Synthesis and Biological Activities of C1-Substituted Acylhydrazone β-Carboline Analogues as Antifungal Candidates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of C1-Substituted Acylhydrazone β-Carboline Analogues 9a–o and 10a–o
2.2. Antifungal Activity and Structure–Activity Relationships (SARs)
2.3. Cytotoxicity Assay
3. Experiment
3.1. Chemical Materials and Instruments
3.2. Synthesis of Intermediates 3 and 4
3.3. Synthesis of Intermediates 5 and 6
3.4. Synthesis of Intermediates 7 and 8
3.5. Synthesis of C1-Substituted Acylhydrazone β-Carboline Analogues 9a–o and 10a–o
3.6. Biological Evaluation
3.6.1. Antifungal Activity
3.6.2. Cytotoxicity Assay
3.6.3. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Hou, E.; Han, M.; Wang, X.; Cheng, W.; Cao, J.; Yang, R.; Guo, Y. Discovery of Natural Product-Based Fungicides (III): Semisynthesis and Biological Activity of N-Phenylpyrazole Sarisan Hybrids as Antifungal Agents. Chem. Biodivers. 2022, 19, e202100779. [Google Scholar] [CrossRef] [PubMed]
- Rosslenbroich, H.-J.; Stuebler, D. Botrytis cinerea—History of chemical control and novel fungicides for its management. Crop Prot. 2000, 19, 557–561. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Beato, A.; Gori, A.; Boucherle, B.; Peuchmaur, M.; Haudecoeur, R. β-Carboline as a privileged scaffold for multitarget strategies in Alzheimer’s disease therapy. J. Med. Chem. 2021, 64, 1392–1422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Sa, N.; Zhang, J.H.; Cai, Y.S.; Wang, K.M.; Xu, W.; Jiang, C.S.; Zhu, K.K. Synthesis and biological evaluation of 1-phenyl-tetrahydro-β-carboline-based first dual PRMT5/EGFR inhibitors as potential anticancer agents. Eur. J. Med. Chem. 2024, 269, 116341. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Su, S.S.; Ma, S.Y.; Li, T.; Fang, W.; Ding, Y.; Liu, S.T.; Zhang, J.R.; Xiang, H.M.; Zhou, X.; et al. Discovery and Structural Optimization of 1,2,3,4-Tetrahydro-β-carbolines as Novel Reactive Oxygen Species Inducers for Controlling Intractable Plant Bacterial Diseases. J. Agric. Food Chem. 2023, 71, 11035–11047. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.M.; Vizoso-Pinto, M.G.; Erra-Balsells, R.; Gensch, T.; Cabrerizo, F.M. In Vitro Effect of 9,9’-Norharmane Dimer against Herpes Simplex Viruses. Int. J. Mol. Sci. 2024, 25, 4966. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, R.; Wang, T.; Duan, L.; Hou, Q.; Wang, J.; Yang, Z. A bivalent β-carboline derivative inhibits macropinocytosis-dependent entry of pseudorabies virus by targeting the kinase DYRK1A. J. Biol. Chem. 2023, 299, 104605. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, S.; Wang, C. β-Carboline Alkaloids from Peganum harmala Inhibit Fusarium oxysporum from Codonopsis radix through Damaging the Cell Membrane and Inducing ROS Accumulation. Pathogens 2022, 11, 1341. [Google Scholar] [CrossRef]
