Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, M.S.; Li, X.; Jiang, L.; Ran, P.; Wang, H.Z.; Chen, X.Z.; Xu, C.Y.; Tian, M.Y.; Wang, S.M.; Zhang, J.T.; et al. Femtosecond laser mediated fabrication of micro/nanostructured TiO2−x photoelectrodes: Hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties. Appl. Catal. B-Environ. 2020, 119, 119231. [Google Scholar] [CrossRef]
- Zou, S.R.; Huang, C.; Liu, Y.; Zhou, J.W.; Zhou, T.F.; Hu, J.C. Emerging charge transfer in self-coupled polymorphs for promoting charge-carrier-involved photocatalysis. Chem. Eng. J. 2020, 396, 125213. [Google Scholar] [CrossRef]
- Camacho-Muñoz, D.; Lawton, L.A.; Edwards, C. Degradation of okadaic acid in seawater by UV/TiO2 photocatalysis—Proof of concept. Sci. Total Environ. 2020, 733, 139346. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, R.M.; Bassin, J.P.; Dezotti, M.; Boaventura, R.A.R.; Vilar, V.J.P. Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2. Chem. Eng. J. 2020, 395, 124998. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, H.Y. Role of ZnO morphology in its reduction and photocatalysis. Appl. Surf. Sci. 2020, 502, 144202. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, X.; Yu, L.; Wang, Y.; Ning, J.; Xu, S.; Lou, X.W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013, 52, 5636–5639. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Khan, S.; Choi, J.; Dinh, D.T.T.; Lee, S.Y.; Paik, U.; Cho, S.H.; Kim, S. Synergetic control of band gap and structural transformation foroptimizing TiO2 photocatalysts. Appl. Catal. B-Environ. 2017, 210, 513–521. [Google Scholar] [CrossRef]
- Anandan, S.; Ohashi, N.; Miyauchi, M. ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B-Environ. 2010, 100, 502–509. [Google Scholar] [CrossRef]
- Ke, D.N.; Liu, S.L.; Dai, K.; Zhou, J.P.; Zhang, L.N.; Peng, T.Y. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J. Phys. Chem. C 2009, 113, 16021–16026. [Google Scholar] [CrossRef]
- Tambat, S.; Umale, S.; Sontakke, S. Photocatalytic degradation of milling yellow dye using sol-gel synthesized CeO2. Mater. Res. Bull. 2016, 76, 466–472. [Google Scholar] [CrossRef]
- Ma, R.; Islam, M.J.; Reddy, D.A.; Kim, T.K. Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram. Int. 2016, 42, 18495–18502. [Google Scholar] [CrossRef]
- Du, X.Q.; Zhang, Z.; Chen, H.; Liang, P. Preparation of CeO2 nanorods-reduced graphene oxide hybrid nanostructure with highly enhanced decolorization performance. Appl. Surf. Sci. 2020, 499, 143939. [Google Scholar] [CrossRef]
- Shende, A.G.; Ghugal, S.G.; Vidyasagar, D.; Kokane, S.B.; Jagannath; Umare, S.S.; Sasikala, R. Solvent free solid-state synthesis of Pr6O11/g-C3N4 visible light active photocatalyst for degradation of AV7 dye. Mater. Res. Bull. 2018, 107, 154–163. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Wang, T.M.; Liu, P. Praseodymium oxide/polypyrrole nanocomposites for electrochemical energy storage. Electrochim. Acta 2011, 58, 193–202. [Google Scholar] [CrossRef]
- Karunakaran, C.; Dhanalakshmi, R. Phenol degradationon Pr6O11 surface under UV-A light, synergistic photocatalysis by semiconductors. Radiat. Phys. Chem. 2009, 78, 8–12. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Nanocrystalline Pr6O11: Synthesis, characterization, optical and photocatalytic properties. New J. Chem. 2015, 39, 3948–3955. [Google Scholar] [CrossRef]
- Karunakaran, C.; Dhanalakshmi, R.; Anilkumar, P. Photodegradation of carboxylic acids on Pr6O11 surface. Enhancement by semiconductors. Chem. Eng. J. 2009, 151, 46–50. [Google Scholar] [CrossRef]
- Jayakumar, G.; Irudayaraj, A.A.; Raj, A.D. Investigation on the synthesis and photocatalytic activity of activated carbon-cerium oxide (AC-CeO2) nanocomposite. Appl. Phys. A 2019, 125, 742. [Google Scholar] [CrossRef]
- Sapkota, K.P.; Lee, I.S.; Hanif, M.A.; Islam, M.A.; Akter, J.; Hahn, J.R. Enhanced visible-light photocatalysis of nanocomposites of copper oxide and single-walled carbon nanotubes for the degradation of methylene blue. Catalysts 2020, 10, 297. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Sun, Q.; Zheng, S.L.; Hao, J.Y.; Wang, Y. Continuous photocatalysis based on layer-by-layer assembly of separation-free TiO2/reduced graphene oxide film catalysts with increased charge transfer and active site. Eur. J. Inorg. Chem. 2019, 5, 721–729. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Blachnio, M.; Slabon, A.; Jaworski, A.; Tertykh, V.A.; Derylo-Marczewska, A.; Marczewski, A.W. Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. J. Phys. Chem. C 2020, 124, 15312–15323. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yu, Y.G.; Wei, H.; Li, K.B. In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl. Surf. Sci. 2018, 456, 577–585. [Google Scholar] [CrossRef]
