Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (968)

Search Parameters:
Keywords = lanthanide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2925 KB  
Article
Potentiometric Studies of the Complexation Properties of Selected Lanthanide Ions with Schiff Base Ligand
by Julia Barańska, Katarzyna Koroniak-Szejn, Michał Zabiszak, Anita Grześkiewicz, Monika Skrobanska, Martyna Nowak, Renata Jastrzab and Małgorzata T. Kaczmarek
Int. J. Mol. Sci. 2025, 26(21), 10379; https://doi.org/10.3390/ijms262110379 - 25 Oct 2025
Viewed by 562
Abstract
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO [...] Read more.
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO3)3], [Gd(H3L)2(NO3)3], and [Tb(H3L)2(NO3)3] are formed. In solution, complexes with stoichiometries of Ln(III):H3L 1:1 and 1:2 were obtained. The ligand H3L was isolated in crystalline form, and its molecular structure and conformation were determined by single-crystal X-ray diffraction analysis. The compounds were further characterized by elemental analysis, infrared spectroscopy, 1H NMR, 13C NMR techniques, and mass spectrometry (ESI), confirming the formation of the Schiff base group. Stability constants of the complexes in solution were determined using potentiometric titration, providing insights into the metal-ligand binding equilibria. In addition, the spectroscopic properties of the ligand and its lanthanide(III) ion complexes were investigated by UV-Vis spectroscopy, which confirmed ligand-to-metal charge transfer interactions, as well as by luminescence measurements. The luminescence studies revealed inefficient energy transfer in [Eu(H3L)2(NO3)3] complexes, while no transfer was observed in [Tb(H3L)2(NO3)3] systems at any pH value. This behavior is attributed to the large energy gap between the ligand triplet state and the lowest resonant levels of the studied lanthanide ions. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

16 pages, 3467 KB  
Article
Coordination-Driven Rare Earth Fractionation in Kuliokite-(Y), (Y,HREE)4Al(SiO4)2(OH)2F5: A Crystal–Chemical Study
by Sergey V. Krivovichev, Victor N. Yakovenchuk, Olga F. Goychuk and Yakov A. Pakhomovsky
Minerals 2025, 15(10), 1064; https://doi.org/10.3390/min15101064 - 10 Oct 2025
Viewed by 261
Abstract
The crystal structure of kuliokite-(Y), Y4Al(SiO4)2(OH)2F5, has been re-investigated using the material from the type locality the Ploskaya Mt, Kola peninsula, Russian Arctic. It has been shown that in contrast to previous studies, [...] Read more.
The crystal structure of kuliokite-(Y), Y4Al(SiO4)2(OH)2F5, has been re-investigated using the material from the type locality the Ploskaya Mt, Kola peninsula, Russian Arctic. It has been shown that in contrast to previous studies, the mineral is monoclinic, Im, with a = 4.3213(1), b = 14.8123(6), c = 8.6857(3) Å, β = 102.872(4)°, and V = 541.99(3) Å3. The crystal structure was solved and refined to R1 = 0.030 on the basis of 3202 unique observed reflections. The average chemical composition determined by electron microprobe analysis is (Y2.96Yb0.49Er0.27Dy0.13Tm0.07Lu0.05Ho0.05Gd0.01Ca0.01)Σ4.04Al0.92Si2.04O8-[(OH)2.61F4.42]Σ7.03; the idealized formula is (Y,Yb,Er)4Al[SiO4]2(OH)2.5F4.5. The crystal structure of kuliokite-(Y) contains two symmetrically independent Y sites, Y1 and Y2, coordinated by eight and seven X anions, respectively (X = O, F). The coordination polyhedra can be described as a distorted square antiprism and a distorted pentagonal bipyramid, respectively. The refinement of site occupancies indicated that the mineral represents a rare case of HREE fractionation among two cation sites driven by their coordination numbers and geometry. In agreement with the lanthanide contraction, HREEs are selectively incorporated into the Y2 site with a smaller coordination number and tighter coordination environment. The strongest building unit of the structure is the [AlX2(SiO4)2] chain of corner-sharing AlX6 octahedra and SiO4 tetrahedra running along the a axis. The chains have their planes oriented parallel to (001). The Y atoms are located in between the chains, along with the F and (OH) anions, providing the three-dimensional integrity of the crystal structure. Each F anion is coordinated by three Y3+ cations to form planar (FY3)8+ triangles parallel to the (010) plane. The triangles share common edges to form [F2Y2]4+ chains parallel to the a axis. The analysis of second-neighbor coordination of Y sites allowed us to identify the structural topology of kuliokite-(Y) as the only case of the skd network in inorganic compounds, previously known in molecular structures only. The variety of anionic content in the mineral allows us to identify the potential existence of two other mineral species that can tentatively be named ‘fluorokuliokite-(Y)’ and ‘hydroxykuliokite-(Y)’. Full article
Show Figures

