Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Investigations
2.1.1. Determination of Total Phenolic Content
2.1.2. Identification of Phenolic Compounds by HPLC-PDA/ESI-MS
Peak N. | Compound | tR (min) | UV max (nm) | [M − H]− | Aqueous Extract | Ethanolic Extract | Ref. |
---|---|---|---|---|---|---|---|
1 | Gallic acid | 2.91 | 270 | 169 | 0.60 ± 0.000 | - | Std. |
2 | Caffeoylglucaric acid | 5.74 | 326 | 371, 179 | 3.39 ± 0.011 | - | [37] |
3 | Unknown | 6.32 | 279 | 395, 197 | X | - | - |
4 | Caffeoyl glucuronide | 7.35 | 288, 312 | 355 | 2.09 ± 0.044 | - | - |
5 | Caftaric acid | 7.94 | 325 | 311, 179 | 1.13 ± 0.035 | - | [38] |
6 | Feruloylglucaric acid | 9.06 | 325 | 385, 193 | 0.72 ± 0.011 | - | - |
7 | Sinapoylglucose | 9.36 | 281, 322 | 385, 223 | 0.30 ± 0.010 | - | - |
8 | Caffeoylglucose | 9.77 | 323 | 341, 179 | 0.30 ± 0.003 | - | - |
9 | Unknown | 9.90 | 312 | 293 | X | X | - |
10 | Caffeoylquinic acid | 10.80 | 324 | 353, 191, 179 | 1.11 ± 0.002 | 0.23 ± 0.016 | Std. |
11 | Caffeic acid | 10.96 | 322 | 179 | 0.92 ± 0.012 | - | Std. |
12 | Unknown | 11.01 | 282 | 325 | - | X | - |
13 | Caffeoylhydroxycitric acid | 11.14 | 312 | 369 | 0.48 ± 0.003 | - | - |
14 | Myricetin hexoside | 22.40 | 260 sh, 354 | 479, 317 | - | 1.16 ± 0.000 | [37] |
15 | Myricetin rhamnosyl-hexoside | 23.42 | 262 sh, 353 | 625, 479, 317 | 1.06 ± 0.004 | 1.90 ± 0.022 | [37] |
16 | Quercetin hexuronide | 24.38 | 276, 343 | 477, 301 | 0.37 ± 0.011 | - | [37] |
17 | Quercetin hexosyl-Pentoside | 25.26 | 255, 353 | 595, 463, 301 | 4.36 ± 0.006 | 4.41 ± 0.056 | [37] |
18 | Myricetin 3-O-rhamnoside | 27.24 | 263, 348 | 463, 317 | 0.96 ± 0.006 | 1.49 ± 0.003 | [35] |
19 | Quercetin hexosyl-rhamnoside | 28.23 | 254, 353 | 609, 463, 301 | 4.44 ± 0.004 | 9.09 ± 0.049 | [37] |
20 | Quercetin hexosyl-rhamnoside | 29.53 | 256, 352 | 609, 463, 301 | 1.34 ± 0.041 | 8.63 ± 0.083 | [37] |
21 | Quercetin hexoside | 29.68 | 254, 352 | 463, 301 | 2.63 ± 0.034 | - | [37] |
22 | Kaempferol hexuronide | 30.34 | 261, 347 | 461, 285 | 2.84 ± 0.010 | - | - |
23 | Kaempferol hexosyl-pentoside | 30.79 | 265, 345 | 579, 447, 285 | 0.65 ± 0.008 | [39] | |
24 | Kaempferol hexosyl-rhamnoside | 30.82 | 266, 347 | 593, 447, 285 | 0.81 ± 0.000 | - | [37] |
25 | Quercetin 3-O-pentoside | 31.86 | 255, 353 | 433, 301 | 1.71 ± 0.008 | 3.09 ± 0.034 | [35] |
26 | Kaempferol 3-O-glucoside | 32.36 | 264, 344 | 447, 285 | 0.70 ± 0.001 | 1.71 ± 0.016 | Std. |
7 | Kaempferol hexosyl-rhamnoside | 34.93 | 265, 343 | 593, 447, 285 | 0.37 ± 0.017 | - | [37] |
28 | Kaempferol galactoside | 35.16 | 264, 344 | 447, 285 | 0.92 ± 0.015 | 3.29 ± 0.033 | [37] |
29 | Myricetin | 35.99 | 252 sh, 370 | 317 | - | 1.38 ± 0.017 | Std. |
30 | Kaempferol 3-O-pentoside | 36.53 | 265, 345 | 417, 285 | 0.34 ± 0.003 | 0.70 ± 0.009 | [35] |
31 | Rosmarinic acid | 40.13 | 328 | 359, 161 | 8.59 ± 0.017 | - | [40] |
32 | Quercetin | 51.69 | 254, 369 | 301 | - | 5.45 ± 0.002 | Std. |
33 | Kaempferol | 65.07 | 265, 366 | 285 | - | 1.48 ± 0.007 | Std. |
