Synthesis and Characterisation of Phosphino-Aryloxide Rare Earth Complexes
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterisation
2.2. Structural Characterisation
3. Reactivity Studies
4. Conclusions and Future Work
5. Experimental
5.1. General Methods
5.2. Synthesis of 2-Di-tert-butylphosphinophenol
5.3. Synthesis of 2-Di-isopropylphosphinophenol
5.4. Synthesis of [{La[tBu2P(C6H4)O]2[µ-tBu2P(C6H4)O]}2] (1-La)
5.5. Synthesis of [{La[iPr2P(C6H4)O]2[µ-iPr2P(C6H4)O]}2] (2-La)
5.6. Synthesis of [Sm{tBu2P(C6H4)O}3] (1-Sm)
5.7. Synthesis of [Y{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Y)
5.8. Synthesis of [Ce{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Ce)
5.9. Synthesis of [Pr{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Pr)
5.10. Synthesis of [Sm{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Sm)
5.11. Synthesis of K[tBu2P(C6H4)O]
5.12. Synthesis of [La{tBu2P(C6H4)O}6K3] (4)
5.13. General Procedure for Gas Reactions—CO and CO2
5.14. Reaction Between a Mixture of 1-La and 3-La with CO2 (Isolation of 3-La)
5.15. General Procedure for Reactivity with H2
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, G.C.; Juan, R.R.S.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 2010, 49, 46–76. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis pair chemistry: Development and perspectives. Angew. Chem. Int. Ed. 2015, 54, 6400–6441. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. Frustrated Lewis pairs: From concept to catalysis. Acc. Chem. Res. 2015, 48, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137, 10018–10032. [Google Scholar] [CrossRef]
- Stephan, D.W. The broadening reach of frustrated Lewis pair chemistry. Science 2016, 354, aaf7229. [Google Scholar] [CrossRef]
- Chase, P.A.; Welch, G.C.; Jurca, T.; Stephan, D.W. Metal-free catalytic hydrogenation. Angew. Chem. Int. Ed. 2007, 46, 8050–8053. [Google Scholar] [CrossRef]
- Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D.W. Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chem. Commun. 2007, 47, 5072–5074. [Google Scholar] [CrossRef]
- Welch, G.C.; Stephan, D.W. Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J. Am. Chem. Soc. 2007, 129, 1880–1881. [Google Scholar] [CrossRef]
- Chase, P.A.; Jurca, T.; Stephan, D.W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem. Commun. 2008, 14, 1701–1703. [Google Scholar] [CrossRef]
- Stephan, D.W. Frustrated Lewis pair chemistry of CO. Chem. Soc. Rev. 2023, 52, 4632–4643. [Google Scholar] [CrossRef] [PubMed]
- Mömming, C.M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2009, 48, 6643–6646. [Google Scholar] [CrossRef] [PubMed]
- Ménard, G.; Stephan, D.W. Room Temperature Reduction of CO2 to Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. J. Am. Chem. Soc. 2010, 132, 1796–1797. [Google Scholar] [CrossRef] [PubMed]
- Otten, E.; Neu, R.C.; Stephan, D.W. Complexation of Nitrous Oxide by Frustrated Lewis Pairs. J. Am. Chem. Soc. 2009, 131, 9918–9919. [Google Scholar] [CrossRef]
- Neu, R.C.; Otten, E.; Lough, A.; Stephan, D.W. The synthesis and exchange chemistry of frustrated Lewis pair–nitrous oxide complexes. Chem. Sci. 2011, 2, 170–176. [Google Scholar] [CrossRef]
- Ullrich, M.; Seto, K.S.-H.; Lough, A.J.; Stephan, D.W. 1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chem. Commun. 2009, 17, 2335. [Google Scholar] [CrossRef]
- Dureen, M.A.; Stephan, D.W. Terminal Alkyne Activation by Frustrated and Classical Lewis Acid/Phosphine Pairs. J. Am. Chem. Soc. 2009, 131, 8396–8397. [Google Scholar] [CrossRef]
- Birkmann, B.; Voss, T.; Geier, S.J.; Ullrich, M.; Kehr, G.; Erker, G.; Stephan, D.W. Frustrated Lewis Pairs and Ring-Opening of THF, Dioxane, and Thioxane. Organometallics 2010, 29, 5310–5319. [Google Scholar] [CrossRef]
- Dureen, M.A.; Brown, C.C.; Stephan, D.W. Deprotonation and Addition Reactions of Frustrated Lewis Pairs with Alkynes. Organometallics 2010, 29, 6594–6607. [Google Scholar] [CrossRef]
- Hong, M.; Chen, J.; Chen, E.Y.-X. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid–Base Pairs. Chem. Rev. 2018, 118, 10551–10616. [Google Scholar] [CrossRef]