Figure 1

11 pages, 2227 KB  
Article
Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics
by Marcin Środa, Szymon Świontek and Maciej Szal
Crystals 2025, 15(10), 859; https://doi.org/10.3390/cryst15100859 - 30 Sep 2025
Viewed by 304
Abstract
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim [...] Read more.
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim of this study is to obtain a fluoride crystalline phase in the glassy matrix. Such a phase, due to its low phonon energy, increases the probability of radiative transitions (decay) of optically active lanthanide dopants, thereby enhancing luminescence. The scope of the work included the preparation of two glass series with varying amounts of La2O3 and LaF3 to determine the glass-forming range and to identify the characteristic temperatures of the glasses using Differential Thermal Analysis. It was found that increasing the La2O3 content above 10 mol% in this glass leads to exceeding the target melting temperature (1400 °C) of the glass batch. In contrast, the introduction of 10 mol% LaF3 prevents the formation of homogeneous glass. Based on these results, a controlled crystallization process was designed, and the resulting crystalline phases were identified using X-ray diffraction (XRD). In the base glass, two crystalline phases were identified: Na2O·Al2O3·SiO2 and Na2SiO3. For the La-oxide series, the crystallization of NaAlSiO4 and La2SiO5 was confirmed. In the case of the La-fluoride series, the formation of LaF3 was observed. It was found that by introducing an appropriate amount of LaF3 (7.5 mol%) into the aluminosilicate network, it is possible to obtain a glass suitable for controlled crystallization, leading to the formation of a low-phonon LaF3 phase. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

16 pages, 2327 KB  
Article
Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles
by Qiuping Li, Hongxia Ouyang, You Zhou, Xinghui Yang, Qi Wang, Yonghong Ding and Haichao Yu
Biosensors 2025, 15(10), 636; https://doi.org/10.3390/bios15100636 - 24 Sep 2025
Viewed by 587
Abstract
The synthesis of lanthanide fluorescent nanoparticles and the investigation of their fluorescence sensing applications have attracted a great deal of attention in materials science over the past decades. In this study, we designed and synthesized a core–shell fluorescent nanoparticle based on dual-center emission [...] Read more.
The synthesis of lanthanide fluorescent nanoparticles and the investigation of their fluorescence sensing applications have attracted a great deal of attention in materials science over the past decades. In this study, we designed and synthesized a core–shell fluorescent nanoparticle based on dual-center emission from the europium and terbium complexes, and demonstrated its application as a ratiometric fluorescence sensor for the detection of 2,6-pyridinedicarboxylic acid (DPA). The europium complex is embedded in the inner core, providing a stable fluorescence signal at 617 nm, while the terbium complex is positioned in the outer shell and exhibits a fluorescence “Turn-ON” response at 545 nm upon interaction with DPA molecules. The fluorescence intensity ratio F545/F617 exhibits a sensitive response to the DPA concentration. Experimental results demonstrate that the as-prepared SiO2@Eu@SiO2@Tb nanoparticle exhibits a linear response in the DPA concentration range of 10–100 μM, with a detection limit (LOD) of 1.38 μM and well selectivity for DPA sensing. This strategy offers new insights into the development of novel lanthanide-based ratiometric fluorescence sensors. Full article
(This article belongs to the Special Issue Recent Advances and Perspectives of Fluorescent Biosensors)
Show Figures

