Determination of PAH Contamination in Breast Milk Samples from Hungarian Volunteering Mothers, Using HPLC–FLD
Abstract
:1. Introduction
2. Results
2.1. Identification of PAHs by HPLC–FLD
2.2. PAH Profile of Breast Milk Samples and Exposure Assessment
2.3. Risk Assessment
2.4. Questionnaires
3. Materials and Methods
3.1. Human Subjects
3.2. Chemicals and Reagents
3.3. Sample Preparation and Chemical Analysis
3.4. Instrumental Analysis
3.5. Method Validation
3.6. Risk Assessment Analysis
3.6.1. Exposure Assessment
3.6.2. Risk Characterization
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data, 1st ed.; International Agency for Research on Cancer: Lyon, France, 1983; Volume 32, pp. 94–448. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Polynuclear Aromatic Compounds, Part 3, Industrial Exposures in Aluminium Production, Coal Gasification, Coke Production, and Iron and Steel Founding, 1st ed.; International Agency for Research on Cancer: Lyon, France, 1984; Volume 34, pp. 34–181. [Google Scholar]
- Bitumens, Coal-Tars, and Derived Products, Shale-Oils and Soots, 1st ed.; International Agency for Research on Cancer: Lyon, France,, 1985; Volume 35, pp. 38–245.
- Kim, S.R.; Halden, R.U.; Buckley, T.J. Polycyclic aromatic hydrocarbons in human milk of nonsmoking US women. Environ. Sci. Technol. 2008, 42, 2663–2667. [Google Scholar] [CrossRef] [PubMed]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene, 1st ed.; International Agency for Research on Cancer: Lyon, France, 2002; Volume 82, pp. 1–556. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 1st ed.; International Agency for Research on Cancer: Lyon, France, 2010; pp. 35–110. [Google Scholar]
- Bandow, N.; Altenburger, R.; Lubcke-von Varel, U.; Paschke, A.; Streck, G.; Brack, W. Partitioning-Based Dosing: An Approach To Include Bioavailability in the Effect-Directed Analysis of Contaminated Sediment Samples. Environ. Sci. Technol. 2009, 43, 3891–3896. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.; Dogliotti, E.; Domenico, A.D.; Fernández-Cruz, M.L.; Fink-Gremmels, J.; Fürst, P.; Galli, C.; et al. Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 724, 1–114. [Google Scholar]
- Hylland, K. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J. Toxicol. Environ. Health Part A 2006, 69, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.T.; Law, R.J.; Rumney, H.S.; Kirby, M.F.; Kelly, C. Towards a scheme of toxic equivalency factors (TEFs) for the acute toxicity of PAHs in sediment. Ecotoxicol. Environ. Saf. 2011, 74, 2245–2251. [Google Scholar] [CrossRef]
- Ma, Y.N.; Harrad, S. Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet: A review. Environ. Int. 2015, 84, 7–16. [Google Scholar] [CrossRef]
- Ruby, M.V.; Lowney, Y.W.; Bunge, A.L.; Roberts, S.M.; Gomez-Eyles, J.L.; Ghosh, U.; Kissel, J.C.; Tomlinson, P.; Menzie, C. Oral Bioavailability, Bioaccessibility, and Dermal Absorption of PAHs from Soil-State of the Science. Environ. Sci. Technol. 2016, 50, 2151–2164. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, L215, 4–8.
