Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of the Biocarbons
2.2. Adsorption Study
2.3. Desorption Study
3. Materials and Methods
3.1. Materials
3.2. Preparation of Biocarbons
3.3. Characterisation
3.4. Adsorption Experiments
3.5. Desorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, J.; Peng, Y.; Jiang, Y.; Li, L.; Wang, H.; Li, K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023, 28, 7121. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Lee, H.J. Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers 2022, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Guo, H.; Wang, Y.; Zhang, F.; Nie, K.; Dang, J.; Liang, Z.; Dong, S.; Zeren, Y.; Zhou, B.; et al. Hazardous volatile organic compounds in ambient air of China. Chemosphere 2020, 246, 125731. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Xuan, W.; Yan, S.; Wang, Q. Zeolites synthesized from industrial and agricultural solid waste and their applications: A review. J. Environ. Chem. Eng. 2023, 11, 110898. [Google Scholar] [CrossRef]
- Wang, Z.; Jang, H.M. Comparative study on characteristics and mechanism of levofloxacin adsorption on swine manure biochar. Bioresour. Technol. 2022, 351, 127025. [Google Scholar] [CrossRef]
- Bose, S.; Kumar, P.S.; Rangasamy, G.; Prasannamedha, G.; Kanmani, S. A review on the applicability of adsorption techniques for remediation of recalcitrant pesticides. Chemosphere 2023, 313, 137481. [Google Scholar] [CrossRef]
- Andrunik, M.; Bajda, T. Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. Materials 2021, 14, 3532. [Google Scholar] [CrossRef] [PubMed]
- Boer, D.G.; Langerak, J.; Bakker, B.; Pescarmona, P.P. Binderless zeolite LTA beads with hierarchical porosity for selective CO2 adsorption in biogas upgrading. Microporous Mesoporous Mater. 2022, 344, 112208. [Google Scholar] [CrossRef]
- Fait, F.; Steinbach, J.C.; Kandelbauer, A.; Mayer, H.A. Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications. J. Chromatogr. A 2023, 1705, 464190. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, Y.; Feng, M.; Chen, S. Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride. Int. J. Mol. Sci. 2022, 23, 15703. [Google Scholar] [CrossRef]
- Boulanger, N.; Talyzin, A.V.; Xiong, S.; Hultberg, M.; Grimm, A. High surface area activated carbon prepared from wood-based spent mushroom substrate for supercapacitors and water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132684. [Google Scholar] [CrossRef]
- Zhang, Y.; Quan, Y.; Ren, J. Influence of the surface SO3H groups on the performance of activated carbon catalyst for ethanolysis of furfuryl alcohol to ethyl levulinate. Mol. Catal. 2024, 565, 114363. [Google Scholar] [CrossRef]
- Yang, Z.; Gleisner, R.; Mann, D.H.; Xu, J.; Jiang, J.; Zhu, J.Y. Lignin Based Activated Carbon Using H3PO4 Activation. Polymers 2020, 12, 2829. [Google Scholar] [CrossRef]
- Li, X.; Qiu, J.; Hu, Y.; Ren, X.; He, L.; Zhao, N.; Ye, T.; Zhao, X. Characterization and comparison of walnuts hells-based activated carbons and their adsorptive properties. Adsorpt. Sci. Technol. 2020, 38, 450–463. [Google Scholar] [CrossRef]
- Phiri, J.; Ahadian, H.; Sandberg, M.; Granström, K.; Maloney, T. The Influence of Physical Mixing and Impregnation on the Physicochemical Properties of Pine Wood Activated Carbon Produced by One-Step ZnCl2 Activation. Micromachines 2023, 14, 572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, R.; Ma, J.; Sun, Y. Study on the Application of Shell-Activated Carbon for the Adsorption of Dyes and Antibiotics. Water 2022, 14, 3752. [Google Scholar] [CrossRef]