Figure 1

14 pages, 2610 KB  
Article
Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery
by John Earwood and Baolin Deng
Polymers 2025, 17(19), 2567; https://doi.org/10.3390/polym17192567 - 23 Sep 2025
Viewed by 417
Abstract
Rare earth elements (REEs) are critical for advanced technologies, with neodymium and praseodymium being essential to high-performance permanent magnets. The separation of these adjacent lanthanides represents a significant challenge due to their nearly identical chemical properties, with traditional chitosan surfaces exhibiting limited discrimination [...] Read more.
Rare earth elements (REEs) are critical for advanced technologies, with neodymium and praseodymium being essential to high-performance permanent magnets. The separation of these adjacent lanthanides represents a significant challenge due to their nearly identical chemical properties, with traditional chitosan surfaces exhibiting limited discrimination between chemically similar elements. Current separation methods require multiple processing steps and cannot maintain predetermined compositional ratios. Engineered polymer interfaces with controlled binding site distribution represents a critical advancement for selective separation, but achieving ratio-controlled extraction of adjacent elements remains challenging. Here, we demonstrate a novel interface engineering approach using alkali/urea dissolution to restructure chitosan networks, creating dual-template alkali/urea chitosan hydrogels (NdPr-AUCH) for simultaneous selective co-extraction of Nd(III) and Pr(III). We show that the dissolution–reformation process enables templated Nd:Pr selectivity ratios (1:1, 2:1, and 4:1) that directly correspond to synthesis compositions. NdPr-AUCH-11 achieved maximum uptake capacities of 19.85 mg/g for Nd(III) and 16.89 mg/g for Pr(III), while NdPr-AUCH-41 maintained 3.07:1 Nd:Pr selectivity in competitive environments. Thermodynamic analyses reveal consistently lower energy requirements for Nd(III) binding compared to Pr(III), demonstrating how interface engineering amplifies coordination differences between adjacent lanthanides. This work represents the first demonstration of ratio-controlled extraction of adjacent lanthanides within a single polymer matrix, advancing interface-engineered materials for selective rare earth recovery. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces: 2nd Edition)
Show Figures

Figure 1

23 pages, 3154 KB  
Article
Lanthanide Tris-Acetylacetonate Complexes for Luminescent Thermometry: From Isolated Compounds to Hybrid Prussian Blue Core–Silica Shell Nanoparticles
by Aurore Larquey, Gautier Félix, Saad Sene, Joulia Larionova and Yannick Guari
Inorganics 2025, 13(9), 304; https://doi.org/10.3390/inorganics13090304 - 11 Sep 2025
Viewed by 760
Abstract
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), [...] Read more.
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), Yb (1Yb)); acac = acetylacetonate), operating as self-referenced thermometers in the 290–350 K range, both in the solid state and when embedded in hybrid nanoparticles. Among the investigated systems, the Eu3+ complex exhibits excellent lifetime-based thermometric performance, achieving a maximum relative sensitivity (Srmax) of 2.9%·K−1 at 340 K with a temperature uncertainty (δT) as low as 0.02 K and an average temperature uncertainty (δT¯) of 0.5 K, placing it among the most effective ratiometric lanthanide-based luminescent thermometers reported to date. The Yb3+ analog enables intensity-based thermometry in the near-infrared domain with a good sensitivity Srmax = 0.5%·K−1 at 293 K, δT = 0.5 K at 303 K, and δT¯ = 1.6 K. These molecular thermometers were further incorporated into the shell of Prussian Blue@SiO2 core–shell nanoparticles. Among the resulting hybrids, PB@SiO2-acac/(1Tb/1Eu) (with a Tb/Eu ratio of 2/8) stood out by enabling ratiometric temperature sensing based on the Eu3+5D07F2 lifetime, with satisfactory parameters (Srmax = 0.9%·K−1, δT = 0.21 K at 303 K, and δT¯ = 1.1 K). These results highlight the potential of simple coordination complexes and their nanohybrids for advanced luminescent thermometry applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