- Chen, F.H.; Li, S.S.; Chen, Q.T.; Zheng, X.J.; Liu, P.R.; Fang, S.M. 3D graphene aerogels-supported Ag and Ag@Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water. Mater. Res. Bull. 2018, 105, 334–341. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.C.; Yu, H.M.; Aprea, P.; Hao, S.Y. High-efficiency adsorption for acid dyes over CeO2 · xH2O synthesized by a facile method. J. Alloys Compd. 2019, 776, 96–104. [Google Scholar]
- Zhang, G.; He, Z.; Xu, W. A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem. Eng. J. 2012, 183, 315–324. [Google Scholar] [CrossRef]
- Hao, S.Y.; Hou, J.; Aprea, P.; Deng, H.X. Amino-functionalized ceria with enhanced daylight photocatalytic efficiency. Ceram. Int. 2016, 42, 7440–7446. [Google Scholar] [CrossRef]
- Ren, H.M.; Cai, C.; Leng, C.B.; Pang, S.F.; Zhang, Y.H. Nucleation kinetics in mixed NaNO3/glycerol droplets investigated with the FTIR-ATR technique. J. Phy. Chem. B 2016, 120, 2913–2920. [Google Scholar] [CrossRef]
- Zhu, C.; Cheng, X.; Li, Y.; Tao, B.M. Influence of heat treatment on solidus temperature of NaNO3-KNO3 molten salt. Sol. Energy 2015, 118, 303–312. [Google Scholar]
- Castro, P.M.; Jagodzinski, P.W. FTIR and Raman spectra and structure of Cu(NO3)+ in aqueous solution and acetone. Spectrochim. Acta Part A 1991, 47, 1707–1720. [Google Scholar] [CrossRef]
- Kakavandi, B.; Bahari, N.; Kalantary, R.R.; Fard, E.D. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: A new hybrid system. Ultrason. Sonochem. 2019, 55, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, Q.; Tang, G.; Peng, W.; He, D. Effects of inorganic ions on the photocatalytic degradation of carbamazepine. J. Water Reuse Desal. 2019, 9, 301–309. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, S.; Zhang, W.; Zhang, C.; Drewett, N.E.; Wang, X.Y.; Wang, D.; Yoo, S.J.; Kim, J.G.; Zheng, W.T. Mechanistic insight into nanoarchitected Ag/Pr6O11 catalysts for efficient CO oxidation. Ind. Eng. Chem. Res. 2017, 56, 11042–11048. [Google Scholar] [CrossRef]
- Jiang, N.; Zhou, X.; Jiang, Y.F.; Zhao, Z.W.; Ma, L.B.; Shen, C.C.; Liu, Y.N.; Yuan, C.Z.; Sahar, S.; Xu, A.W. Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: Highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions. RSC Adv. 2018, 8, 17504–17510. [Google Scholar] [CrossRef]
- Gregson, M.; Lu, E.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. A Cerium(IV)-carbon multiple bond. Angew. Chem. Int. Ed. 2013, 52, 13016–13019. [Google Scholar] [CrossRef]
- Wang, H.; Shang, J.; Xiao, Z.L.; Aprea, P.; Hao, S.Y. Novel construction of carbon bonds in CeO2@C with efficiently photocatalytic activity. Dyes Pigments 2020, 182, 108669. [Google Scholar] [CrossRef]
- Hao, S.Y.; Hou, J.; Aprea, P.; Pepe, F. Mesoporous Ce-Pr-O solid solution with efficient photocatalytic activity under weak daylight irradiation. Appl. Catal B-Environ. 2014, 160–161, 566–573. [Google Scholar] [CrossRef]
- Fan, L.J.; Xi, K.; Zhou, Y.; Zhu, Q.L.; Chen, Y.F.; Lu, H.F. Design structure for CePr mixed oxide catalysts in soot combustion. RSC Adv. 2017, 7, 20309–20319. [Google Scholar] [CrossRef]
- Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P.K.; Yu, J.C.; Yu, Y. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal. 2016, 6, 6444–6454. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zhang, W.; Ge, X.; Wang, Y.; Zou, X.; Zhou, X.; Zheng, W. MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O- terminated surface groups. Energy Environ. Mater. 2022, 6, e12438. [Google Scholar] [CrossRef]
- Westermann, A.; Geantet, C.; Vernoux, P.; Rolidant, S. Defects band enhanced by resonance Raman effect in praseodymium doped CeO2. J. Raman Spectrosc. 2016, 47, 1276–1279. [Google Scholar] [CrossRef]
- Teng, C.C.; Ma, C.C.M.; Lu, C.H.; Yang, S.Y.; Lee, S.H.; Hsiao, M.C.; Yen, M.Y.; Chiou, K.C.; Lee, T.M. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011, 49, 5107–5116. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhou, J.Q.; Zhao, S.; Chen, X.; Yu, Y. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Appl. Surf. Sci. 2018, 453, 394–404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, G.; Ma, L.; Tu, Y.; Mao, C.; Aprea, P.; Hao, S. Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules 2024, 29, 3568. https://doi.org/10.3390/molecules29153568
Chang G, Ma L, Tu Y, Mao C, Aprea P, Hao S. Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules. 2024; 29(15):3568. https://doi.org/10.3390/molecules29153568
Chicago/Turabian StyleChang, Guoju, Longzhong Ma, Yanhong Tu, Chenxin Mao, Paolo Aprea, and Shiyou Hao. 2024. "Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity" Molecules 29, no. 15: 3568. https://doi.org/10.3390/molecules29153568
APA StyleChang, G., Ma, L., Tu, Y., Mao, C., Aprea, P., & Hao, S. (2024). Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules, 29(15), 3568. https://doi.org/10.3390/molecules29153568