- Dai, J.-K.; Dan, W.-J.; Wan, J.-B. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur. J. Med. Chem. 2021, 229, 114057. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Kong, M.; Wang, Y.; Wu, H.; Gu, Q.; Chuang, A.S.; Li, S.; Gao, X. Discovery and preliminary mechanism of 1-carbamoyl β-carbolines as new antifungal candidates. Eur. J. Med. Chem. 2021, 222, 113563. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Liu, Y.; Wang, L.; Wang, Q. Synthesis and antiviral and fungicidal activity evaluation of β-carboline, dihydro-β-carboline, tetrahydro-β-carboline alkaloids, and their derivatives. J. Agric. Food Chem. 2014, 62, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Zhu, L.-F.; Yu, X.; Sun, M.-Q.; Miao, F.; Zhou, L. Design, Synthesis, and Structure–Activity Relationship of New 2-Aryl-3, 4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents. J. Agric. Food Chem. 2016, 64, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Reza, V.M.; Abbas, H. Cytotoxicity and antimicrobial activity of harman alkaloids. J. Pharmacol. Toxicol. 2007, 7, 677–680. [Google Scholar] [CrossRef]
- Nenaah, G. Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects. Fitoterapia 2010, 81, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Benarous, K.; Bombarda, I.; Iriepa, I.; Moraleda, I.; Gaetan, H.; Linani, A.; Tahri, D.; Sebaa, M.; Yousfi, M. Harmaline and hispidin from Peganum harmala and Inonotus hispidus with binding affinity to Candida rugosa lipase: In silico and in vitro studies. Bioorganic Chem. 2015, 62, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Fu, S.; Li, Y.; Zuo, M.; Huang, W.; Huang, J.; Jin, Z.; Chen, Y. Natural products-based: Synthesis and antifungal activity evaluation of novel L-pyroglutamic acid analogues. Front. Plant Sci. 2022, 13, 1102411. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Y.; Fan, J.; Tang, L.; Guo, B.; Xue, W.; Fan, L. Natural Products-Based Fungicides: Synthesis and Antifungal Activity against Plant Pathogens of 2H-Chromene Derivatives. Chem. Biodivers. 2022, 19, e202200802. [Google Scholar] [CrossRef]
- Dai, A.; Zheng, Z.; Yu, L.; Huang, Y.; Wu, J. 1, 3, 4-Oxadiazole Contained Sesquiterpene Derivatives: Synthesis and Microbiocidal Activity for Plant Disease. Front. Chem. 2022, 10, 854274. [Google Scholar] [CrossRef]
- Sun, Z.; Lv, M.; Huang, W.; Li, T.; Xu, H. Development of Botanical Pesticides: Exploration on the Phenotype of Vestigial Wings of Insect Pests Induced by Plant Natural Products or Their Derivatives by Blocking Tyrosine Phosphorylation of Insulin Receptor 1. J. Agric. Food Chem. 2022, 70, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Han, M.; Yan, X.; Cheng, W.; Tang, Z.; Cui, L.; Yang, R.; Guo, Y. Design, Synthesis, and Biological Evaluation of Novel Osthole-Based Isoxazoline Derivatives as Insecticide Candidates. J. Agric. Food Chem. 2022, 70, 7921–7928. [Google Scholar] [CrossRef] [PubMed]
