Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. The Reaction of Acylethynylpyrroles 1a–o with TosMIC in the Presence of KOH: Synthesis of 2,3′-Bipyrroles (2a–o) (General Procedure)
3.3. The Reaction of Acylethynylpyrroles 1a,b,d,h–n with TosMIC in the Presence of t-BuONa: Synthesis of 2,3′-Bipyrroles (2a,b,d,h–n) and Pyrrolo[1,2-c]imidazoles 3a–j (General Procedure)
3.4. Characterization Data of 2,3-Bipyrroles 2a–o and Pyrrolo[1,2-c]imidazoles 3a–j
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, M.; Fathallah, S. Pyrroles and Fused Pyrroles: Synthesis and Therapeutic Activities. Mini-Rev. Org. Chem. 2014, 11, 477–507. [Google Scholar] [CrossRef]
- Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kapil, K. Recent synthetic and medicinal perspectives of pyrroles: An overview. J. Pharm. Chem. Chem. Sci. 2017, 1, 17–32. [Google Scholar]
- Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef]
- Bulumulla, C.; Gunawardhana, R.; Gamage, P.L.; Miller, J.T.; Kularatne, R.N.; Biewer, M.C.; Stefan, M.C. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 32209–32232. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as Privileged Scaffolds in the Search for New Potential HIV Inhibitors. Pharmaceuticals 2021, 14, 893. [Google Scholar] [CrossRef] [PubMed]
- Rakendu, P.N.; Aneeja, T.; Anilkumar, G. Solvent-Free Synthesis of Pyrroles: An Overview. Asian J. Org. Chem. 2021, 10, 2318–2333. [Google Scholar] [CrossRef]
- Van Vuuren, N.J.; van Rensburg, H.D.J.; Terre’Blanche, G.; Legoabe, L.J. New fused pyrroles with rA1/A2A antagonistic activity as potential therapeutics for neurodegenerative disorders. Mol. Divers. 2022, 26, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.H.; Mir, P.A.; Mohi-ud-din, R.; Sabreen, S.; Maqbool, M.; Shah, A.J.; Shenmar, K.; Raza, S.N.; Pottoo, F.H. A Comprehensive Review on Journey of Pyrrole Scaffold Against Multiple Therapeutic Targets. Anti-Cancer Agents Med. Chem. 2022, 22, 3291–3303. [Google Scholar] [CrossRef]
- Amini, M.; Moghadam, E.S.; Mireskandari, K.; Abdel-Jalil, R. An Approach to Pharmacological Targets of Pyrrole Family from Medicinal Chemistry Viewpoint. Mini-Rev. Med. Chem. 2022, 22, 2486–2561. [Google Scholar] [CrossRef] [PubMed]
- Mateev, E.; Georgieva, M.; Zlatkov, A. Pyrrole as an Important Scaffold of Anticancer Drugs: Recent Advances. J. Pharm. Pharm. Sci. 2022, 25, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, B.H.; Raj, A.G.; Aruchamy, B.; Nanjan, P.; Drago, C.; Ramani, P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024, 19, e202300447. [Google Scholar] [CrossRef]
- Shi, T.; Yin, G.; Wang, X.; Xiong, Y.; Peng, Y.; Li, S.; Zeng, Y.; Wang, Z. Recent advances in the syntheses of pyrroles. Green Synth. Catal. 2023, 4, 20–34. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Stepanova, Z.V.; Sobenina, L.N.; Mikhaleva, A.I.; Ushakov, I.A. Ethynylation of pyrroles with 1-acyl-2-bromoacetylenes on alumina: A formal ‘inverse Sonogashira coupling’. Tetrahedron Lett. 2004, 45, 6513–6516. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Trofimov, B.A. Recent Strides in the Transition Metal-Free Cross-Coupling of Haloacetylenes with Electron-Rich Heterocycles in Solid Media. Molecules 2020, 25, 2490. [Google Scholar] [CrossRef]
- Oparina, L.A.; Belyaeva, K.V.; Kolyvanov, N.A.; Ushakov, I.A.; Gotsko, M.D.; Sobenina, L.N.; Vashchenko, A.V.; Trofimov, B.A. Catalyst-Free Annulation of Acylethynylpyrroles with 1-Pyrrolines: A Straightforward Access to Tetrahydrodipyrrolo[1,2-a:1′,2′-c]imidazoles. J. Org. Chem. 2022, 87, 9518–9531. [Google Scholar] [CrossRef] [PubMed]