8 pages, 2273 KB  
Communication
Iridescence and Luminescence from Opal Matrices for Show Business
by Nikolai V. Gaponenko, Svetlana M. Kleshcheva, Ekaterina I. Lashkovskaya, Uladzimir A. Zaitsau, Vladimir A. Labunov, Bashar Z. S. Hamadneh, Vadim D. Zhivulko, Alexander V. Mudryi, Yuriy V. Radyush, Nikolai I. Kargin and Tamara F. Raichenok
Photonics 2025, 12(9), 908; https://doi.org/10.3390/photonics12090908 - 10 Sep 2025
Viewed by 655
Abstract
The paper reports on obtaining visually appealing images from opal matrices to artificial samples comprising regular packing of monodisperse silica globules. We show the images of iridescence, photoluminescence, and both of them simultaneously, exciting upconversion luminescence of Er3+ ions from BaTiO3 [...] Read more.
The paper reports on obtaining visually appealing images from opal matrices to artificial samples comprising regular packing of monodisperse silica globules. We show the images of iridescence, photoluminescence, and both of them simultaneously, exciting upconversion luminescence of Er3+ ions from BaTiO3 xerogel/opal matrix. Opal matrix with BaTiO3 xerogel doped with Er3+ and Yb3+ ions demonstrates upconversion luminescence under excitation with the wavelength 980 nm of the laser with the main bands ranging from 500 to 570 nm and 640–700 nm, corresponding to the transitions from the excited states 2H11/2, 4S3/2, 4F9/2, 4I9/2 to the ground state 4I15/2 of trivalent Er ions. In our view, the synthesis of opal matrices along with the generation of luminescent xerogels doped, for example, with trivalent lanthanides, is a promising approach for obtaining colorful images, always very individual and often very attractive, bringing joy and pleasure at concerts and other show business events. Full article
Show Figures

Figure 1

44 pages, 3841 KB  
Review
Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments
by Heru Agung Saputra, Demas Aji, Badrut Tamam Ibnu Ali and Asranudin
Analytica 2025, 6(3), 35; https://doi.org/10.3390/analytica6030035 - 10 Sep 2025
Viewed by 2134
Abstract
Fundamental research, exploration, extraction, and metallurgical studies of rare earth elements (REEs) require the use of analytical techniques. Recently, emerging developments of analytical instrumentation for REEs have taken place, with some of them having shrunk in size, becoming handheld devices. The Flame and [...] Read more.
Fundamental research, exploration, extraction, and metallurgical studies of rare earth elements (REEs) require the use of analytical techniques. Recently, emerging developments of analytical instrumentation for REEs have taken place, with some of them having shrunk in size, becoming handheld devices. The Flame and Graphite Furnace AAS, ICP-OES, and MP-AES are standard laboratory techniques used for the analysis of REEs. ICP-MS, ICP-MS/MS, ICP-TOF-MS, HR-ICP-MS, MH-ICP-MS, and MC-ICP-MS are popular techniques for REE analysis thanks to their ultrahigh sensitivity, minimal interference effects, and broad applicability. The INAA, XRF, LIBS, and LA-based ICP-MS techniques are widely employed for the direct analysis of solid samples. The TIMS, SIMS, and SHRIMP are common techniques used for dating isotopic REE deposits. The portable XRF, LIBS, and Raman spectrometer devices can perform on-the-spot in situ analysis, which may help make speedy decisions in the exploration study of REEs. Currently, hyperspectral remote sensing platforms, such as handheld, drone, and satellite-based devices, are preferred for the exploration of REEs due to their cost-effectiveness, which enables the coverage of large areas in a limited amount of time. The use of microanalytical sensors installed on remotely operated vehicles has been successfully applied in analyzing rich REE-bearing deposits in the deep sea. In general, this review provides in-depth information on all essential aspects, from analytical instruments to cutting-edge developments in the analysis of REE-bearing resources. Full article
Show Figures

Figure 1

26 pages, 10898 KB  
Review
Molecular Nanomagnets with Photomagnetic Properties: Design Strategies and Recent Advances
by Xiaoshuang Gou, Xinyu Sun, Peng Cheng and Wei Shi
Magnetochemistry 2025, 11(9), 77; https://doi.org/10.3390/magnetochemistry11090077 - 31 Aug 2025
Viewed by 887
Abstract
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular [...] Read more.
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular nanomagnets with high spatial and temporal resolutions. Herein, we summarize the design strategies of photoresponsive molecular nanomagnets and review the recent advances in transition metal/lanthanide molecular nanomagnets with photomagnetic properties. The photoresponsive mechanism based on spin transition, photocyclization, and photogenerated radicals is discussed in detail, providing insights into the photomagnetic properties of molecular nanomagnets for advanced photoresponsive materials. Full article
Show Figures