- Maia, R.D.; Tesch, R.; Fraga, C.A. Acylhydrazone derivatives: A patent review. Expert Opin. Ther. Pat. 2014, 24, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res. 2017, 26, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Ishida, Y.; Kuragano, T.; Konishi, K. Development of a new fungicide, ferimzone. J. Pestic. Sci.-Pestic. Sci. Soc. Jpn. -Jpn. Ed. 1994, 19, 325. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Li, S.; Hu, D.; Song, B. Discovery of novel bis-sulfoxide derivatives bearing acylhydrazone and benzothiazole moieties as potential antibacterial agents. Pestic. Biochem. Physiol. 2020, 167, 104605. [Google Scholar] [CrossRef] [PubMed]
- Dan, W.; Gao, J.; Li, L.; Xu, Y.; Wang, J.; Dai, J. Cellular and non-target metabolomics approaches to understand the antifungal activity of methylaervine against Fusarium solani. Bioorganic Med. Chem. Lett. 2021, 43, 128068. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Yu, C.; Wang, Y.; Li, S.; Wu, H.; Gu, Q.; Meng, G.; Herron, A.N.; Gao, X. Chromatography-Free Synthesis of β-Carboline 1-Hydrazides and an Investigation of the Mechanism of Their Bioactivity: The Discovery of β-Carbolines as Promising Antifungal and Antibacterial Candidates. J. Med. Chem. 2023, 66, 9040–9056. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Cheng, W.; Huang, M.; Xu, T.; Zhang, M.; Liu, J.; Qin, S.; Guo, Y. Novel membrane-targeting isoxanthohumol-amine conjugates for combating methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur. J. Med. Chem. 2024, 268, 116274. [Google Scholar] [CrossRef]
- Xu, T.; Yan, X.; Kang, A.; Yang, L.; Li, X.; Tian, Y.; Yang, R.; Qin, S.; Guo, Y. Development of Membrane-Targeting Fluorescent 2-Phenyl-1H-phenanthro[9,10-d]imidazole-Antimicrobial Peptide Mimic Conjugates against Methicillin-Resistant Staphylococcus aureus. J. Med. Chem. 2024, 67, 9302–9317. [Google Scholar] [CrossRef]
Compound | Inhibition Rate (% ± SD) | |||
---|---|---|---|---|
V. mali | F. solani | F. oxysporum | F. graminearum | |
9a | 32.4 ± 0.7 | 35.4 ± 2.0 | 36.3 ± 1.1 | 46.2 ± 2.3 |
9b | 46.1 ± 2.0 | 44.8 ± 1.3 | 42.1 ± 1.9 | 50.2 ± 2.1 |
9c | 48.0 ± 1.8 | 45.2 ± 0.9 | 46.3 ± 2.1 | 49.2 ± 0.7 |
9d | 42.7 ± 1.9 | 42.2 ± 1.3 | 43.5 ± 1.3 | 52.7 ± 1.6 |
9e | 45.4 ± 1.2 | 45.3 ± 1.8 | 50.1 ± 2.3 | 47.7 ± 2.0 |
9f | 43.8 ± 1.7 | 44.3 ± 1.0 | 46.5 ± 2.4 | 48.9 ± 2.2 |
9g | 54.2 ± 3.8 | 46.2 ± 2.5 | 48.1 ± 1.8 | 47.6 ± 1.4 |
9h | 47.3 ± 2.3 | 52.1 ± 1.5 | 45.6 ± 2.6 | 56.2 ± 3.1 |
9i | 46.7 ± 1.5 | 48.9 ± 1.6 | 49.2 ± 1.8 | 45.3 ± 1.0 |
9j | 47.0 ± 2.4 | 48.1 ± 2.1 | 51.4 ± 1.2 | 58.7 ± 0.7 |
9k | 35.4± 2.6 | 36.3 ± 1.8 | 40.6 ± 2.3 | 32.1 ± 0.4 |
9l | 30.4 ± 1.9 | 40.1 ± 2.6 | 35.8 ± 2.3 | 37.2 ± 1.8 |
