Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tosylmethylisocyanide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1729 KiB  
Article
Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide
by Maxim D. Gotsko, Ivan V. Saliy, Igor A. Ushakov, Lyubov N. Sobenina and Boris A. Trofimov
Molecules 2024, 29(4), 885; https://doi.org/10.3390/molecules29040885 - 17 Feb 2024
Cited by 1 | Viewed by 1784
Abstract
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3′-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. [...] Read more.
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3′-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3′-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1). Full article
Show Figures

Figure 1

18 pages, 6367 KiB  
Review
Recent Advances in the Synthesis of Oxazole-Based Molecules via van Leusen Oxazole Synthesis
by Xunan Zheng, Wei Liu and Dawei Zhang
Molecules 2020, 25(7), 1594; https://doi.org/10.3390/molecules25071594 - 31 Mar 2020
Cited by 74 | Viewed by 13353
Abstract
Oxazole compounds, including one nitrogen atom and one oxygen atom in a five-membered heterocyclic ring, are present in various biological activities. Due to binding with a widespread spectrum of receptors and enzymes easily in biological systems through various non-covalent interactions, oxazole-based molecules are [...] Read more.
Oxazole compounds, including one nitrogen atom and one oxygen atom in a five-membered heterocyclic ring, are present in various biological activities. Due to binding with a widespread spectrum of receptors and enzymes easily in biological systems through various non-covalent interactions, oxazole-based molecules are becoming a kind of significant heterocyclic nucleus, which have received attention from researchers globally, leading them to synthesize diverse oxazole derivatives. The van Leusen reaction, based on tosylmethylisocyanides (TosMICs), is one of the most appropriate strategies to prepare oxazole-based medicinal compounds. In this review, we summarize the recent advances of the synthesis of oxazole-containing molecules utilizing the van Leusen oxazole synthesis from 1972, aiming to look for potential oxazole-based medicinal compounds, which are valuable information for drug discovery and synthesis. Full article
(This article belongs to the Special Issue Nitrogen Heterocycles in Medicinal Chemistry)
Show Figures

Scheme 1

19 pages, 8764 KiB  
Review
Synthesis of Imidazole-Based Medicinal Molecules Utilizing the van Leusen Imidazole Synthesis
by Xunan Zheng, Zhengning Ma and Dawei Zhang
Pharmaceuticals 2020, 13(3), 37; https://doi.org/10.3390/ph13030037 - 3 Mar 2020
Cited by 101 | Viewed by 19708
Abstract
Imidazole and its derivatives are one of the most vital and universal heterocycles in medicinal chemistry. Owing to their special structural features, these compounds exhibit a widespread spectrum of significant pharmacological or biological activities, and are widely researched and applied by pharmaceutical companies [...] Read more.
Imidazole and its derivatives are one of the most vital and universal heterocycles in medicinal chemistry. Owing to their special structural features, these compounds exhibit a widespread spectrum of significant pharmacological or biological activities, and are widely researched and applied by pharmaceutical companies for drug discovery. The van Leusen reaction based on tosylmethylisocyanides (TosMICs) is one of the most appropriate strategies to synthetize imidazole-based medicinal molecules, which has been increasingly developed on account of its advantages. In this review, we summarize the recent developments of the chemical synthesis and bioactivity of imidazole-containing medicinal small molecules, utilizing the van Leusen imidazole synthesis from 1977. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Scheme 1

Back to TopTop