- Kaur Ghuman, K.; Wood, T.E.; Hoch, L.B.; Mims, C.A.; Ozin, G.A.; Veer Singh, C. Illuminating CO2 reduction on frustrated Lewis pair surfaces: Investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3−x(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623–14635. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.M.; Haddow, M.F.; Wass, D.F. Frustrated Lewis Pairs beyond the Main Group: Cationic Zirconocene–Phosphinoaryloxide Complexes and Their Application in Catalytic Dehydrogenation of Amine Boranes. J. Am. Chem. Soc. 2011, 133, 8826–8829. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.M.; Haddow, M.F.; Wass, D.F. Frustrated Lewis pairs beyond the main group: Synthesis, Reactivity, and Small Molecule Activation with Cationic Zirconocene–Phosphinoaryloxide Complexes. J. Am. Chem. Soc. 2011, 133, 18463–18478. [Google Scholar] [CrossRef] [PubMed]
- Berkefeld, A.; Piers, W.; Parvez, E.M.; Castro, L.; Maron, L.; Eisenstein, O. Carbon Monoxide Activation via O-Bound CO Using Decamethylscandocinium–Hydridoborate Ion Pairs. J. Am. Chem. Soc. 2012, 134, 10843–10851. [Google Scholar] [CrossRef] [PubMed]
- Berkefeld, A.; Piers, W.E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Decamethylscandocinium-hydrido-(perfluorophenyl)borate: Fixation and tandem tris(perfluorophenyl)borane catalysed deoxygenative hydrosilation of carbon dioxide. Chem. Sci. 2013, 4, 2152. [Google Scholar] [CrossRef]
- Arnold, P.L.; Marr, I.A.; Zlatogorsky, S.; Bellabarba, R.; Tooze, R.P. Activation of carbon dioxide and carbon disulfide by a scandium N-heterocyclic carbene complex. Dalton Trans. 2013, 43, 34–37. [Google Scholar] [CrossRef]
- Chang, K.; Xu, X. Frustrated Lewis pair behavior of a neutral scandium complex. Dalton Trans. 2017, 46, 4514–4517. [Google Scholar] [CrossRef]
- Xu, P.; Yao, Y.; Xu, X. Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes. Chem. Eur. J. 2017, 23, 1263–1267. [Google Scholar] [CrossRef]
- Chang, K.; Wang, X.; Fan, Z.; Xu, X. Reactions of Neutral Scandium/Phosphorus Lewis Pairs with Small Molecules. Inorg. Chem. 2018, 57, 8568–8580. [Google Scholar] [CrossRef]
- Yao, T.; Xu, P.; Xu, X. Scandium complexes containing β-diketiminato ligands with pendant phosphanyl groups: Competition between Sc/γ-C [4 + 2] cycloaddition and Sc/P frustrated Lewis pair reactions. Dalton Trans. 2019, 48, 7743–7754. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, G.; Xu, X.; Hou, Z.; Luo, Y. A computational study of the reactivity of rare-earth/phosphorus Lewis pairs toward polymerization of conjugated polar alkenes. Inorg. Chem. Front. 2020, 7, 4600–4610. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, S.; Xu, X. Isospecific Polymerization of Methyl Methacrylate by Intramolecular Rare-Earth Metal Based Lewis Pairs. Chin. J. Chem. 2021, 39, 149–156. [Google Scholar] [CrossRef]
- Xu, P.; Wu, L.; Dong, L.; Xu, X. Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs. Molecules 2018, 23, 360. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xu, X. Homoleptic Rare-Earth Aryloxide Based Lewis Pairs for Polymerization of Conjugated Polar Alkenes. ACS Catal. 2018, 8, 198–202. [Google Scholar] [CrossRef]
- Chang, K.; Dong, Y.; Xu, X. Dihydrogen activation by intermolecular rare-earth aryloxide/N-heterocyclic carbene Lewis pairs. Chem. Commun. 2019, 55, 12777–12780. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chang, K.; Xu, X. Reactions of Rare-Earth Metal Based Lewis Pairs with Azides. Chin. J. Chem. 2020, 38, 559–564. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, Y.; Zhang, H.; Luo, Y.; Xu, X. Rare-Earth Aryloxide/Ylide-Functionalized Phosphine Frustrated Lewis Pairs for the Polymerization of 4-Vinylpyridine and Its Derivatives. Macromolecules 2021, 54, 7724–7731. [Google Scholar] [CrossRef]
