Bioinspired Fern-like Fe2O3 Functionalized with Pd/PdO Nanoparticles for High-Performance Acetone Sensing
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of Fern-like Fe2O3 and Fern-like Pd/PdO-Fe2O3
2.2. Characterization
2.3. Gas Sensor Fabrication and Gas-Sensing Properties Test
3. Results and Discussion
3.1. Structural and Morphological Properties
3.2. Sensing Performance
3.3. Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maji, B.; Singh, P.; Badhulika, S. A highly sensitive and fully flexible Fe-Co metal-organic framework hydrogel based gas sensor for ppb level detection of acetone. Appl. Surf. Sci. 2024, 678, 161047. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Hilal, M.; Cai, Z. Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction. Solid State Sci. 2024, 156, 107683. [Google Scholar] [CrossRef]
- Hao, X.; Yu, T.; Meng, X.; Wei, C.; Wang, Y.; Sun, S.; Cheng, P.; Ji, L. Efficient mixed-potential acetone sensor with yttria-stabilized zirconia and porous Co3O4 nanofoam sensing electrode for hazardous gas monitoring and breath analysis. J. Hazard. Mater. 2024, 478, 135462. [Google Scholar] [CrossRef]
- Su, Z.; Zhao, Z.; Jin, G.; Chen, W.; Shen, X.; Wu, L. Enhanced acetone gas sensors based on Pt-modified Co3O4/CoMoO4 heterojunctions. Phys. E Low-Dimens. Syst. Nanostruct. 2024, 164, 116042. [Google Scholar] [CrossRef]
- Yu, T.; Meng, X.; Hao, X.; Dong, Z.; Wang, Y.; Sun, S.; Cheng, P. YSZ-based mixed-potential acetone sensor with LaBaCo2O5+δ sensitive electrode for diabetic diagnosis. Sens. Actuators B Chem. 2024, 418, 136273. [Google Scholar] [CrossRef]
- Jiang, L.; Lv, S.; Tang, W.; Zhao, L.; Wang, C.; Wang, J.; Wang, T.; Guo, X.; Liu, F.; Wang, C.; et al. YSZ-based acetone sensor using a Cd2SnO4 sensing electrode for exhaled breath detection in medical diagnosis. Sens. Actuators B Chem. 2021, 345, 130321. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Y.; Nie, H.; Yan, H. Development of polyimide nanofiber aerogels with a 3D multi-level pore structure: A new sensor for colorimetric detection of breath acetone. Chem. Eng. J. 2024, 496, 154229. [Google Scholar] [CrossRef]
- Chang, X.; Guo, S.; Chen, M.; Zhou, D.; Dong, Z. Synthesis of self-assembled spherical ZnFe2O4 nanomaterials by the premixed stagnation flame method for highly sensitive acetone sensor. Sens. Actuators B Chem. 2024, 418, 136216. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Qin, L.; Yuan, Z.; Li, J.; Meng, F. UV photosensitized N-CQDs@In2O3 ordered porous film elaborated optical fiber acetone gas sensor with ppb-level at room temperature. Sens. Actuators B Chem. 2024, 418, 136283. [Google Scholar] [CrossRef]
- Słupek, E.; Dobrzyniewski, D.; Makoś-Chełstowska, P.; Szulczyński, B.; Gębicki, J. Monitoring of absorptive model biogas purification process using sensor matrices and gas chromatography. Measurement 2025, 239, 115436. [Google Scholar] [CrossRef]
- Verma, A.; Yadav, D.; Natesan, S.; Gupta, M.; Yadav, B.C.; Mishra, Y.K. Advancements in nanohybrid material-based acetone gas sensors relevant to diabetes diagnosis: A comprehensive review. Microchem. J. 2024, 201, 110713. [Google Scholar] [CrossRef]
