Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, M.S.; Li, X.; Jiang, L.; Ran, P.; Wang, H.Z.; Chen, X.Z.; Xu, C.Y.; Tian, M.Y.; Wang, S.M.; Zhang, J.T.; et al. Femtosecond laser mediated fabrication of micro/nanostructured TiO2−x photoelectrodes: Hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties. Appl. Catal. B-Environ. 2020, 119, 119231. [Google Scholar] [CrossRef]
- Zou, S.R.; Huang, C.; Liu, Y.; Zhou, J.W.; Zhou, T.F.; Hu, J.C. Emerging charge transfer in self-coupled polymorphs for promoting charge-carrier-involved photocatalysis. Chem. Eng. J. 2020, 396, 125213. [Google Scholar] [CrossRef]
- Camacho-Muñoz, D.; Lawton, L.A.; Edwards, C. Degradation of okadaic acid in seawater by UV/TiO2 photocatalysis—Proof of concept. Sci. Total Environ. 2020, 733, 139346. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, R.M.; Bassin, J.P.; Dezotti, M.; Boaventura, R.A.R.; Vilar, V.J.P. Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2. Chem. Eng. J. 2020, 395, 124998. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, H.Y. Role of ZnO morphology in its reduction and photocatalysis. Appl. Surf. Sci. 2020, 502, 144202. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, X.; Yu, L.; Wang, Y.; Ning, J.; Xu, S.; Lou, X.W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013, 52, 5636–5639. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Khan, S.; Choi, J.; Dinh, D.T.T.; Lee, S.Y.; Paik, U.; Cho, S.H.; Kim, S. Synergetic control of band gap and structural transformation foroptimizing TiO2 photocatalysts. Appl. Catal. B-Environ. 2017, 210, 513–521. [Google Scholar] [CrossRef]
- Anandan, S.; Ohashi, N.; Miyauchi, M. ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B-Environ. 2010, 100, 502–509. [Google Scholar] [CrossRef]
- Ke, D.N.; Liu, S.L.; Dai, K.; Zhou, J.P.; Zhang, L.N.; Peng, T.Y. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J. Phys. Chem. C 2009, 113, 16021–16026. [Google Scholar] [CrossRef]
- Tambat, S.; Umale, S.; Sontakke, S. Photocatalytic degradation of milling yellow dye using sol-gel synthesized CeO2. Mater. Res. Bull. 2016, 76, 466–472. [Google Scholar] [CrossRef]
- Ma, R.; Islam, M.J.; Reddy, D.A.; Kim, T.K. Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram. Int. 2016, 42, 18495–18502. [Google Scholar] [CrossRef]
- Du, X.Q.; Zhang, Z.; Chen, H.; Liang, P. Preparation of CeO2 nanorods-reduced graphene oxide hybrid nanostructure with highly enhanced decolorization performance. Appl. Surf. Sci. 2020, 499, 143939. [Google Scholar] [CrossRef]
- Shende, A.G.; Ghugal, S.G.; Vidyasagar, D.; Kokane, S.B.; Jagannath; Umare, S.S.; Sasikala, R. Solvent free solid-state synthesis of Pr6O11/g-C3N4 visible light active photocatalyst for degradation of AV7 dye. Mater. Res. Bull. 2018, 107, 154–163. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Wang, T.M.; Liu, P. Praseodymium oxide/polypyrrole nanocomposites for electrochemical energy storage. Electrochim. Acta 2011, 58, 193–202. [Google Scholar] [CrossRef]
- Karunakaran, C.; Dhanalakshmi, R. Phenol degradationon Pr6O11 surface under UV-A light, synergistic photocatalysis by semiconductors. Radiat. Phys. Chem. 2009, 78, 8–12. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Nanocrystalline Pr6O11: Synthesis, characterization, optical and photocatalytic properties. New J. Chem. 2015, 39, 3948–3955. [Google Scholar] [CrossRef]
- Karunakaran, C.; Dhanalakshmi, R.; Anilkumar, P. Photodegradation of carboxylic acids on Pr6O11 surface. Enhancement by semiconductors. Chem. Eng. J. 2009, 151, 46–50. [Google Scholar] [CrossRef]
- Jayakumar, G.; Irudayaraj, A.A.; Raj, A.D. Investigation on the synthesis and photocatalytic activity of activated carbon-cerium oxide (AC-CeO2) nanocomposite. Appl. Phys. A 2019, 125, 742. [Google Scholar] [CrossRef]
- Sapkota, K.P.; Lee, I.S.; Hanif, M.A.; Islam, M.A.; Akter, J.; Hahn, J.R. Enhanced visible-light photocatalysis of nanocomposites of copper oxide and single-walled carbon nanotubes for the degradation of methylene blue. Catalysts 2020, 10, 297. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Sun, Q.; Zheng, S.L.; Hao, J.Y.; Wang, Y. Continuous photocatalysis based on layer-by-layer assembly of separation-free TiO2/reduced graphene oxide film catalysts with increased charge transfer and active site. Eur. J. Inorg. Chem. 2019, 5, 721–729. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Blachnio, M.; Slabon, A.; Jaworski, A.; Tertykh, V.A.; Derylo-Marczewska, A.; Marczewski, A.W. Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. J. Phys. Chem. C 2020, 124, 15312–15323. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yu, Y.G.; Wei, H.; Li, K.B. In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl. Surf. Sci. 2018, 456, 577–585. [Google Scholar] [CrossRef]