9m | 37.1 ± 0.9 | 40.4 ± 1.9 | 38.1 ± 1.6 | 41.7 ± 2.1 |
9n | 54.9 ± 2.3 | 64.5 ± 2.2 | 63.0 ± 1.2 | 67.0 ± 2.5 |
9o | 52.1 ± 1.7 | 60.7 ± 2.1 | 59.1 ± 1.3 | 65.4 ± 2.3 |
10a | 31.3 ± 0.8 | 34.2 ± 1.9 | 32.4 ± 1.4 | 41.0 ± 3.0 |
10b | 44.0 ± 2.7 | 45.0 ± 3.2 | 40.1 ± 1.3 | 45.9 ± 1.7 |
10c | 43.5 ± 3.1 | 40.7 ± 2.2 | 42.5 ± 2.3 | 46.7 ± 2.9 |
10d | 39.6 ± 0.8 | 40.2 ± 1.4 | 39.6 ± 2.0 | 50.2 ± 1.9 |
10e | 43.5 ± 2.1 | 43.2 ± 1.3 | 46.3 ± 2.0 | 41.2 ± 1.7 |
10f | 40.7 ± 1.2 | 44.6 ± 2.3 | 42.8 ± 1.2 | 45.5 ± 1.8 |
10g | 47.2 ± 1.7 | 43.5 ± 2.4 | 45.3 ± 1.5 | 44.2 ± 1.2 |
10h | 42.9 ± 1.1 | 41.1 ± 2.2 | 42.8 ± 2.2 | 43.6 ± 1.3 |
10i | 42.4 ± 2.1 | 45.9 ± 1.3 | 44.3 ± 1.2 | 44.3 ± 0.9 |
10j | 46.1 ± 1.4 | 43.8 ± 2.3 | 46.3 ± 2.0 | 50.8 ± 1.7 |
10k | 34.3 ± 2.2 | 33.5 ± 1.7 | 40.2 ± 0.6 | 34.2 ± 2.1 |
10l | 32.8 ± 1.3 | 37.4 ± 2.4 | 33.9 ± 1.0 | 35.3 ± 1.2 |
10m | 35.0 ± 0.9 | 37.2 ± 0.6 | 35.1 ± 1.4 | 38.1 ± 2.3 |
10n | 48.5 ± 1.9 | 55.8 ± 1.7 | 58.5 ± 1.2 | 53.7 ± 2.4 |
10o | 47.7 ± 1.6 | 50.5 ± 1.9 | 51.8 ± 1.0 | 50.5 ± 1.2 |
hymexazol b | 49.6 ± 1.2 | 57.4 ± 0.8 | 56.1 ± 1.3 | 53.2 ± 1.8 |
Compound | Fungus | Regression Equation | R2 | EC50 (μg/mL) a |
---|---|---|---|---|
9n | V. mali | y = 1.06x + 3.47 | 0.98 | 27.8 |
F. solani | y = 1.24x + 3.48 | 0.93 | 16.8 | |
F. oxysporum | y = 1.14x + 3.62 | 0.92 | 16.2 | |
F. graminearum | y = 1.59x + 3.08 | 0.94 | 16.1 | |
9o | V. mali | y = 1.02x + 3.42 | 0.98 | 35.4 |
F. solani | y = 1.14x + 3.48 | 0.97 | 21.5 | |
F. oxysporum | y = 1.11x + 3.45 | 0.98 | 24.9 | |
F. graminearum | y = 0.96x + 3.81 | 0.95 | 17.4 | |
hymexazol | V. mali | y = 1.40x + 2.82 | 0.93 | 36.1 |
F. solani | y = 1.15x + 3.27 | 0.92 | 31.9 | |
F. oxysporum | y = 1.50x + 2.62 | 0.98 | 38.6 | |
F. graminearum | y = 1.79x + 2.21 | 0.98 | 36.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, L.; Zhang, J.; Lan, Y.; Li, N.; Wang, J. Synthesis and Biological Activities of C1-Substituted Acylhydrazone β-Carboline Analogues as Antifungal Candidates. Molecules 2024, 29, 3569. https://doi.org/10.3390/molecules29153569
Xu Y, Li L, Zhang J, Lan Y, Li N, Wang J. Synthesis and Biological Activities of C1-Substituted Acylhydrazone β-Carboline Analogues as Antifungal Candidates. Molecules. 2024; 29(15):3569. https://doi.org/10.3390/molecules29153569
Chicago/Turabian StyleXu, Yujie, Lishan Li, Jinghan Zhang, Yu Lan, Na Li, and Junru Wang. 2024. "Synthesis and Biological Activities of C1-Substituted Acylhydrazone β-Carboline Analogues as Antifungal Candidates" Molecules 29, no. 15: 3569. https://doi.org/10.3390/molecules29153569
APA StyleXu, Y., Li, L., Zhang, J., Lan, Y., Li, N., & Wang, J. (2024). Synthesis and Biological Activities of C1-Substituted Acylhydrazone β-Carboline Analogues as Antifungal Candidates. Molecules, 29(15), 3569. https://doi.org/10.3390/molecules29153569