2.2. Antioxidant Activity
2.3. Insecticidal Activity on Adult Sitophilus oryzae
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. Phytochemical Investigations
3.2.1. Determination of Total Phenolic Content
3.2.2. Phenolic Compounds Analysis by HPLC-PDA/ESI-MS
3.3. Antioxidant Activity
3.3.1. DPPH Test
3.3.2. Reducing Power Assay
3.3.3. Ferrous Ions (Fe2+) Chelating Activity Assay
3.4. Insecticidal Activity
3.4.1. Sitophilus oryzae Strain
3.4.2. Effect of the Essential Oil on Adult Sitophilus oryzae
3.4.3. Effect of Ethanolic and Aqueous Extracts on Adult Sitophilus oryzae
3.4.4. Data Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oboh, G.; Ademosun, A.O.; Olumuyiwa, T.A.; Olasehinde, T.A.; Ademiluyi, A.O.; Adeyemo, A.C. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica 2017, 45, 501–508. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Pandin, J.A.; Da Silva, F.G.P.; Scur, M.C.; Alves, L.F.A.; Martins, C.C. Antimicrobial, insecticidal, and antioxidant activity of essential oil and extracts of Guarea kunthiana A. Juss. J. Med. Plants Res. 2015, 9, 48–55. [Google Scholar] [CrossRef]
- Weber, L.D.; Pinto, F.G.S.; Scur, M.C.; Souza, J.G.L.; Costa, W.F.; Leite, C.W. Chemical composition and antimicrobial and antioxidant activity of essential oil and various plant extracts from Prunus myrtifolia (L.) Urb. Afr. J. Agric. Res. 2014, 9, 846–853. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; de Carvalho Aragao, C.E.; deAraújo, P.J.P.; de Benatto, A.; Chaaban, A.; Martins, C.E.N.; do Amaral, W.; Cipriano, R.R.; Zawadneak, M.A.C. Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Houghton, P.J.; Ren, Y.; Howes, M.-J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef]
- Ghania, I.; Fazia, M.; Mohamed, H. Antioxidant and insecticidal activity of algerian Myrtus communis L. extracts. Int. J. Agric. Sci. 2014, 46, 193–202. [Google Scholar]
- Kim, S.I.; Roh, J.Y.; Kim, D.H.; Lee, H.S.; Ahn, Y.J. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J. Stored Prod. Res. 2003, 39, 293–303. [Google Scholar] [CrossRef]
- Opiyo, S.A.; Njoroge, P.W.; Ndirangu, E.G. A review pesticidal activity of essential oils against Sitophilus oryzae, Sitophilus granaries and Sitophilus zeamais. IOSR J. Appl. Chem. 2022, 15, 39–51. [Google Scholar]
- Dzamic, A.M.; Sokovic, M.D.; Ristic, M.S.; Grujic, S.M.; Mileski, K.S.; Marin, P.D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. J. Appl. Pharm. Sci. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Jaggali, S.; Venkatesh, K.; Baburao, N.; Hilal, M.; Rani, R. Phytopharmacological importance of Pelargonium species. J. Med. Plants Res. 2011, 5, 2587–2598. [Google Scholar]
- Asgarpanah, J.; Ramezanloo, F. An overview on phytopharmacology of Pelargonium graveolens L. IJTK 2015, 14, 558–563. [Google Scholar]
- El Aanachi, S.; Gali, L.; Nacer, S.N.; Bensouici, C.; Dari, K.; Aassila, H. Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. Biocatal. Agric. Biotechnol. 2020, 29, 101819. [Google Scholar] [CrossRef]