- Del Bubba, M.; Zanieri, L.; Galvan, P.; Donzelli, G.P.; Checchini, L.; Lepri, L. Determination of polycyclic aromatic hydrocarbons (PAHs) and total fats in human milk. Ann. Chim. 2005, 95, 629–641. [Google Scholar] [CrossRef]
- Moon, H.B.; Lee, D.H.; Lee, Y.S.; Kannan, K. Occurrence and accumulation patterns of polycyclic aromatic hydrocarbons and synthetic musk compounds in adipose tissues of Korean females. Chemosphere 2012, 86, 485–490. [Google Scholar] [CrossRef]
- Santos, P.M.; Sanchez, M.D.; Pavon, J.L.P.; Cordero, B.M. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review. TrAC 2019, 113, 194–209. [Google Scholar] [CrossRef]
- Torres-Moreno, C.; Puente-DelaCruz, L.; Codling, G.; Villa, A.L.; Cobo, M.; Klanova, J.; Johnson-Restrepo, B. Polycyclic aromatic hydrocarbons (PAHs) in human breast milk from Colombia: Spatial occurrence, sources and probabilistic risk assessment. Environ. Res. 2022, 204, 111981. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.A.G.; Pleil, J.D.; Whitaker, D.A.; Oliver, K.D. Recovery and reactivity of polycyclic aromatic hydrocarbons collected on selected sorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry. J. Chromatogr. A 2019, 1602, 19–29. [Google Scholar] [CrossRef]
- Hegazy, A.M.; Fakhreldin, A.R.; Nasr, S.M. Monitoring of carcinogenic environmental pollutants in women’s breast milk. BPJ 2020, 13, 119–125. [Google Scholar] [CrossRef]
- Zanieri, L.; Galvan, P.; Checchini, L.; Cincinelli, A.; Lepri, L.; Donzelli, G.P.; Del Bubba, M. Polycyclic aromatic hydrocarbons (PAHs) in human milk from Italian women: Influence of cigarette smoking and residential area. Chemosphere 2007, 67, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Mercogliano, R.; Santonicola, S.; De Felice, A.; Anastasio, A.; Murru, N.; Ferrante, M.C.; Cortesi, M.L. Occurrence and distribution of polycyclic aromatic hydrocarbons in mussels from the Gulf of Naples, Tyrrhenian Sea, Italy. Mar. Pollut. Bull. 2016, 104, 386–390. [Google Scholar] [CrossRef]
- Perera, F.P.; Tang, D.L.; Wang, S.; Vishnevetsky, J.; Zhang, B.Z.; Diaz, D.; Camann, D.; Rauh, V. Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years. EHP 2012, 120, 921–926. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Che, T.; Li, Y.J.; Fang, C.; Dai, Z.W.; Li, H.X.; Xu, L.; Hu, F. Remediation of polycyclic aromatic hydrocarbons by sulfate radical advanced oxidation: Evaluation of efficiency and ecological impact. Ecotoxicol. Environ. Saf. 2021, 223, 112594. [Google Scholar] [CrossRef]
- Karimi, P.; Peters, K.O.; Bidad, K.; Strickland, P.T. Polycyclic aromatic hydrocarbons and childhood asthma. Eur. J. Epidemiol. 2015, 30, 91–101. [Google Scholar] [CrossRef]
- Santonicola, S.; De Felice, A.; Cobellis, L.; Passariello, N.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. Chemosphere 2017, 175, 383–390. [Google Scholar] [CrossRef]
- Oliveira, M.; Duarte, S.; Delerue-Matos, C.; Pena, A.; Morais, S. Exposure of nursing mothers to polycyclic aromatic hydrocarbons: Levels of un-metabolized and metabolized compounds in breast milk, major sources of exposure and infants’ health risks. Environ. Pollut. 2020, 266, 115243. [Google Scholar] [CrossRef] [PubMed]
- Pulkrabova, J.; Stupak, M.; Svarcova, A.; Rossner, P.; Rossnerova, A.; Ambroz, A.; Sram, R.; Hajslova, J. Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk. Sci. Total Environ. 2016, 562, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Cok, I.; Mazmanci, B.; Mazmanci, M.A.; Turgut, C.; Henkelmann, B.; Schramm, K.W. Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey. Environ. Int. 2012, 40, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, A.P.; Zhao, Y.; Mu, X.; Huang, T.; Gao, H.; Ma, J.M. The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, Northwest China. ESPR 2018, 25, 16754–16766. [Google Scholar] [CrossRef] [PubMed]