- Sreńscek-Nazzal, J.; Kamińska, A.; Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Wróbel, R.J.; Serafin, J.; Michalkiewicz, B. Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene. Materials 2021, 14, 7811. [Google Scholar] [CrossRef]
- Xu, Z.; Li, M.; Shen, G.; Chen, Y.; Lu, D.; Ren, P.; Jiang, H.; Wang, X.; Dai, B. Solvent Effects in the Preparation of Catalysts Using Activated Carbon as a Carrier. Nanomaterials 2023, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Malini, K.; Selvakumar, D.; Kumar, N.S. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity—A review. J. CO2 Util. 2023, 67, 102318. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Pietrzak, R. Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem. Eng. J. 2020, 393, 124785. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Nowicki, P.; Pietrzak, R. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 2017, 152, 211–222. [Google Scholar] [CrossRef]
- Jeong, J.-S.; Kim, B.-J. Preparation of Cellulose-Based Activated Carbon Fibers with Improved Yield and Their Methylene Chloride Adsorption Evaluation. Molecules 2023, 28, 6997. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.-Y.; Nakabayashi, K.; Shimohara, T.; Morio, U.; Mochida, I.; Miyawaki, J.; Jeon, Y.; Park, J.-I.; Yoon, S.-H. Behaviors of Cellulose-Based Activated Carbon Fiber for Acetaldehyde Adsorption at Low Concentration. Appl. Sci. 2020, 10, 25. [Google Scholar] [CrossRef]
- Tasić, T.; Milanković, V.; Unterweger, C.; Fürst, C.; Breitenbach, S.; Pašti, I.A.; Lazarević-Pašti, T. Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications. C 2024, 10, 58. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, X.; Cao, S.; Shang, J.; Cheng, X. Efficient Removal of Rhodamine B in Wastewater via Activation of Persulfate by MnO2 with Different Morphologies. Water 2023, 15, 735. [Google Scholar] [CrossRef]
- Li, S.; Cui, Y.; Wen, M.; Ji, G. Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. Toxics 2023, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bao, L.; Zhong, Y.; Hao, C.; Chen, J.; Wu, J.; Wang, X. Fabrication of in situ metal-organic framework grown on sodium lignosulphonate hydrogel for removal of Pb2+, methylene blue and crystal violet from aqueous solution. J. Clean. Prod. 2024, 434, 139831. [Google Scholar] [CrossRef]
- Kazmierczak-Razna, J.; Nowicki, P.; Pietrzak, R. Characterization and application of bio-activated carbons prepared by direct activation of hay with the use of microwave radiation. Powder Technol. 2017, 319, 302–312. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Urban, T.; Tokarska, K.; Marciniak, P.; Giel, A.; Nowicki, P. Removal of Organic Dyes, Polymers and Surfactants Using Carbonaceous Materials Derived from Walnut Shells. Materials 2024, 17, 1987. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Charmas, B.; Zięzio, M.; Jedynak, K. Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 2023, 28, 4922. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dye. Pigment. 2007, 75, 143–149. [Google Scholar] [CrossRef]
- Khan, T.A.; Dahiya, S.; Ali, I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the ad-sorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012, 69, 58–66. [Google Scholar] [CrossRef]
- Ren, Z.G.; Chen, F.; Wang, B.; Song, Z.X.; Zhou, Z.Y.; Ren, D. Magnetic biochar from alkali-activated rice straw for removal of Rhodamine B from aqueous solution. Environ. Eng. Res. 2020, 25, 536–544. [Google Scholar] [CrossRef]
- Gad, H.M.H.; El-Sayed, A.A. Activated carbon from agricultural byproducts for the removal of Rhodamine-B from aqueous solution. J. Hazard. Mater. 2009, 168, 1070–1081. [Google Scholar] [CrossRef]