- Anguera, G.; Brewster Ii, J.T.; Sánchez-García, D.; Sessler, J.L. Functionalized 2,2’-Bipyrroles: Building Blocks for Pyrrolic Macrocycles. Macroheterocycles 2018, 11, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Gribble, G.; Lopchuk, J.; Song, M.; Butler, B. Synthesis of Heteroaryl-Substituted Pyrroles via the 1,3-Dipolar Cycloaddition of Unsymmetrical Münchnones and Nitrovinylheterocycles. Synthesis 2015, 47, 2776–2780. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Gotsko, M.D.; Saliy, I.V.; Sobenina, L.N.; Ushakov, I.A.; Kireeva, V.V. Functionalized Bipyrroles and Pyrrolyl-Aminopyrones from Acylethynylpyrroles and Diethyl Aminomalonate. Synthesis 2021, 54, 1134–1144. [Google Scholar] [CrossRef]
- Yamawaki, I.; Matsushita, Y.; Asaka, N.; Ohmori, K.; Nomura, N.; Ogawa, K. Synthesis and aldose reductase inhibitory activity of acetic acid derivatives of pyrrolo[1,2-c]imidazole. Eur. J. Med. Chem. 1993, 28, 481–498. [Google Scholar] [CrossRef]
- Van-Gelder, J.M.; Klein, J.Y.; Basel, Y.; Reizelman, A.; Tchilibon, S.; Mouallem, O. Rigidified Compounds for Modulating Heparanase Activity. U.S. Patent 7,795,255, 5 January 2006. [Google Scholar]
- Surivet, J.-P.; Panchaud, P.; Specklin, J.-L.; Diethelm, S.; Blumstein, A.-C.; Gauvin, J.-C.; Jacob, L.; Masse, F.; Mathieu, G.; Mirre, A.; et al. Discovery of Novel Inhibitors of LpxC Displaying Potent in vitro Activity against Gram-Negative Bacteria. J. Med. Chem. 2019, 63, 66–87. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Guodong, C.; Fang, Y.; Feng, H.; Weikang, T. Pyrroloheterocyclic derivative, preparation method therefor, and application thereof in medicine. WO2020200069(A1), 2020. [Google Scholar]
- Zhang, Y.; Zheng, J.; Cui, S. Rh(III)-Catalyzed C–H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. J. Org. Chem. 2014, 79, 6490–6500. [Google Scholar] [CrossRef] [PubMed]
- Dal Ben, D.; Antonini, I.; Buccioni, M.; Lambertucci, C.; Marucci, G.; Thomas, A.; Volpini, R.; Cristalli, G. Neuropeptide S Receptor: Recent Updates on Nonpeptide Antagonist Discovery. ChemMedChem 2011, 6, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.E.; Carter, P.H.; Tebben, A.J.; Scherle, P.A.; Brown, G.D.; Thompson, L.A.; Xu, M.; Lo, Y.C.; Yang, G.; Liu, R.-Q.; et al. Both 5-arylidene-2-thioxodihydropyrimidine-4,6(1H,5H)-diones and 3-thioxo-2,3-dihydro-1H-imidazo[1,5-a]indol-1-ones are light-dependent tumor necrosis factor-α antagonists. Bioorg. Med. Chem. Lett. 2003, 13, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ding, Y.; Qin, H.-X.; Xu, Z.-G.; Lan, H.-T.; Yang, D.-L.; Yi, C. One-pot synthesis of substituted pyrrole–imidazole derivatives with anticancer activity. Mol. Divers. 2019, 24, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Spyvee, M.; Ladner, R. Hydantoin Containing Deoxyuridine Triphosphatase Inhibitors. U.S. Patent 11,014,924, 21 November 2017. [Google Scholar]
- Mollanejad, K.; Asghari, S.; Jadidi, K. Diastereoselective synthesis of pyrrolo[1,2-c]imidazoles using chiral thiohydantoins, malononitrile, and aldehydes and evaluation of their antioxidant and antibacterial activities. J. Heterocycl. Chem. 2019, 57, 556–564. [Google Scholar] [CrossRef]
- Miguel-Gordo, M.; Gegunde, S.; Jennings, L.K.; Genta-Jouve, G.; Calabro, K.; Alfonso, A.; Botana, L.M.; Thomas, O.P. Futunamine, a Pyrrole–Imidazole Alkaloid from the Sponge Stylissa aff. carteri Collected off the Futuna Islands. J. Nat. Prod. 2020, 83, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santos, R.M.; Reyes-Gutiérrez, P.E.; Torres-Ochoa, R.O.; Ramírez-Apan, M.T.; Martínez, R. 5,6-Dihydropyrrolo[2,1- a ]isoquinolines as Alternative of New Drugs with Cytotoxic Activity. Chem. Farm. Bull. 2017, 65, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Kalmouch, A.; Radwan, M.A.A.; Omran, M.M.; Sharaky, M.; Moustafa, G.O. Synthesis of novel 2, 3’-bipyrrole derivatives from chalcone and amino acids as antitumor agents. Egypt. J. Chem. 2020, 63, 4409–4421. [Google Scholar]