- Hung, N.P.; Van Duy, N.; Xuan, C.T.; Le, D.T.T.; Hung, C.M.; Jin, H.; Hoa, N.D. Enhanced acetone gas-sensing characteristics of Pd–NiO nanorods/SnO2 nanowires sensors††Electronic supplementary information (ESI) available. RSC Adv. 2024, 14, 12438–12448. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Tan, Y.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; et al. Facile synthesis of mesoporous CdS/PbS/SnO2 composites for high-selectivity H2 gas sensor. Sens. Actuators B Chem. 2021, 340, 129924. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuators B Chem. 2021, 337, 129783. [Google Scholar] [CrossRef]
- Duoc, V.T.; Hung, C.M.; Nguyen, H.; Duy, N.V.; Hieu, N.V.; Hoa, N.D. Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO. Sens. Actuators B Chem. 2021, 348, 130652. [Google Scholar] [CrossRef]
- Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R.; Subramaniam, B. Selective room temperature ammonia gas sensor using nanostructured ZnO/CuO@graphene on paper substrate. Sens. Actuators B Chem. 2022, 350, 130833. [Google Scholar] [CrossRef]
- Chen, G.; Tian, R.; Li, Q.; Cao, T.; Tan, H.; Guan, H.; Dong, C.; Comini, E. Enhancing acetone detection of In2O3-decorated MOF-derived Fe2O3 spindles with Pt nanoparticles functionalization. J. Alloys Compd. 2024, 1009, 176998. [Google Scholar] [CrossRef]
- Xu, J.; Qu, X.; Yang, W.; Luan, Y.; Ding, X.; Wang, Y.; Guo, L.; Wu, K.; Yang, Z. Oxygen vacancy-mediated metal-organic gel-derived α-Fe2O3 for anomalous acetone sensing behavior. J. Alloys Compd. 2024, 995, 174862. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Zhu, Y.; Zhu, Z.; Zhou, X.; Zhang, Y.; Mo, S. Ce-doped MIL-101(Fe)-derived CoOx/MnOx@Fe2O3 catalysts for photothermal coupled catalytic degradation of acetone and NO. J. Rare Earths 2024, in press. [Google Scholar] [CrossRef]
- Mo, R.; Han, D.; Ren, Z.; Yang, D.; Wang, F.; Li, C. Hollow Fe2O3/Co3O4 microcubes derived from metal-organic framework for enhanced sensing performance towards acetone. Chin. Chem. Lett. 2021, 32, 3619–3622. [Google Scholar] [CrossRef]
- Liu, C.; Xiong, J.; Wang, Y.; Yang, K.; Wang, S.; Zeng, Y. Novel Au-activated SnO2@Fe2O3 hetero-alternated multilayer nanosheets with enhanced low-concentration acetone detection. Sens. Actuators B Chem. 2022, 358, 131478. [Google Scholar] [CrossRef]
- Liu, M.; Ji, J.; Song, P.; Liu, M.; Wang, Q. α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens. Actuators B Chem. 2021, 349, 130782. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Zhang, W. Synthesis of ZnO/α-Fe2O3 heterojunction nanocomposites for ultra-sensitive acetone detection. Mater. Lett. 2023, 344, 134440. [Google Scholar] [CrossRef]
- Hu, J.; Xiong, X.; Guan, W.; Chen, Y.; Long, H. Regulation of O-vacancy and heterojunction structure in MOF-derived Fe2O3-Co3O4 enhancing acetone sensing performance. Sens. Actuators B Chem. 2024, 401, 135082. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, Y.; Bu, W.; Liu, N.; Zhou, Z.; Hu, C.; Chuai, X. Hierarchical porous Fe2O3 derived from willow branch slices biotemplate with fast response and excellent selectivity for acetone. Sens. Actuators B Chem. 2023, 392, 134079. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; She, X.; Chen, Y.; Wang, Y.; Zou, C.; Zhou, Y. Black phosphorus nanosheets-sensitized Zn-doped α-Fe2O3 nanoclusters for trace acetone detection. Sens. Actuators B Chem. 2023, 395, 134496. [Google Scholar] [CrossRef]