- Tcheka, C.; Conradie, M.M.; Assinale, V.A.; Conradie, J. Mesoporous biochar derived from Egyptian doum palm (Hyphaene thebaica) shells as low-cost and biodegradable adsorbent for the removal of methyl orange dye: Characterization, kinetic and adsorption mechanism. Chem. Phys. Impact 2024, 8, 100446. [Google Scholar] [CrossRef]
- Hu, X.; Xue, Y.; Long, L.; Zhang, K. Characteristics and batch experiments of acid- and alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 19932–19940. [Google Scholar] [CrossRef]
- Pham, T.D.; Kobayashi, M.; Adachi, Y. Adsorption of Polyanion onto Large Alpha Alumina Beads with Variably Charged Surface. Adv. Phys. Chem. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Liu, J.; Deng, Y. Micro-meso porous biocarbons derived from a typical biopolymer with superior adsorption capacity for methylene blue dye and high-performance supercapacitors. J. Electroanal. Chem. 2022, 924, 116877. [Google Scholar] [CrossRef]
- Qi, J.; Zhu, H.; Yang, T.; Wang, X.; Wang, Z.; Lei, X.; Li, B.; Qian, W. Biomass-derived carbon/iron composite (FexOy-BC (RM)) with excellent Cd(II) adsorption from wastewater—Red mud resource utilization. Arab. J. Chem. 2024, 17, 105411. [Google Scholar] [CrossRef]
- Ali, N.S.; Jabbar, N.M.; Alardhi, S.M.; Majdi, H.S.; Albayati, T.M. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies. Heliyon 2022, 8, e10276. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef]
- Wolski, R.; Bazan-Wozniak, A.; Pietrzak, R. Adsorption of Methyl Red and Methylene Blue on Carbon Bioadsorbents Obtained from Biogas Plant Waste Materials. Molecules 2023, 28, 6712. [Google Scholar] [CrossRef]
- Jedynak, K.; Wideł, D.; Rędzia, N. Removal of Rhodamine B (A Basic Dye) and Acid Yellow 17 (An Acidic Dye) from Aqueous Solutions by Ordered Mesoporous Carbon and Commercial Activated Carbon. Colloids Interfaces 2019, 3, 30. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Nosal-Wiercińska, A.; Yilmaz, S.; Pietrzak, R. Chitin-based porous carbons from Hermetia illucens fly with large surface area for efficient adsorption of methylene blue; adsorption mechanism, kinetics and equilibrium studies. Measurement 2024, 226, 114129. [Google Scholar] [CrossRef]
- Abbas, R.F.; Hassan, M.J.M.; Rheima, A.M. Adsorption of fast green dye onto Fe3O4 MNPs and GO/Fe3O4 MNPs synthesized by photo-irradiation method: Isotherms, thermodynamics, kinetics, and reuse studies. Sustain. Chem. Environ. 2004, 6, 100104. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Rathilal, S. Single and multicomponent adsorption of amoxicillin, ciprofloxacin, and sulfamethoxazole on chitosan-carbon nanotubes hydrogel beads from aqueous solutions: Kinetics, isotherms, and thermodynamic parameters. J. Hazard. Mater. Adv. 2024, 13, 100404. [Google Scholar] [CrossRef]
Biocarbon | Surface Area (m2/g) * | Micropore Area (m2/g) | Total Pore Volume (cm3/g) | Micropore Volume (cm3/g) | Average Pore Diameter (nm) | Iodine Number (mg/g) | References |
---|---|---|---|---|---|---|---|
D8 | 450 | 221 | 0.38 | 0.09 | 3.36 | 440 | |
P5D8 | 384 | 274 | 0.25 | 0.16 | 2.57 | 328 | |
carbon from pistachio nut shell | 877 | 841 | 0.64 | 0.54 | 2.92 | - | [21] |
carbon from hay | 258 | 242 | 0.18 | 0.14 | 2.7 | 402 | [29] |
carbon from walnut shell | 401 | 361 | 0.27 | 0.20 | 2.67 | - | [30] |
Biocarbon | Acidic Groups (mmol/g) * | Basic Groups (mmol/g) * | pHpzc * |
---|---|---|---|
D8 | 0.48 | 1.06 | 9.8 |
P5D8 | 0.46 | 0.67 | 8.1 |
Sample | Cdaf | Hdaf | Ndaf | Sdaf | Odaf * | Ash |
---|---|---|---|---|---|---|
Precursor | 42.13 | 7.17 | 0.54 | 0.16 | 50.00 | 0.1 |
D8 | 88.60 | 0.25 | 0.90 | 0.83 | 9.42 | 3.9 |
P5A8 | 92.11 | 0.28 | 0.78 | 0.51 | 6.32 | 3.2 |
Isotherms | Parameters | Methylene Blue | Rhodamine B | ||