- Jin, Y.; Bu, P.; He, Q.; Lan, H.-T.; Zhou, F.; Zhang, L.; He, X. Azabicycle Derivatives, Preparation Method and Medical Application. CN105524068, 2014. [Google Scholar]
- Kumar, K. TosMIC: A Powerful Synthon for Cyclization and Sulfonylation. ChemistrySelect 2020, 5, 10298–10328. [Google Scholar] [CrossRef]
- Leusen, D.V.; Leusen, A.M.V. Synthetic Usesof Tosylmethyl Isocyanide (TosMIC). In Organic Reactions; Wiley: Hoboken, NJ, USA, 2001; pp. 417–666. [Google Scholar]
- Ma, Z.; Ma, Z.; Zhang, D. Synthesis of Multi-Substituted Pyrrole Derivatives Through [3+2] Cycloaddition with Tosylmethyl Isocyanides (TosMICs) and Electron-Deficient Compounds. Molecules 2018, 23, 2666. [Google Scholar] [CrossRef] [PubMed]
- Mathiyazhagan, A.D.; Anilkumar, G. Recent advances and applications of p-toluenesulfonylmethyl isocyanide (TosMIC). Org. Biomol. Chem. 2019, 17, 6735–6747. [Google Scholar] [CrossRef] [PubMed]
- Elshina, V.G.; Novokshonov, V.V.; Verochkina, E.A.; Ushakov, I.A.; Rosentsveig, I.B.; Vchislo, N.V. Synthesis of oxazolines and oxazoles by the reaction of propynals with tosylmethyl isocyanide. Mendeleev Commun. 2019, 29, 651–652. [Google Scholar] [CrossRef]
- Pogaku, N.; Krishna, P.R.; Prapurna, Y.L. Iodine-mediated new strategy for the synthesis of 2,5-disubstituted oxazoles from methyl ketones and TosMIC. Synth. Commun. 2018, 48, 1986–1993. [Google Scholar] [CrossRef]
- Van Leusen, A.M.; Oomkes, P.G. One-Step Conversion of Aldehydes to Nitriles. Introduction of a One-Carbon Unit. Synth. Commun. 1980, 10, 399–403. [Google Scholar] [CrossRef]
- Saliy, I.V.; Gotsko, M.D.; Sobenina, L.N.; Ushakov, I.A.; Trofimov, B.A. Chemo- and stereoselective synthesis of E-2-(2-acyl-1-tosylvinyl)pyrroles from tosylmethyl isocyanide (TosMIC) and 2-(acylethynyl)pyrroles. Tetrahedron Lett. 2021, 84, 153432. [Google Scholar] [CrossRef]
- Gotsko, M.D.; Saliy, I.V.; Sobenina, L.N.; Ushakov, I.A.; Trofimov, B.A. Tosyl/pyrrolyl-capped 1,3-enynes via t-BuOK-assisted reaction of TosMIC with acylethynylpyrroles: A new feature of this popular reagent. New J. Chem. 2022, 46, 16646–16650. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Moskva, V.V. The concept of acid and base in organic chemistry. Soros Edu. J. 1996, 12, 33–40. [Google Scholar]
Entry a | Base | Time, h | Conversion of 1a, % | Yield of 2a, % b | Yield of 3a, % b |
---|---|---|---|---|---|
1 | NEt3 | 24 | 0 | 0 | 0 |
2 | DBU | 24 | 0 | 0 | 0 |
3 | DABCO | 24 | 0 | 0 | 0 |
4 | K2CO3 | 24 | 45 | 15 | 10 |
5 | Cs2CO3 | 1 | 100 | 56 | 0 |
6 | NaOH | 1 | 100 | 72 | traces |
7 | KOH | 1 | 100 | 80 | traces |
8 c | t-BuONa | 1 | 100 | 15 | 23 |
9 | t-BuONa | 1 | 100 | 27 | 37 |
10 c | t-BuOK | 1 | 75 | 43 | traces |
11 | t-BuOK | 1 | 100 | 80 | traces |
12 d | NaH | 1 | 90 | 17 | 31 |
13 c | NaH | 1 | 90 | traces | 39 |
14 | NaH | 1 | 100 | traces | 45 |
15 e | NaH | 1 | 100 | traces | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotsko, M.D.; Saliy, I.V.; Ushakov, I.A.; Sobenina, L.N.; Trofimov, B.A. Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules 2024, 29, 885. https://doi.org/10.3390/molecules29040885
Gotsko MD, Saliy IV, Ushakov IA, Sobenina LN, Trofimov BA. Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules. 2024; 29(4):885. https://doi.org/10.3390/molecules29040885
Chicago/Turabian StyleGotsko, Maxim D., Ivan V. Saliy, Igor A. Ushakov, Lyubov N. Sobenina, and Boris A. Trofimov. 2024. "Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide" Molecules 29, no. 4: 885. https://doi.org/10.3390/molecules29040885
APA StyleGotsko, M. D., Saliy, I. V., Ushakov, I. A., Sobenina, L. N., & Trofimov, B. A. (2024). Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules, 29(4), 885. https://doi.org/10.3390/molecules29040885