- Chen, F.H.; Li, S.S.; Chen, Q.T.; Zheng, X.J.; Liu, P.R.; Fang, S.M. 3D graphene aerogels-supported Ag and Ag@Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water. Mater. Res. Bull. 2018, 105, 334–341. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.C.; Yu, H.M.; Aprea, P.; Hao, S.Y. High-efficiency adsorption for acid dyes over CeO2 · xH2O synthesized by a facile method. J. Alloys Compd. 2019, 776, 96–104. [Google Scholar]
- Zhang, G.; He, Z.; Xu, W. A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem. Eng. J. 2012, 183, 315–324. [Google Scholar] [CrossRef]
- Hao, S.Y.; Hou, J.; Aprea, P.; Deng, H.X. Amino-functionalized ceria with enhanced daylight photocatalytic efficiency. Ceram. Int. 2016, 42, 7440–7446. [Google Scholar] [CrossRef]
- Ren, H.M.; Cai, C.; Leng, C.B.; Pang, S.F.; Zhang, Y.H. Nucleation kinetics in mixed NaNO3/glycerol droplets investigated with the FTIR-ATR technique. J. Phy. Chem. B 2016, 120, 2913–2920. [Google Scholar] [CrossRef]
- Zhu, C.; Cheng, X.; Li, Y.; Tao, B.M. Influence of heat treatment on solidus temperature of NaNO3-KNO3 molten salt. Sol. Energy 2015, 118, 303–312. [Google Scholar]
- Castro, P.M.; Jagodzinski, P.W. FTIR and Raman spectra and structure of Cu(NO3)+ in aqueous solution and acetone. Spectrochim. Acta Part A 1991, 47, 1707–1720. [Google Scholar] [CrossRef]
- Kakavandi, B.; Bahari, N.; Kalantary, R.R.; Fard, E.D. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: A new hybrid system. Ultrason. Sonochem. 2019, 55, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, Q.; Tang, G.; Peng, W.; He, D. Effects of inorganic ions on the photocatalytic degradation of carbamazepine. J. Water Reuse Desal. 2019, 9, 301–309. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, S.; Zhang, W.; Zhang, C.; Drewett, N.E.; Wang, X.Y.; Wang, D.; Yoo, S.J.; Kim, J.G.; Zheng, W.T. Mechanistic insight into nanoarchitected Ag/Pr6O11 catalysts for efficient CO oxidation. Ind. Eng. Chem. Res. 2017, 56, 11042–11048. [Google Scholar] [CrossRef]
- Jiang, N.; Zhou, X.; Jiang, Y.F.; Zhao, Z.W.; Ma, L.B.; Shen, C.C.; Liu, Y.N.; Yuan, C.Z.; Sahar, S.; Xu, A.W. Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: Highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions. RSC Adv. 2018, 8, 17504–17510. [Google Scholar] [CrossRef]
- Gregson, M.; Lu, E.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. A Cerium(IV)-carbon multiple bond. Angew. Chem. Int. Ed. 2013, 52, 13016–13019. [Google Scholar] [CrossRef]
- Wang, H.; Shang, J.; Xiao, Z.L.; Aprea, P.; Hao, S.Y. Novel construction of carbon bonds in CeO2@C with efficiently photocatalytic activity. Dyes Pigments 2020, 182, 108669. [Google Scholar] [CrossRef]
- Hao, S.Y.; Hou, J.; Aprea, P.; Pepe, F. Mesoporous Ce-Pr-O solid solution with efficient photocatalytic activity under weak daylight irradiation. Appl. Catal B-Environ. 2014, 160–161, 566–573. [Google Scholar] [CrossRef]
- Fan, L.J.; Xi, K.; Zhou, Y.; Zhu, Q.L.; Chen, Y.F.; Lu, H.F. Design structure for CePr mixed oxide catalysts in soot combustion. RSC Adv. 2017, 7, 20309–20319. [Google Scholar] [CrossRef]
- Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P.K.; Yu, J.C.; Yu, Y. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal. 2016, 6, 6444–6454. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zhang, W.; Ge, X.; Wang, Y.; Zou, X.; Zhou, X.; Zheng, W. MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O- terminated surface groups. Energy Environ. Mater. 2022, 6, e12438. [Google Scholar] [CrossRef]
- Westermann, A.; Geantet, C.; Vernoux, P.; Rolidant, S. Defects band enhanced by resonance Raman effect in praseodymium doped CeO2. J. Raman Spectrosc. 2016, 47, 1276–1279. [Google Scholar] [CrossRef]
- Teng, C.C.; Ma, C.C.M.; Lu, C.H.; Yang, S.Y.; Lee, S.H.; Hsiao, M.C.; Yen, M.Y.; Chiou, K.C.; Lee, T.M. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011, 49, 5107–5116. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhou, J.Q.; Zhao, S.; Chen, X.; Yu, Y. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Appl. Surf. Sci. 2018, 453, 394–404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, G.; Ma, L.; Tu, Y.; Mao, C.; Aprea, P.; Hao, S. Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules 2024, 29, 3568. https://doi.org/10.3390/molecules29153568
Chang G, Ma L, Tu Y, Mao C, Aprea P, Hao S. Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules. 2024; 29(15):3568. https://doi.org/10.3390/molecules29153568
Chicago/Turabian StyleChang, Guoju, Longzhong Ma, Yanhong Tu, Chenxin Mao, Paolo Aprea, and Shiyou Hao. 2024. "Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity" Molecules 29, no. 15: 3568. https://doi.org/10.3390/molecules29153568
APA StyleChang, G., Ma, L., Tu, Y., Mao, C., Aprea, P., & Hao, S. (2024). Facile Construction Engineering of Pr6O11@C with Efficient Photocatalytic Activity. Molecules, 29(15), 3568. https://doi.org/10.3390/molecules29153568