X.; Yang, C.Y.; Pei, H.J.; Chang, C.; Guan, X.; Chen, F.Y.; Xie, X.L.; Ye, Y.S. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li–S battery. Chem. Eng. J. 2021, 404, 127044. [Google Scholar] [CrossRef]
- Yi, R.W.; Lin, X.F.; Zhao, Y.C.; Liu, C.G.; Li, Y.Q.; Hardwick, L.J.; Yang, L.; Zhao, C.Z.; Gang, X.W.; Zhang, Q. Fabrication of a light-weight dual-function modified separator towards high-performance lithium-sulfur batteries. ChemElectroChem 2019, 6, 3648–3656. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, J.; Kim, S.W.; Halim, W.; Frey, M.W.; Joo, Y.L. Effective suppression of the polysulfide shuttle effect in lithium-sulfur batteries by implementing rGO–PEDOT: PSS-coated separators via air-controlled electrospray. ACS Omega 2018, 3, 16465–16471. [Google Scholar] [CrossRef]
- Yao, Y.J.; Zhang, H.M.; Wang, X.H. Polyaniline: An effective suppressor against diffusion and dissolution of polysulfides in Li–S battery. J. Solid State Electrochem. 2019, 23, 2559–2567. [Google Scholar] [CrossRef]
- Ma, G.Q.; Wen, Z.Y.; Jin, J.; Wu, M.F.; Wu, X.W.; Zhang, J.C. Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J. Power Sources 2014, 267, 542–546. [Google Scholar] [CrossRef]
- Nakamura, N.; Wu, Y.W.; Yokoshima, T.; Nara, H.; Momma, T.; Osaka, T. Film properties of electropolymerized polypyrrole for a sulfur/ketjenblack cathode in lithium secondary batteries. J. Electrochem. Soc. 2016, 163, A683–A689. [Google Scholar] [CrossRef]
- Gao, X.G.; Huang, Y.; Guang, Z.X.; Li, X. Constructing a multifunctional globular polypyrrole slurry cladding carbon aerogel/sulfur cathode for high-performance lithium-sulfur batteries. Energy Fuel. 2020, 34, 3931–3940. [Google Scholar] [CrossRef]
- Versaci, D.; Canale, I.; Goswami, S.; Amici, J.; Francia, C.; Fortunato, E.; Martins, R.; Pereira, L.; Bodoardo, S. Molybdenum disulfide/polyaniline interlayer for lithium polysulphide trapping in lithium-sulphur batteries. J. Power Sources 2022, 521, 230945. [Google Scholar] [CrossRef]
- Li, Y.R.; Yuan, L.X.; Li, Z.; Qi, Y.Z.; Wu, C.; Liu, J.; Huang, Y.H. Improving the electrochemical performance of a lithium-sulfur battery with a conductive polymer-coated sulfur cathode. RSC Adv. 2015, 5, 44160–44164. [Google Scholar] [CrossRef]
- Lang, S.Y.; Hu, X.C.; Wen, R.; Wan, L.J. In situ/operando visualization of electrode processes in lithium-sulfur batteries: A review. J. Electrochem. 2019, 25, 141. [Google Scholar]
- Lang, S.Y.; Shi, Y.; Hu, X.C.; Yan, H.J.; Wen, R.; Wan, L.J. Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. Curr. Opin. Electrochem. 2019, 17, 134–142. [Google Scholar] [CrossRef]