- Higley, C.; Higley, A. Reference Guide for Essential Oils; Abundant Health: London, UK, 2001. [Google Scholar]
- Harzallah, A.A.; Hachama, K.; Khadraoui, A. Polyphenol analysis by HPLC-DAD, and antimicrobial and antioxidant activities of two species extracts of Pelargonium: P. graveolens and P. zonale. Nutr. Santé 2022, 11, 48–56. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Sudha, T.; Darwish, N.H.E.; Nada, H.G.; Mousa, S.A. Rose-scented geranium essential oil from Algeria (Pelargonium graveolens L’Hérit.: Assessment of antioxidant, anti-inflammatory and anticancer properties against different metastatic cancer cell lines. Ann. Pharm. Françaises 2022, 80, 383–396. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Yao, N.; He, J.-K.; Pan, M.; Hou, Z.-F.; Fan, Y.-M.; Du, A.; Tao, J.-P. In vitro anti-parasitic activity of Pelargonium X. asperum essential oil against Toxoplasma gondii. Front. Cell Dev. Biol. 2021, 9, 616340. [Google Scholar] [CrossRef]
- Usman, M.M.; Aisami, A.; Mohammed, S.; Sa’idu, H. African medicinal plants with anti-Mycobacterium tuberculosis activity: A review. BIMA J. Sci. Technol. 2023, 7, 18–29. [Google Scholar] [CrossRef]
- Tembeni, B.; Oyedeji, O.O.; Manene, C.N.; Oyemitan, I.A.; Oyedeji, A.O. Anti-inflammatory, analgesic activity and toxicity of two Pelargonium inquinans Ait essential oils: Wild and cultivated. J. Essent. Oil Bear. Plants 2019, 22, 1252–1264. [Google Scholar] [CrossRef]
- M’hamdi, Z.; Bouymajane, A.; Riffi, O.; Rhazi Filali, F.; Ettarchouch, M.; ELhourri, M.; Amechrouq, A. Chemical composition and antibacterial activity of essential oil of Pelargonium graveolens and its fractions. Arab. J. Chem. 2024, 17, 105375. [Google Scholar] [CrossRef]
- Moutaouafiq, S.; Farah, A.; Ez zoubi, Y.; Ghanmi, M.; Satrani, B.; Bousta, D. Antifungal activity of Pelargonium graveolens essential oil and its fractions against wood decay fungi. J. Essent. Oil Bear. Plants 2019, 22, 1104–1114. [Google Scholar] [CrossRef]
- Ćavar, S.; Vidic, D.; Maksimovic, M. Chemical composition and antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Planta Med. 2010, 76, P132. [Google Scholar] [CrossRef]
- Ćavar, S.; Maksimović, M. Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- Jaradat, N.; Hawash, M.; Qadi, M.; Abualhasan, M.; Odetallah, A.; Qasim, G.; Awayssa, R.; Akkawi, A.; Abdullah, I.; Al-Maharik, N. Chemical markers and pharmacological characters of Pelargonium graveolens essential oil from Palestine. Molecules 2022, 27, 5721. [Google Scholar] [CrossRef] [PubMed]
- M’hamdi, Z.; Mohammed, E.; Kachmar, M.R.; Maryam, S.; Ali, A. Comparative study of the chemical composition and antioxidant activities of the essential oil of Pelargonium graveolens from the four regions of Morocco. Indian J. Agric. Biochem. 2022, 35, 188–196. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Bhuyan, U.; Handique, J.G. Plant polyphenols as potent antioxidants: Highlighting the mechanism of antioxidant activity and synthesis/development of some polyphenol conjugates. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 75, pp. 243–266. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Boix, N.; Piqué, E.; Gómez-Catalan, J.; Medina-Remon, A.; Sasot, G.; Mercader-Martí, M.; Llobet, J.M.; Lamuela-Raventos, R.M. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS. Food Chem. 2015, 181, 146–151. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Meas Antioxid Act Capacity; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 107–115. [Google Scholar] [CrossRef]
- Pradeepa, M.; Kalidas, V.; Geetha, N. Qualitative and quantitative phytochemical analysis and bactericidal activity of Pelargonium graveolens L’Her. Int. J. Appl. Pharm. 2016, 8, 7–11. [Google Scholar] [CrossRef]
- Ben ElHadj Ali, I.; Tajini, F.; Boulila, A.; Jebri, M.-A.; Boussaid, M.; Messaoud, C.; Sebaï, H. Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind. Crops Prod. 2020, 158, 112951. [Google Scholar] [CrossRef]
- Ennaifer, M.; Bouzaiene, T.; Messaoud, C.; Hamdi, M. Phytochemicals, antioxidant, anti-acetyl-cholinesterase, and antimicrobial activities of decoction and infusion of Pelargonium graveolens. Nat. Prod. Res. 2020, 34, 2634–2638. [Google Scholar] [CrossRef] [PubMed]
- M’hamdi, Z.; Riffi, O.; Ettahiri, W.; Zahri, D.; Taleb, M.; Amechrouq, A. Investigation into the prevention of environmental degradation of mild steel in a 1M HCl solution using extracts derived from Pelargonium graveolens. J. Bio-Tribo-Corros. 2023, 9, 82. [Google Scholar] [CrossRef]
- Androutsopoulou, C.; Christopoulou, S.D.; Hahalis, P.; Kotsalou, C.; Lamari, F.N.; Vantarakis, A. Evaluation of Essential Oils and Extracts of Rose Geranium and Rose Petals as Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity. Pathogens 2021, 10, 494. [Google Scholar] [CrossRef]
- Al-Sayed, E.; Martiskainen, O.; Seifel-Din, S.H.; Sabra, A.-N.A.; Hammam, O.A.; El-Lakkany, N.M. Protective effect of Pelargonium graveolens against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive constituents by HPLC–PDA–ESI–MS/MS analysis. Med. Chem. Res. 2015, 24, 1438–1448. [Google Scholar] [CrossRef]
- Checkouri, E.; Reignier, F.; Robert-Da Silva, C.; Meilhac, O. Evaluation of polyphenol content and antioxidant capacity of aqueous extracts from eight medicinal plants from Reunion Island: Protection against oxidative stress in red blood cells and preadipocytes. Antioxidants 2020, 9, 959. [Google Scholar] [CrossRef]
- Graça, V.C.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C. Fractionation of the more active extracts of Geranium molle L.: A relationship between their phenolic profile and biological activity. Food Funct. 2018, 9, 2032–2042. [Google Scholar] [CrossRef]
- Samet, S.; Ayachi, A.; Fourati, M.; Mallouli, L.; Allouche, N.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. Antioxidant and antimicrobial activities of Erodium arborescens aerial part extracts and characterization by LC-HESI-MS2 of its acetone extract. Molecules 2022, 27, 4399. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Libero, M.L.; Di Simone, S.C.; Acquaviva, A.; Nilofar; Recinella, L.; Leone, S.; Brunetti, L.; Cicia, D.; Izzo, A.A.; et al. Adding new scientific evidences on the pharmaceutical properties of Pelargonium quercetorum Agnew extracts by using in vitro and in silico approaches. Plants 2023, 12, 1132. [Google Scholar] [CrossRef]