Figure 1

16 pages, 2644 KB  
Perspective
Perovskites to Photonics: Engineering NIR LEDs for Photobiomodulation
by Somnath Mahato, Hendradi Hardhienata and Muhammad Danang Birowosuto
Micromachines 2025, 16(9), 1002; https://doi.org/10.3390/mi16091002 - 30 Aug 2025
Viewed by 1011
Abstract
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing [...] Read more.
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing their performance for clinical use remains a challenge. This perspective explores the latest advances in NIR-emitting materials, spanning Group III–V, IV, and II–VI semiconductors, organic small molecules, polymers, and perovskites, with an emphasis on their applicability to PBM. Particular attention is given to the promise of perovskite LEDs, including lead-free and lanthanide-doped variants, for delivering narrowband, tunable NIR emission. Furthermore, we examine photonic and plasmonic engineering strategies that enhance light extraction, spectral precision, and device efficiency. By integrating advances in materials science and nanophotonics, it is increasingly feasible to develop flexible, biocompatible, and high-performance NIR LEDs tailored for next-generation therapeutic applications. Full article
(This article belongs to the Special Issue Recent Advances in Nanophotonic Materials and Devices)
Show Figures

Figure 1

25 pages, 5326 KB  
Article
A Para-Substituted 2-Phenoxy-1,10-Phenanthroline Ligand for Lanthanide Sensitization: Asymmetric Coordination and Enhanced Emission from Eu3+, Tb3+, Sm3+ and Dy3+ Complexes
by Joana Zaharieva, Vladimira Videva, Mihail Kolarski, Rumen Lyapchev, Bernd Morgenstern and Martin Tsvetkov
Molecules 2025, 30(17), 3548; https://doi.org/10.3390/molecules30173548 - 29 Aug 2025
Cited by 1 | Viewed by 847
Abstract
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. [...] Read more.
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. Coordination via the phenanthroline nitrogen atoms, combined with steric asymmetry from the para-methylphenoxy group, induces low-symmetry environments favorable for electric-dipole transitions. Excited-state lifetimes reached 2.12 ms (Eu3+) and 1.12 ms (Tb3+), with quantum yields of 42% and 68%, respectively. The triplet-state energy of L24 (22,741 cm−1) aligns well with emissive levels of Eu3+ and Tb3+, consistent with Latva’s criterion. Fluorescence titrations indicated positively cooperative complexation, with association constants ranging from 0.60 to 1.67. Stark splitting and high 5D07F2/7F1 intensity ratios (R2 = 6.25) confirm the asymmetric coordination field. The para-methylphenoxy substituent appears sufficient to lower coordination symmetry and strengthen electric-dipole transitions, offering a controlled route to enhance photoluminescence in Eu3+ and Tb3+ complexes. Full article
Show Figures

Figure 1

15 pages, 2912 KB  
Article
Adsorption of Lanthanide Atoms on a Graphene Cluster Model Incorporating Stone–Wales Defect
by Vladimir A. Basiuk and Elena V. Basiuk
Surfaces 2025, 8(3), 63; https://doi.org/10.3390/surfaces8030063 - 29 Aug 2025
Viewed by 977
Abstract
To study the adsorption of lanthanide (Ln) atoms on graphene containing a Stone–Wales defect, we used a cluster model (SWG) and performed calculations at the PBE-D2/DNP level of the density functional theory. Our previous study, where the above combination was complemented with the [...] Read more.
To study the adsorption of lanthanide (Ln) atoms on graphene containing a Stone–Wales defect, we used a cluster model (SWG) and performed calculations at the PBE-D2/DNP level of the density functional theory. Our previous study, where the above combination was complemented with the ECP pseudopotentials, was only partially successful due to the impossibility of calculating terbium-containing systems and a serious error found for the SWG complex with dysprosium. In the present study we employed the DSPP pseudopotentials and completely eliminated the latter two failures. We analyzed the optimized geometries of the full series of fifteen SWG + Ln complexes, along with their formation energies and electronic parameters, such as frontier orbital energies, atomic charges, and spins. In many regards, the two series of calculations show qualitatively similar features, such as roughly M-shaped curves of the adsorption energies and trends in the changes in charge and spin of the adsorbed Ln atoms, as well as the spin density plots. However, the quantitative results can differ significantly. For most characteristics we found no evident correlation with the lanthanide contraction. The only dataset where this phenomenon apparently manifests itself (albeit to a limited and irregular degree) is the changes in the closest LnC approaches. Full article
(This article belongs to the Special Issue Nanocarbons: Advances and Innovations)
Show Figures