- Lang, S.Y.; Yu, S.H.; Feng, X.R.; Krumov, M.R.; Abruña, H.D. Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 2022, 13, 4811. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; An, D.; Wang, S.C.; Wang, H.; Wang, Y.Y.; Zhu, Q.N.; Yu, D.D.; Tang, M.Y.; Guo, L.; Wang, H. Rechargeable potassium-ion full cells operating at −40 °C. Angew. Chem. Int. Ed. 2023, 62, e202307122. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.Y.; Dong, S.; Wang, J.W.; Chen, L.W.; Zhu, Q.N.; Li, Y.M.; Yang, X.Y.; Guo, L.; Wang, H. Low-temperature anode-free potassium metal batteries. Nat. Commun. 2023, 14, 6006. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Yu, D.D.; Zhu, Q.N.; Liu, X.Z.; Wang, J.W.; Chen, W.X.; Jia, R.N.; Qiu, K.L.; Guo, L.; Wang, H. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries. Adv. Mater. 2022, 34, 2205678. [Google Scholar] [CrossRef] [PubMed]
Classification of Conductive Polymer-Based Interlayers | Interlayer Material | Thickness (μm)/Mass Loading (mg cm−2) | Conductivity (S cm−1) | Initial Capacity (mAh g−1) (without Interlayer) | Capacity Increase Rate (%) | Initial capacity (mAh g−1) (with Interlayer) | Residual Capacity (mAh g−1) (with Interlayer) | Capacity Decay per Cycle (%) (with Interlayer) | Electrochemical Window (V) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Free-standing conductive polymer-based interlayers | PPy | 35/1 | - | - | - | 1102 (0.5 C) | 712 (0.5 C, 300 cycles) | 0.118 | 1.8–2.8 | [24] |
PPy/carbon paper | 200/0.1 | - | 1012.4 | 9.6 | 938.8 (0.5 C) | 555 (0.5 C, 200 cycles) | 0.200 | 1.7–3 | [43] | |
PPy/carbon paper | -/1.3 | - | 777.95 | 54.8 | 1204.5 (0.1 C) | 853.7 (0.5 C, 300 cycles) | 0.097 | 1.5–3 | [44] | |
PPy/carbon paper | -/- | - | 776 | 39.8 | 1085 (0.1 C) | 768 (0.1 C, 200 cycles) | 0.146 | 1.5–3 | [45] | |
PANI/GO | 9/2.48 | 6.62 × 10−3 | 1110 | 13.6 | 1261 (0.5 C) | 896 (0.5 C, 150 cycles) | 0.193 | 1.7–3 | [46] | |
PEDOT:PSS/CNT | 7/0.7 | 930 | 611 | 50.7 | 921 (0.5 C) | 653 (0.5 C, 200 cycles) | 0.145 | 1.7–3 | [36] | |
Conductive polymer-based interlayer modified separators | PPy nanotube, PPy nanowire | -/1 | 4.2–4.8 | 1170 (0.2 C) | 2.56 | 1110.4 (0.5 C) | 801.6 (0.5 C, 300 cycles) | 0.093 | 1.8–2.8 | [53] |
PPy nanofiber | 10/1.4 | 19.23 | 1081 | 14.3 | 1236 (0.2 C) | 1073 (0.2 C, 200 cycles) | 0.066 | 1.7–2.8 | [33] | |
PPy sphere | 8/0.35 | - | 1100 | 14.7 | 1274 (0.2 C) | 855 (0.2 C, 100 cycles) | 0.329 | 1.7–2.8 | [54] | |
PPy/separator/PPy | 6.5 × 10−2/0.13 | 3.9 × 10−4 | 1107 | 14.8 | 985 (0.1 C) | 805 (0.5 C, 250 cycles) | 0.083 | 1.7–2.8 | [55] | |
PPy/separator/PPy | -/1.8–2 mg | 16.7 | 1038 | 26 | 1308 (0.1 A/g) | (1 A/g, 500 cycles) | 0.037 | 1.7–2.8 | [56] | |
PPy/ZnO | 12.4/- | - | 930 | 28.4 | 1194 (0.2 C) | 579 (0.2 C, 100 cycles) | 0.515 | 1.7–2.8 | [57] | |
PPy/NiCo2O4 | 30/0.7 | - | 790 | 101 | 1588 (0.1 C) | 423 (2 C, 400 cycles) | 0.107 | 1.7–2.8 | [58] | |
PPy/graphene | 30/0.35 | 2.4 | 874 | 65 | 1360 (0.2 C) | 900 (0.2 C, 200 cycles) | 0.169 | 1.8–2.7 | [59] | |