- Decker, E.A. Phenolics: Prooxidants or antioxidants? Nutr. Rev. 1997, 55, 396–398. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Singh, P.; Singh, T.; Gandhi, N. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review. Food Rev. Int. 2018, 34, 226–247. [Google Scholar] [CrossRef]
- Materska, M. Quercetin and its derivatives: Chemical structure and bioactivity—A review. Pol. J. Food Nutr. Sci. 2008, 58, 407–413. [Google Scholar]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Vo, T.S.; Le, T.T.; Kim, S.Y.; Ngo, D.H. The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk fruits on downregulation of FcɛRI-mediated mast cell activation. J. Food Biochem. 2020, 44, e13143. [Google Scholar] [CrossRef]
- Fayed, H.A.; Atiya, A.F. A Novel Template Reduction Approach for the k-nearest neighbor Method. IEEE Trans. Neural Netw. 2009, 20, 890–896. [Google Scholar] [CrossRef]
- Mnif, W.; Dhifi, W.; Jelali, N.; Baaziz, H.; Hadded, A.; Hamdi, N. Characterization of leaves essential oil of Pelargonium graveolens originating from Tunisia: Chemical composition, antioxidant and biological activities. J. Essent. Oil Bear. Plants 2011, 14, 761–769. [Google Scholar] [CrossRef]
- Boukhris, M.; Bouaziz, M.; Feki, I.; Jemai, H.; El Feki, A.; Sayadi, S. Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. in alloxan induced diabetic rats. Lipids Health Dis. 2012, 11, 81. [Google Scholar] [CrossRef]
- Dimitrova, M.; Mihaylova, D.; Popova, A.; Alexieva, J.; Sapundzhieva, T.; Fidan, H. Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves’ extracts. Sci. Bull. Ser. F Biotechnol. 2015, 19, 130–135. [Google Scholar] [CrossRef]
- Ennaifer, M.; Bouzaiene, T.; Chouaibi, M.; Hamdi, M. Pelargonium graveolens aqueous decoction: A new water-soluble polysaccharide and antioxidant-rich extract. BioMed Res. Int. 2018, 2018, 2691513. [Google Scholar] [CrossRef]
- Abd El-Salam, A. Fumigant toxicity of seven essential oils against the cowpea weevil, Callosobruchus maculatus (F.) and the rice weevil, Sitophilus oryzae (L.). Egypt. Acad. J. Biol. Sci. F Toxicol. Pest Control 2010, 2, 1–6. [Google Scholar] [CrossRef]
- Mesbah, A.H.; Massoud, A.M.; Aajel, S.M.; Abdelsalam, R.N.; Adel, M.M. Nano-formulation of Pelargonium graveolens essential oil: Physicochemical characterization and its bioactivity against rice weevil Sitophilus oryzae on stored wheat grain. Egpt. J. Chem. 2023, 66, 459–469. [Google Scholar] [CrossRef]
- Jayakumar, M.; Arivoli, S.; Raveen, R.; Tennyson, S. Repellent activity and fumigant toxicity of a few plant oils against the adult rice weevil Sitophilus oryzae Linnaeus 1763 (Coleoptera: Curculionidae). J. Entomol. Zool. Stud. 2017, 5, 324–335. [Google Scholar]