- Mei, H.; Zhou, S.; Lu, M.; Zhao, Y.; Cheng, L. Construction of pine-branch-like α-Fe2O3/TiO2 hierarchical heterostructure for gas sensing. Ceram. Int. 2020, 46, 18675–18682. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Y.; Zhang, C.; Yu, H.; Wang, T.; Shi, K.; Zhang, Z.; Wang, D.; Dong, X. High selectivity of Ag-doped Fe2O3 hollow nanofibers in H2S detection at room operating temperature. Sens. Actuators B Chem. 2021, 341, 129919. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.G.; Kim, K.; Masuda, Y. High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens. Actuators B Chem. 2022, 367, 132143. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, G. Ultra-sensitive liquefied petroleum gas (LPG) sensor based on monometallic Ag nanospheres synthesized via microwave-assisted facile approach. Hybrid Adv. 2024, 7, 100313. [Google Scholar] [CrossRef]
- Guo, M.; Wang, B.; Bian, H.; Tao, Z.; Luo, X.; Cui, Y.; Huang, J.; Tu, P. Low-temperature ppm-level H2S flexible gas sensor on the basis of Ag-modified ZnO. Mater. Sci. Semicond. Process. 2025, 185, 108944. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, S.; Wang, S.; Du, F.; Wang, P.; Lin, N.; Li, W.; Zhang, Y.; He, L.; Sokolovskij, R.; et al. In-sensor reservoir computing for gas pattern recognition using Pt-AlGaN/GaN HEMTs. Device 2024, 100550, in press. [Google Scholar] [CrossRef]
- Lee, J.-H.; Shin, J.-H.; Seo, K.-D.; Park, D.-S.; Shim, Y.-B. 3D printed oxygen gas sensor with a Pt-nanoparticles decorated N-doped carbon catalyst and an amine-polymer composited ionic liquid gel electrolyte. Sens. Actuators B Chem. 2025, 422, 136657. [Google Scholar] [CrossRef]
- Qiao, L.; Jia, X.; Zhang, J.; Yang, J.; Shao, D.; Feng, L.; Song, H. A highly responsive, moisture resistant diabetes diagnostic gas sensor with Pt-loaded porous GO/ZnO. Sens. Actuators B Chem. 2024, 418, 136275. [Google Scholar] [CrossRef]
- Jia, P.; Wang, M.; Ma, C.; Chen, D.; Zhang, Y.; Liu, J. Quantum-level investigation of air decomposed pollutants gas sensor (Pd-modified g-C3N4) influenced by micro-water content. Chemosphere 2024, 358, 142198. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.; Zhang, Z.; Zhou, J.; Tang, T.; Zhao, D. Room temperature hydrogen gas sensor based on Pd decorated bridging GaN nanowires. Sens. Actuators B Chem. 2024, 417, 136172. [Google Scholar] [CrossRef]
- Tang, M.; Li, Y.; Yang, X. Pt-doped MoTe2 monolayer as a novel sensor for dissolved gases (CH4, and C2H2): A first-principles study. Chem. Phys. Lett. 2024, 857, 141710. [Google Scholar] [CrossRef]
- Zhou, X.; Ying, Z.; Ma, X.; Sheng, W.; Zheng, X. A formaldehyde gas sensor based on Ag-decorated ZnCo2O4/FF composite. Chem. Phys. Lett. 2024, 842, 141211. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, H.; Ma, Y.; Yang, L. Theoretical investigation of Ag and Au modified CSiN monolayer as a potential gas sensor for air decomposition components detection. J. Mol. Liq. 2024, 410, 125648. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, T. Ag/Cu doped polyaniline hybrid nanocomposite-based novel gas sensor for enhanced ammonia gas sensing performance at room temperature. RSC Adv. 2024, 14, 25093–25107. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.S.; Suman, P.H.; Kim, J.J.; Tuller, H.L.; Varela, J.A.; Orlandi, M.O. Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: Catalyst enhanced sensor response and selectivity. Sens. Actuators B Chem. 2017, 239, 253–261. [Google Scholar] [CrossRef]