Hydrolyzed polyethylene grafted PANI | -/0.92 | 2.13 × 10−3 | 1221.5 | 6 | 1294.8 (0.1 C) | 63.4% (1 C, 500 cycles) | 0.073 | 1.6–3 | [64] | |
PANI nanofiber/MWCNT | 8/0.01 | - | 836 | 22 | 1020 (0.2 C) | 709 (0.2 C, 100 cycles) | 0.305 | 1.8–2.8 | [65] | |
SPANI/MWCNT | 10/- | - | 1047 | 7.5 | 1126 (100 mA/g) | 913 (100 mA/g, 100 cycles) | 0189 | 1.7–2.8 | [66] | |
PANI/V2O5 | 8/- | - | 748 | 51.4 | 1132.4 (0.2 C) | 586 (1 C, 1000 cycles) | 0.037 | 1.7–2.8 | [67] | |
PANI/TiO2/MWCNT | 10/0.4 | - | - | - | 1220 (0.5 C) | 1183 (0.5 C, 100 cycles) | 0.030 | 1.5–2.6 | [68] | |
PANI/Co-Fe Prussian blue | 7/0.2 | - | 801.05 | 21.8 | 975.3 (0.2 C) | 603 (1 C, 100 cycles) | 0.165 | 1.7–2.8 | [69] | |
PEDOT:PSS/Ti3C2TX | 49.7/0.8 | 3.19 | 866 | 43.3 | 1241.4 (0.2 C) | 485.3 (0.5 C, 1000 cycles) | 0.030 | 1.7–2.8 | [74] | |
PEDOT:PSS | -/0.07 | 10−6 | - | - | 914 (0.25 C) | 682 (0.25 C, 1000 cycles) | 0.036 | 1.5–2.8 | [76] | |
PEDOT:PSS/CTF | 0.15/1.4 × 10−3 | (0.33–0.36) × 10−3 | 970 | 24.2 | 1205 (1 C) | 577 (1 C, 1000 cycles) | 0.052 | 1.5–3 | [77] | |
PEDOT:PSS/CB | 6.4/0.604 | 0.045 | 682 | 92.8 | 1315 (0.2 C) | 956 (0.2 C, 100 cycles) | 0.273 | 1.5–2.8 | [78] | |
PEDOT:PSS/rGO | -/0.6 | - | 834.3 | 49.8 | 1249.4 (0.1 C) | 812.8 (0.5 C, 100 cycles) | - | 1.8–2.8 | [79] | |
Conductive polymer-based interlayer modified sulfur electrodes | PPy | 10/0.3 | - | 940 | - | 719 (0.2 C) | 846 (0.2 C, 200 cycles) | - | 1.5–2.8 | [81] |
PPy | 123/2.3 | - | - | - | 882 (1.4 mA/cm2) | 652 (1.4 mA/cm2, 100 cycles) | 0.261 | 1.7–2.8 | [82] | |
Spherical PPy | 3.6/- | - | - | - | 1037 (4.5 V) | 691 (4.5 V, 50 cycles) | 0.667 | 1.5–3 | [83] | |
PANI | 1.5/- | - | 1298 | - | 935 (1 C) | 901.34 (1 C, 200 cycles) | 0.018 | 1–3 | [34] | |
PANI/MoS2 | 200/- | - | 1110 | 11.7 | 1240 (0.1 C) | 440 (0.2 C, 400 cycles) | - | 1.7–2.8 | [84] | |
PEDOT:PSS | 4.5wt% | - | 867 | 22.4 | 1061 (0.2 C) | 638 (0.2 C, 100 cycles) | 0.399 | 1.7–3 | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhu, X.; Ran, Z.; Liu, S.; Zhang, Y.; Wang, H.; Wei, W. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries. Molecules 2024, 29, 1164. https://doi.org/10.3390/molecules29051164
Hu X, Zhu X, Ran Z, Liu S, Zhang Y, Wang H, Wei W. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries. Molecules. 2024; 29(5):1164. https://doi.org/10.3390/molecules29051164
Chicago/Turabian StyleHu, Xincheng, Xiaoshuang Zhu, Zhongshuai Ran, Shenghao Liu, Yongya Zhang, Hua Wang, and Wei Wei. 2024. "Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries" Molecules 29, no. 5: 1164. https://doi.org/10.3390/molecules29051164
APA StyleHu, X., Zhu, X., Ran, Z., Liu, S., Zhang, Y., Wang, H., & Wei, W. (2024). Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries. Molecules, 29(5), 1164. https://doi.org/10.3390/molecules29051164