- Seada, M.A.; Arab, R.A.; Adel, I.; Seif, A.I. Bioactivity of essential oils of basil, fennel, and geranium against Sitophilus oryzae and Callosobruchus maculatus: Evaluation of repellency, progeny production and residual activity. Egypt. J. Exp. Biol. Zool. 2016, 12, 1–12. [Google Scholar]
- Arab, H.R.A.; Keratum, A.Y.; Abouelatta, A.M.; El-Zun, H.M.; Hafez, Y.; Abdelaal, K. Toxicité par fumigation et contact de certains composants essentiels contre trois insectes des produits stockés. Fresenius Environ. Bull. 2022, 31, 10136–10143. [Google Scholar]
- Kherroubi, M.; Zerrouk, I.Z.; Rahmoune, B.; Zaidat, S.A.E.; Messadi, O.; Mouhouche, F. Evaluation of the potential insecticide activity of three plants essential oil against the chickpea seeds beetles, Callosobruchus maculatus. Ann. Univ. Oradea Fasc. Biol. 2021, 97, 97–102. [Google Scholar]
- Chaubey, M.K. Essential oils as green pesticides of stored grain insects. Eur. J. Biol. Res. 2019, 9, 202–244. [Google Scholar] [CrossRef]
- Nenaah, G.E. Potential of using flavonoids, latex and extracts from Calotropis procera (Ait.) as grain protectants against two coleopteran pests of stored rice. Ind. Crops Prod. 2013, 45, 327–334. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, I.; Kariyat, R. The multifunctional roles of polyphenols in plant-herbivore interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Bjork, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food. Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acid on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kumar, T.S.; Shanmugam, S.; Palvannan, T.; Kumar, V.M.B. Evaluation of antioxidant properties of Elaeocarpus ganitrus Roxb. leaves. Iran. J. Pharm. Res. 2008, 7, 211–215. [Google Scholar] [CrossRef]
- El Idrissi, M.; Elhourri, M.; Amechrouq, A.; Boughdad, A. Étude de l’activité Insecticide de l’huile Essentielle de Dysphania ambrosioïdes L. (Chenopodiaceae) Sur Sitophilus Oryzae (Coleoptera: Curculionidae). J. Mater. Environ. Sci. 2014, 5, 989–994. [Google Scholar]
- Riffi, O.; Amechrouq, A.; Elhourri, M.; El Idrissi, M.; Fliou, J. Study of the insecticidal activity of Taxus baccata of the Ifrane Valley on Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Fresenius Environ. Bull. 2019, 28, 3197–3202. [Google Scholar]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: London, UK, 1971; p. 633. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Pelargonium graveolens | TPC (mg GAE/g Extract) | DPPH IC50 (mg/mL) | Reducing Power ASE/mL | Chelating Activity Fe2+ IC50 (mg/mL) |
---|---|---|---|---|
EO | ND | >2 a | 21.77 ± 2.17 a | >2 a |
Aqueous extract | 156.42 ± 0.73 a | 0.13 ± 0.01 b | 3.01 ± 0.03 b | NA |
Ethanolic extract | 385.09 ± 2.09 b | 0.05 ± 0.01 c | 1.92 ± 0.04 b | >2 a |
Standard | - | BHT 0.07 ± 0.01 d | BHT 1.44 ± 0.02 b | EDTA 0.007 ± 0.001 b |
Concentrations (µL/L) | TL50 | r > r (0.05; 2) | TL99 | r > r (0.05; 2) |
---|---|---|---|---|
0 | 6.89 | 13.65 | ||
4 | 5.58 | −0.89 | 11.05 | −0.89 |
8 | 3.18 | 6.30 | ||
12 | 2.71 | 5.36 |