- Kang, W.P.; Kim, C.K. Performance and detection mechanism of a new class of catalyst (Pd, Pt, or Ag)-adsorptive oxide (SnOx or ZnO)-insulator-semiconductor gas sensors. Sens. Actuators B Chem. 1994, 22, 47–55. [Google Scholar] [CrossRef]
- Yan, Y.; Luo, Y.; Li, Y.; Zhang, Y.; Wu, P.; Tang, J.; Zhang, X.; Xiao, S. Transition metal (Au, Ni) doped MoS2 as gas sensing materials for C4F7N leakage detection: A comparative study. Surf. Interfaces 2024, 44, 103625. [Google Scholar] [CrossRef]
- Yu, F.; Yuan, H.; Jiang, W.; He, D.; Liu, H.; Qi, X. Comparison of Gas-sensitive response of three metal-doped GaNNT with Pb, Pd and Pt after adsorption of hazardous gases. Surf. Interfaces 2024, 54, 105170. [Google Scholar] [CrossRef]
- Kong, D.L.; Niu, J.Y.; Hong, B.; Xu, J.C.; Han, Y.B.; Peng, X.L.; Ge, H.L.; Li, J.; Zeng, Y.X.; Wang, X.Q. Ag-nanoparticles-anchored mesoporous In2O3 nanowires for ultrahigh sensitive formaldehyde gas sensors. Mater. Sci. Eng. B 2023, 291, 116394. [Google Scholar] [CrossRef]
- Mathankumar, G.; Harish, S.; Mohan, M.K.; Bharathi, P.; Kannan, S.K.; Archana, J.; Navaneethan, M. Enhanced selectivity and ultra-fast detection of NO2 gas sensor via Ag modified WO3 nanostructures for gas sensing applications. Sens. Actuators B Chem. 2023, 381, 133374. [Google Scholar] [CrossRef]
- Pandey, G.; Bhardwaj, M.; Kumar, S.; Lawaniya, S.D.; Kumar, M.; Dwivedi, P.K.; Awasthi, K. Synergistic effects of Pd-Ag decoration on SnO/SnO2 nanosheets for enhanced hydrogen sensing. Sens. Actuators B Chem. 2024, 402, 135062. [Google Scholar] [CrossRef]
- Kim, Y.K.; Hwang, S.-H.; Jeong, S.M.; Son, K.Y.; Lim, S.K. Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles. Talanta 2018, 188, 356–364. [Google Scholar] [CrossRef]
- Luo, Y.; An, B.; Bai, J.; Wang, Y.; Cheng, X.; Wang, Q.; Li, J.; Yang, Y.; Wu, Z.; Xie, E. Ultrahigh-response hydrogen sensor based on PdO/NiO co-doped In2O3 nanotubes. J. Colloid Interface Sci. 2021, 599, 533–542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, H. Bioinspired Fern-like Fe2O3 Functionalized with Pd/PdO Nanoparticles for High-Performance Acetone Sensing. Molecules 2024, 29, 5791. https://doi.org/10.3390/molecules29235791
Liu G, Wang H. Bioinspired Fern-like Fe2O3 Functionalized with Pd/PdO Nanoparticles for High-Performance Acetone Sensing. Molecules. 2024; 29(23):5791. https://doi.org/10.3390/molecules29235791
Chicago/Turabian StyleLiu, Gaohan, and Haihang Wang. 2024. "Bioinspired Fern-like Fe2O3 Functionalized with Pd/PdO Nanoparticles for High-Performance Acetone Sensing" Molecules 29, no. 23: 5791. https://doi.org/10.3390/molecules29235791
APA StyleLiu, G., & Wang, H. (2024). Bioinspired Fern-like Fe2O3 Functionalized with Pd/PdO Nanoparticles for High-Performance Acetone Sensing. Molecules, 29(23), 5791. https://doi.org/10.3390/molecules29235791