Graphical abstract

13 pages, 1434 KB  
Article
Tuning of the Electronic and Magnetic Properties of GaN Monolayers via Doping with Lanthanide Atoms and by Applying Biaxial Strain
by Xue Wen, Bocheng Lei, Lili Zhang and Haiming Lu
Nanomaterials 2025, 15(17), 1331; https://doi.org/10.3390/nano15171331 - 29 Aug 2025
Viewed by 682
Abstract
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and [...] Read more.
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and half-semiconductor behavior into the GaN monolayer. The observed magnetism primarily arises from unpaired 4f electrons, yielding magnetic moments of 2.0, 3.0, 4.0, 6.0, and 7.0 μB for Pr, Nd, Pm, Eu, and Gd, respectively. While La-, Pr-, and Gd-doped systems retain the indirect band gap characteristic of pristine GaN, an indirect-to-direct band gap transition occurs under biaxial tensile strains exceeding 2%. In contrast, Nd, Pm, and Eu doping directly induce a direct band gap without applied strain. Notably, under 6% tensile strain, the Pm- and Eu-GaN systems exhibit half-metallic and metallic properties, respectively. These tunable electronic and magnetic properties suggest that Ln doping offers a promising strategy for designing functional two-dimensional GaN-based electronic and spintronic devices. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

12 pages, 2702 KB  
Article
Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance
by Hao Zeng, Longhui Han, Yang Li, Yaru Ni and Chunhua Lu
Materials 2025, 18(17), 3995; https://doi.org/10.3390/ma18173995 - 26 Aug 2025
Viewed by 650
Abstract
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into [...] Read more.
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into advanced devices difficult. Although physical vapor deposition (PVD) enables precise film formation, it often produces poor crystalline structures and weak fluorescence. To overcome these limitations, integrating non-noble plasmonic Ni with surface plasmon resonance to enhance fluorescence intensity is a promising yet understudied strategy, likely due to Ni’s ultraviolet resonant wavelength and oxidation susceptibility. This study introduces an integrated Ni-UC nanofilm design, combining an ultrathin Ni layer with a NaYF4:Tm, Yb UC layer via PVD, followed by post-annealing. Annealing at 500 °C transforms the UC layer into a hexagonal-phase crystal structure while protecting the Ni layer from oxidation. The unannealed UC nanofilm showed no fluorescence, whereas the annealed UC nanofilm displayed clear peaks at 476, 648, and 699 nm. Notably, the integrated Ni-UC nanofilm exhibited fluorescence intensities 5.29, 4.43, and 4.29 times higher at these wavelengths, respectively. Additionally, the integrated design exhibited high transparency and stability, highlighting its protective benefits. These results underscore the potential of the integrated Ni-UC nanofilm for advanced optoelectronics and sensing technologies, offering enhanced fluorescence, micro-processing compatibility, and robust performance in a cost-effective, non-noble plasmonic system. Full article
Show Figures

Graphical abstract

17 pages, 2310 KB  
Article
High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu
by Yanshuo Han, Yucheng Li, Xue Yang, Yibo Hu, Yuandong Ning, Meng Gu, Guibin Zhai, Sihan Yang, Jingkun Chen, Naixin Li, Kuan Ren, Jingtai Zhao and Qianli Li
Molecules 2025, 30(17), 3495; https://doi.org/10.3390/molecules30173495 - 26 Aug 2025
Viewed by 964
Abstract
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel [...] Read more.
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel Na3KMg7(PO4)6:Eu phosphor synthesized by a simple high-temperature solid-state method. The multi-color luminescence of Eu2+ and Eu3+ ions in a single matrix of Na3KMg7(PO4)6:Eu, known as radio-photoluminescence, is achieved through X-ray-induced ion reduction. It demonstrated a good linear response (R2 = 0.9897) and stable signal storage (storage days > 50 days) over a wide range of X-ray doses (maximum dose > 200 Gy). In addition, after X-ray irradiation, this material exhibits photochromic properties ranging from white to brown in a bright field and shows remarkable bleaching and recovery capabilities under 254 nm ultraviolet light or thermal stimulation. This dual-modal luminescent phosphor Na3KMg7(PO4)6:Eu, which combines photochromism and radio-photoluminescence, presents a dual-mode X-ray detection and imaging strategy and offers a comprehensive and novel solution for applications in anti-counterfeiting and optical information encryption. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

Back to TopTop