Days after Treatment | Slope ± SE (1) | χ2 Calculated <χ2 (0.05; 2) = 5.991 | LC50 (µL/L) (2) [Confidence Interval] | LC99 (µL/L) (2) [Confidence Interval] |
---|---|---|---|---|
1 | 3.03 ± 0.71 | 4.36 | 36.78 [30.03; 53.74] | 215.88 [109.33; 1312.13] |
3 | 3.88 ± 0.81 | 3.70 | 19.22 [14.23; 23.25] | 76.42 [53.353; 171.002] |
4 | 4.11 ± 0.82 | 1.96 | 15.35 [10.96; 18.82] | 56.40 [41.22; 108.74] |
5 | 5.66 ± 1.22 | 0.30 | 13.79 [9.82; 16.78] | 35.55 [27.78; 59.75] |
6 | 8.02 ± 2.14 | 0.02 | 12.30 [8.73; 15.07] | 23.99 [18.89; 43.78] |
Concentrations (g/50 Seeds) | TL50 | r > r (0.05; 2) | TL99 | r > r (0.05; 2) |
---|---|---|---|---|
0 | 7.71 | 13.65 | ||
Dn/2 | 5.53 | −0.99 | 11.05 | −0.99 |
Dn | 5.05 | 6.30 | ||
2 Dn | 4.62 | 5.36 | ||
4 Dn | 4.15 | 8.21 |
Days after Treatment | Slope ±SE (1) | χ2 Calculated <χ2 (0.05; 2) = 5.991 | LC50 (g/50 Seeds) (2) [Confidence Interval] | LC99 (g/50 Seeds) (2) [Confidence Interval] |
---|---|---|---|---|
1 | 1.56 ± 0.71 | 0.33 | 10.63 [5.09; 922656.81] | 329.52 [109.33; 1312.13] |
6 | 1.54 ± 0.77 | 0.23 | 1.93 [0.00; 4.12] | 62.13 [53.35; 171.002] |
8 | 3.17 ± 1.20 | 2.01 | 1.38 [0.20; 2.13] | 7.507 [41.22; 108.74] |
9 | 3.47 ± 1.44 | 1.31 | 0.82 [0.03; 1.33] | 3.86 [27.78; 59.75] |
Concentrations (g/50 Seeds) | TL50 | r > r (0.05; 2) | TL99 | r > r (0.05; 2) |
---|---|---|---|---|
0 | 7.53 | 14.90 | ||
Dn/2 | 5.24 | −0.99 | 10.38 | −0.99 |
Dn | 4.90 | 9.96 | ||
2 Dn | 4.47 | 8.85 | ||
4 Dn | 4.24 | 8.39 |
Days after Treatment | Slope ±SE (1) | χ2 Calculated <χ2 (0.05; 2) = 5.991 | LC50 (g/50 Seeds) (2) [Confidence Interval] | LC99 (g/50 Seeds) (2) [Confidence Interval] |
---|---|---|---|---|
1 | 1.89 ± 0.86 | 0.80 | 11.34 [5.09; 922,656.81] | 192.63 [109.33; 1312.13] |
2 | 1.83 ± 0.83 | 0.68 | 6.96 [0.00; 4.12] | 129.83 [53.35; 171.002] |
3 | 1.50 ± 0.76 | 0.18 | 6.30 [0.20; 2.13] | 221.01 [41.22; 108.74] |
8 | 2.20 ± 1.01 | 0.64 | 1.16 [0.03; 1.33] | 13.21 [27.78; 59.75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M’hamdi, Z.; Davì, F.; Elhourri, M.; Amechrouq, A.; Mondello, F.; Cacciola, F.; Laganà Vinci, R.; Mondello, L.; Miceli, N.; Taviano, M.F. Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules 2024, 29, 4036. https://doi.org/10.3390/molecules29174036
M’hamdi Z, Davì F, Elhourri M, Amechrouq A, Mondello F, Cacciola F, Laganà Vinci R, Mondello L, Miceli N, Taviano MF. Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules. 2024; 29(17):4036. https://doi.org/10.3390/molecules29174036
Chicago/Turabian StyleM’hamdi, Zakya, Federica Davì, Mohammed Elhourri, Ali Amechrouq, Fabio Mondello, Francesco Cacciola, Roberto Laganà Vinci, Luigi Mondello, Natalizia Miceli, and Maria Fernanda Taviano. 2024. "Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco" Molecules 29, no. 17: 4036. https://doi.org/10.3390/molecules29174036
APA StyleM’hamdi, Z., Davì, F., Elhourri, M., Amechrouq, A., Mondello, F., Cacciola, F., Laganà Vinci, R., Mondello, L., Miceli, N., & Taviano, M. F. (2024). Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules, 29(17), 4036. https://doi.org/10.3390/molecules29174036