- Tsang, H.L.; Wu, S.C.; Leung, K.M.; Tao, S.; Wong, M.H. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum. Environ. Int. 2011, 37, 142–151. [Google Scholar] [CrossRef]
- Khanverdiluo, S.; Talebi-Ghane, E.; Heshmati, A.; Mehri, F. The concentration of polycyclic aromatic hydrocarbons (PAHs) in mother milk: A global systematic review, meta-analysis and health risk assessment of infants. Saudi J. Biol. Sci. 2021, 28, 6869–6875. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Acharya, N.; Gautam, B.; Subbiah, S.; Rogge, M.M.; Anderson, T.A.; Gao, W.M. Polycyclic aromatic hydrocarbons in breast milk of obese vs normal women: Infant exposure and risk assessment. Sci. Total Environ. 2019, 668, 658–667. [Google Scholar] [CrossRef]
- Asamoah, A.; Fini, M.N.; Essumang, D.K.; Muff, J.; Sogaard, E.G. PAHs contamination levels in the breast milk of Ghanaian women from an e-waste recycling site and a residential area. Sci. Total Environ. 2019, 666, 347–354. [Google Scholar] [CrossRef]
- Heshmati, A.; Mehri, F.; Karami-Momtaz, J.; Khaneghah, A.M. The concentration and health risk of potentially toxic elements in black and green tea-both bagged and loose-leaf. QAS 2020, 12, 140–150. [Google Scholar] [CrossRef]
- Xia, Z.H.; Duan, X.L.; Qiu, W.X.; Liu, D.; Wang, B.; Tao, S.; Jiang, Q.J.; Lu, B.; Song, Y.X.; Hu, X.X. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci. Total Environ. 2010, 408, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Cavret, S.; Feidt, C.; Le Roux, Y.; Laurent, F. Short communication: Study of mammary epithelial role in polycyclic aromatic hydrocarbons transfer to milk. JDS 2005, 88, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Kipopoulou, A.; Manoli, E.; Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut. 1999, 106, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Raza, N.; Kim, K.-H. Quantification techniques for important environmental contaminants in milk and dairy products. TrAC 2018, 98, 79–94. [Google Scholar] [CrossRef]
- Seralini, G.E.; Douzelet, J.; Jungers, G. Dataset of pollutants in organic and non-organic food. Data Brief 2022, 42, 108295. [Google Scholar] [CrossRef]
- Ssepuya, F.; Odongo, S.; Bandowe, B.A.M.; Abayi, J.J.M.; Olisah, C.; Matovu, H.; Mubiru, E.; Sillanpää, M.; Karume, I.; Kato, C.D.; et al. Polycyclic aromatic hydrocarbons in breast milk of nursing mothers: Correlates with household fuel and cooking methods used in Uganda, East Africa. Sci. Total Environ. 2022, 842, 156892. [Google Scholar] [CrossRef]
- Benford, D.; Bolger, P.M.; Carthew, P.; Coulet, M.; DiNovi, M.; Leblanc, J.C.; Renwick, A.G.; Setzer, W.; Schlatter, J.; Smith, B.; et al. Application of the margin of exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food Chem Toxicol. 2010, 48, S2–S24. [Google Scholar] [CrossRef]
Serial Number | Name of the PAH | Abbreviation | MW | US EPA | IARC | TEF |
---|---|---|---|---|---|---|
1 | Acenaphtylene | Acy | l | D | 3 | 0.001 |
2 | Fluorene | Flu | l | N/A | 3 | 0.001 |
3 | Phenantrene | Phen | l | D | 3 | 0.001 |
4 | Anthracene | Ant | l | D | 3 | 0.01 |
5 | Pyrene | Pyr | h | D | 3 | 0.001 |
6 | Benzo(a)anthracene | BaA | h | B2 | 2B | 0.1 |
7 | Chrysene | Chry | h | B2 | 2B | 0.01 |
8 | Benzo(b)fluoranthene | BbF | h | B2 | 2B | 0.1 |
9 | Benzo(k)fluoranthene | BkF | h | B2 | 2B | 0.1 |
10 | Benzo(a)pyrene | BaP | h | B2 | 1 | 1 |
11 | Dibenzo(a.h)anthracene | DB | h | B2 | 2A | 1 |
12 | Benzo(g,h,i)perylene | BP | h | D | 3 | 0.01 |
13 | Indeno(1.2.3-c.d)pyrene | IndP | h | B2 | 2B | 0.1 |
PAH | Retention Time (min) | LOD (ng/mL) |
LOQ
(ng/mL) |
Linearity
(R2) | The Mean Recovery Rate (%) |