---|---|---|---|---|---|
D8 | P5D8 | D8 | P5D8 | ||
qe (mg/g) | 84 | 14 | 47 | 4 | |
Langmuir | R2 | 0.999 | 0.996 | 0.999 | 0.979 |
Adj R2 | 0.999 | 0.995 | 0.999 | 0.973 | |
qmax | 85 | 15 | 48 | 5 | |
KL (L/mg) | 0.007 | 0.089 | 0.003 | 0.133 | |
Freundlich | R2 | 0.815 | 0.897 | 0.801 | 0.935 |
Adj R2 | 0.778 | 0.871 | 0.801 | 0.926 | |
KF (mg/g(L/mg)1/n) | 41.869 | 4.449 | 28.836 | 1.479 | |
1/n | 0.293 | 0.327 | 0.242 | 0.299 | |
Temkin | R2 | 0.892 | 0.933 | 0.918 | 0.945 |
Adj R2 | 0.871 | 0.917 | 0.897 | 0.932 | |
B (J/mol) | 12.165 | 3.0337 | 5.687 | 0.854 | |
AT (L/mg) | 72.852 | 2.764 | 45.708 | 3.774 | |
Dubinin-Radushkevich | R2 | 0.928 | 0.944 | 0.940 | 0.777 |
Adj R2 | 0.914 | 0.930 | 0.936 | 0.720 | |
qmax (mg/g) | 73.920 | 13.027 | 48.913 | 3.573 | |
E (kJ/mol) | 3.622 | 5.623 | 5.263 | 8.559 |
Adsorbent/Precursor | Adsorbat | Maximum Adsorption Capacity [mg/g] | References |
---|---|---|---|
green tea (leaves) | methylene blue | 85 | [20] |
walnut shell | 68.9 | [30] | |
wheat bran | 255.01 | [32] | |
rattan sawdust | 294.14 | [33] | |
D5 | 85 | This study | |
P5D8 | 15 | This study | |
kaolinite | rhodamine B | 46.08 | [34] |
rice straw | 73.47 | [35] | |
bagasse pith | 263.85 | [36] | |
D8 | 48 | This study | |
P5D8 | 5 | This study |
Model | Parameters | Methylene Blue | Rhodamine B | ||
---|---|---|---|---|---|
D8 | P5D8 | D8 | P5D8 | ||
qt (mg/g) | 72 | 14 | 45 | 4 | |
pseudo-first-order | qe,cal (mg/g) | 48 | 5 | 29 | 5 |
R2 | 0.725 | 0.597 | 0.796 | 0.597 | |
AdjR2 | 0.686 | 0.539 | 0.767 | 0.539 | |
k1 (1/min) | 2.764 × 10−3 | 3.984 × 10−3 | 7.047 × 10−3 | 3.984 × 10−3 | |
pseudo-second-order | qe,cal (mg/g) | 58 | 13 | 48 | 3 |
R2 | 0.999 | 0.999 | 0.994 | 0.999 | |
AdjR2 | 0.999 | 0.999 | 0.994 | 0.999 | |
k2 (g/mg × min) | 7.530 × 10−4 | 1.001 × 10−2 | 4.930 × 10−4 | 3.948 × 10−2 | |
intraparticle diffusion model | C (mg/g) | 12.95 | 5.72 | 5.36 | 1.37 |
R2 | 0.801 | 0.595 | 0.816 | 0.583 | |
AdjR2 | 0.772 | 0.539 | 0.788 | 0.523 | |
kIPD (mg/g × min)1/2 | 2.435 | 0.410 | 2.194 | 0.087 |
Biocarbon | Dye | qe (mg/g) | Temperature (K) | ∆G0 (kJ/mol) | ∆H0 (kJ/mol) | ∆S0 (J/mol K) |
---|---|---|---|---|---|---|
D8 | methylene blue | 67 | 298 | −8.0 | 62.6 | 235.3 |
69 | 308 | −9.5 | ||||
71 | 318 | −11.3 | ||||
72 | 328 | −15.3 | ||||
P5D8 | 11 | 298 | −1.3 | 10.3 | 27.7 | |
12 | 308 | −1.4 | ||||
14 | 318 | −1.9 | ||||
15 | 328 | −2.0 | ||||
D8 | rhodamine B | 42 | 298 | −4.1 | 10.7 | 49.8 |
45 | 308 | −4.8 | ||||
45 | 318 | −5.2 | ||||
47 | 328 | −5.6 | ||||
P5D8 | 4 | 298 | −4.2 | 9.1 | 13.9 | |
4 | 308 | −4.6 | ||||
4 | 318 | −4.7 | ||||
5 | 328 | −4.8 |
Sample | Dye | HCl | H2O | NaOH |
---|---|---|---|---|
D8 | methylene blue | 79 | 61 | 33 |
rhodamine B | 76 | 55 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolski, R.; Bazan-Wozniak, A.; Nosal-Wiercińska, A.; Pietrzak, R. Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste. Molecules 2024, 29, 4022. https://doi.org/10.3390/molecules29174022
Wolski R, Bazan-Wozniak A, Nosal-Wiercińska A, Pietrzak R. Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste. Molecules. 2024; 29(17):4022. https://doi.org/10.3390/molecules29174022
Chicago/Turabian StyleWolski, Robert, Aleksandra Bazan-Wozniak, Agnieszka Nosal-Wiercińska, and Robert Pietrzak. 2024. "Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste" Molecules 29, no. 17: 4022. https://doi.org/10.3390/molecules29174022
APA StyleWolski, R., Bazan-Wozniak, A., Nosal-Wiercińska, A., & Pietrzak, R. (2024). Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste. Molecules, 29(17), 4022. https://doi.org/10.3390/molecules29174022