- Guan, Y.; Chang, K.; Su, Y.; Xu, X.; Xu, X. Frustrated Lewis Pair-Type Reactivity of IntermolecularRare-Earth Aryloxide and N-Heterocyclic Carbene/OlefinCombinations. Chem. Asian J. 2024, 19, e202400190. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Huang, Z.; Zhou, S.; Fang, H.; Cui, P. Heterobimetallic Pd(0) complexes with Pd→Ln (Ln = Sc, Y, Yb, Lu) dative bonds: Rare-earth metal-dominated frustrated Lewis pair-like reactivity. Dalton Trans. 2020, 49, 12311–12318. [Google Scholar] [CrossRef]
- Sun, X.; Su, W.; Shi, K.; Xie, Z.; Zhu, C. Triple Frustrated Lewis Pair-Type Reactivity on a Single Rare-Earth Metal Center. Chem. Eur. J. 2020, 26, 5354–5359. [Google Scholar] [CrossRef]
- Haidinger, A.; Dilly, C.I.; Fischer, R.C.; Svatunek, D.; Uher, J.M.; Hlina, J.A. To Bond or Not to Bond: Metal–Metal Interaction in Heterobimetallic Rare-Earth Metal–Silver Complexes. Inorg. Chem. 2023, 62, 17713–17720. [Google Scholar] [CrossRef] [PubMed]
- Bornand, M.; Torker, S.; Chen, P. Mechanistically Designed Dual-Site Catalysts for the Alternating ROMP of Norbornene and Cyclooctene. Organometallics 2007, 26, 3585–3596. [Google Scholar] [CrossRef]
- Hithcock, P.B.; Lappert, M.F.; MacKinnon, I.A. Use of a Highly Hindered Phosphino-alkoxide Ligand in the Formation of Monomeric Homoleptic Lanthanoid Metal Complexes: X-Ray Structures of [Ln(OCBut2CH2PMe2)3] (Ln = Y or Nd). J. Chem. Soc. Chem. Commun. 1988, 23, 1557–1558. [Google Scholar] [CrossRef]
- Chi, X.-W.; Li, B.; Liu, K.; Wu, Q.-Y.; Hu, K.-Q.; Mei, L.; Chi, R.-A.; Yu, J.-P. Anilidophosphine ligand supported praseodymium and terbium phosphaethynolate complexes: Synthesis, characterization, and DFT calculations. Synth. Commun. 2023, 53, 1227–1239. [Google Scholar] [CrossRef]
- Windorff, C.J.; Dumas, M.T.; Ziller, J.W.; Gaunt, A.J.; Kozimor, S.A.; Evans, W.J. Small-Scale Metal-Based Syntheses of Lanthanide Iodide, Amide, and Cyclopentadienyl Complexes as Analogues for Transuranic Reactions. Inorg. Chem. 2017, 56, 11981–11989. [Google Scholar] [CrossRef]
- Izod, K.; Liddle, S.T.; Clegg, W. A Convenient Route to Lanthanide Triiodide THF Solvates. Crystal Structures of LnI3(THF)4 [Ln = Pr] and LnI3(THF)3.5 [Ln = Nd, Gd, Y]. Inorg. Chem. 2004, 43, 214–218. [Google Scholar] [CrossRef]
- Liu, J.; Nodaraki, L.E.; Cobb, P.J.; Giansiracusa, M.J.; Ortu, F.; Tuna, F.; Mills, D.P. Synthesis and characterisation of light lanthanide bis-phospholyl borohydride complexes. Dalton Trans. 2020, 49, 6504–6511. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Program for Area Detector Absorption Correction; Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Complex | M–P | M···P | M–O | M–µO |
---|---|---|---|---|
1-La | 3.223(2)–3.459(3) | 3.662(2)–4.701(2) | 2.235(6)–2.250(6) | 2.418(6)–2.526(5) |
2-La | 3.1653(10)–3.3466(7) | 3.4732(7) | 2.255(2)–2.297(2) | 2.458(2)–2.477(2) |
1-Sm * | 3.0552(8)–3.1503(8) | - | 2.184(2)–2.205(3) | - |
Complex | M–P | M···P | M···PH | M–O |
---|---|---|---|---|
3-Y * | 3.0963(11)–3.1926(10) | 3.627(3)–4.5242(9) | 4.093(2)–4.2902(14) | 2.122(2)–2.184(2) |
3-La | 3.2937(6)–3.3646(8) | 4.3034(8) | 2.303(2)–3.351(2) | |
3-Pr § | 3.2984(12)–3.3849(14) | 3.451(5) | 4.040(6) | 2.232(5)–2.357(9) |
3-Sm # | 3.2328(13)–3.3483(12) | - | 4.2693(13) | 2.206(3)–2.269(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexopoulos, E.; Liu, Y.; Bowles, A.W.J.; Réant, B.L.L.; Ortu, F. Synthesis and Characterisation of Phosphino-Aryloxide Rare Earth Complexes. Molecules 2024, 29, 5757. https://doi.org/10.3390/molecules29235757
Alexopoulos E, Liu Y, Bowles AWJ, Réant BLL, Ortu F. Synthesis and Characterisation of Phosphino-Aryloxide Rare Earth Complexes. Molecules. 2024; 29(23):5757. https://doi.org/10.3390/molecules29235757
Chicago/Turabian StyleAlexopoulos, Elias, Yu Liu, Alex W. J. Bowles, Benjamin L. L. Réant, and Fabrizio Ortu. 2024. "Synthesis and Characterisation of Phosphino-Aryloxide Rare Earth Complexes" Molecules 29, no. 23: 5757. https://doi.org/10.3390/molecules29235757
APA StyleAlexopoulos, E., Liu, Y., Bowles, A. W. J., Réant, B. L. L., & Ortu, F. (2024). Synthesis and Characterisation of Phosphino-Aryloxide Rare Earth Complexes. Molecules, 29(23), 5757. https://doi.org/10.3390/molecules29235757