---|---|---|---|---|---|
Fluorene | 2.494 | 0.18 | 0.55 | 0.9920 | 103.60 |
Phenantrene | 2.778 | 0.21 | 0.63 | 0.9912 | 73.10 |
Anthracene | 3.066 | 0.14 | 0.42 | 0.9961 | 84.70 |
Pyrene | 3.650 | 0.25 | 0.76 | 0.9873 | 85.00 |
Benzo(a)anthracene | 4.529 | 0.10 | 0.30 | 0.9980 | 79.50 |
Chrysene | 4.723 | 0.08 | 0.24 | 0.9987 | 93.30 |
Benzo(b)fluoranthene | 5.478 | 0.10 | 0.30 | 0.9978 | 95.90 |
Benzo(k)fluoranthene | 5.830 | 0.09 | 0.30 | 0.9985 | 85.20 |
Benzo(a)pyrene | 6.162 | 0.07 | 0.21 | 0.9991 | 89.30 |
Dibenzo(a.h)anthracene | 6.712 | 0.16 | 0.49 | 0.9946 | 78.20 |
Benzo(g,h,i)perylene | 6.981 | 0.12 | 0.37 | 0.9969 | 72.80 |
Indeno(1.2.3-c.d) pyrene | 7.165 | 0.07 | 0.23 | 0.9989 | 135.1 |
PAH | Number of Positive Samples | Mean (ng/mL) | Standard Deviation (ng/mL) | Minimum Detected Concentration (ng/mL) | Maximum Detected Concentration (ng/mL) | Sum (ng/mL) |
---|---|---|---|---|---|---|
Fluorene | 26 | 5.34 | 10.52 | 0.50 | 46.08 | 266.91 |
Phenantrene | 46 | 3.18 | 4.00 | 0.27 | 21.39 | 159.12 |
Anthracene | 41 | 1.53 | 2.99 | 0.09 | 13.82 | 76.71 |
Pyrene | 45 | 2.43 | 2.89 | 0.06 | 15.63 | 121.63 |
Benzo(a)anthracene | 32 | 2.42 | 3.07 | 0.20 | 14.86 | 120.95 |
Chrysene | 33 | 0.71 | 0.99 | 0.15 | 3.49 | 35.58 |
Benzo(b)fluoranthene | 8 | 1.10 | 2.89 | 1.15 | 11.70 | 54.82 |
Benzo(k)fluoranthene | 14 | 0.67 | 1.77 | 0.16 | 8.35 | 33.86 |
Benzo(a)pyrene | 22 | 0.15 | 0.25 | 0.09 | 1.11 | 7.60 |
Dibenzo(a.h)anthracene | nd | nd | nd | nd | nd | nd |
Benzo(g,h,i)perylene | 18 | 0.17 | 0.28 | 0.16 | 1.43 | 8.38 |
Indeno(1.2.3-c.d) pyrene | 18 | 0.15 | 0.27 | 0.00 | 1.43 | 7.74 |
ΣPAH (n = 50) |
Demographic Data of Participating Women (Number of Data) | Frequency (Percentage) | |
---|---|---|
Location (n = 50) | Rural | 18 (36%) |
Urban | 32 (64%) | |
Education level (n = 47) | 8 classes | 5 (10.6%) |
skilled worker | 8 (17%) | |
maturity | 14 (28%) | |
graduated | 20 (42.6%) | |
Marital status (n = 50) | in family | 49 (98%) |
single | 1 (2%) | |
Gravidity (n = 50) | First | 27 (54%) |
Second | 18 (36%) | |
Third | 5 (10%) | |
Ethnicity | Caucasian White | 33 (82.5%) |
Caucasian Roman | 3 (7.5%) | |
Asian | 3 (7.5%) | |
Mixed race | 1 (2.5%) | |
BMI (before the pregnancy) | Underweight | 3 (6.3%) |
Normal | 28 (58.3%) | |
Overweight | 10 (20.8%) | |
Obese I. | 3 (6.3%) | |
Obese II. | 3 (6.3%) | |
Obese III. | 1 (2.1%) | |
BMI (after the pregnancy) | Underweight | 2 (4.2%) |
Normal | 21 (43.8%) | |
Overweight | 11 (22.9%) | |
Obese I. | 9 (18.8%) | |
Obese II. | 2 (4.2%) | |
Obese III. | 3 (6.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anditi, B.C.; Poór, V.; Szerencsés, D.; Szabó, I.; Wahr, M.; Kőnig-Péter, A.; Dergez, T. Determination of PAH Contamination in Breast Milk Samples from Hungarian Volunteering Mothers, Using HPLC–FLD. Molecules 2024, 29, 5060. https://doi.org/10.3390/molecules29215060
Anditi BC, Poór V, Szerencsés D, Szabó I, Wahr M, Kőnig-Péter A, Dergez T. Determination of PAH Contamination in Breast Milk Samples from Hungarian Volunteering Mothers, Using HPLC–FLD. Molecules. 2024; 29(21):5060. https://doi.org/10.3390/molecules29215060
Chicago/Turabian StyleAnditi, Bernard Collins, Viktória Poór, Dénes Szerencsés, István Szabó, Mátyás Wahr, Anikó Kőnig-Péter, and Timea Dergez. 2024. "Determination of PAH Contamination in Breast Milk Samples from Hungarian Volunteering Mothers, Using HPLC–FLD" Molecules 29, no. 21: 5060. https://doi.org/10.3390/molecules29215060
APA StyleAnditi, B. C., Poór, V., Szerencsés, D., Szabó, I., Wahr, M., Kőnig-Péter, A., & Dergez, T. (2024). Determination of PAH Contamination in Breast Milk Samples from Hungarian Volunteering Mothers, Using HPLC–FLD. Molecules, 29(21), 5060. https://doi.org/10.3390/molecules29215060