Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Characterization
2.2. Thermal Properties
2.3. Electronic Absorption Spectra and TD-DFT Calculations
2.4. Emission Properties
2.5. Electrochemistry
3. Materials and Methods
Preparation of Iridium(III) Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hofmeier, H.; Schuber, U.S. Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem. Soc. Rev. 2004, 33, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.T.; Burstall, F.H. Dehydrogenation of pyridine by anhydrous ferric chloride. J. Chem. Soc. 1932, 20–30. [Google Scholar] [CrossRef]
- Cummings, S.D. P latinum complexes of terpyridine: Interaction and reactivity with biomolecules. Coord. Chem. Rev. 2009, 253, 1495–1516. [Google Scholar] [CrossRef]
- de Paula, Q.A.; Mangrum, J.B.; Farrell, N.P. Zinc finger proteins as templates for metal ion exchange: Substitution effects on the C-finger of HIV nucleocapsid NCp7 using M(chelate) species (M = Pt, Pd, Au). J. Inorg. Biochem. 2009, 103, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Manikandamathavan, V.M.; Nair, B.U. Novel mononuclear Cu (II) terpyridine complexes: Impact of fused ring thiophene and thiazole head groups towards DNA/BSA interaction, cleavage and antiproliferative activity on HepG2 and triple negative CAL-51 cell line. Eur. J. Med. Chem. 2013, 68, 244–446. [Google Scholar] [CrossRef] [PubMed]
- Juneja, A.; Macedo, T.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L.; Neves, J.K.; Pereira, V.R.A.; Avecilla, F.; Azam, A. Synthesis of 4′-(2-ferrocenyl)-2,2′:6′2′′-terpyridine: Characterization and antiprotozoal activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes. Eur. J. Med. Chem. 2014, 75, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-W.; Wang, Y.; Du, K.-J.; Li, G.-Y.; Guan, R.-L.; Ji, L.-N.; Chao, H. Synthesis, DNA interaction and anticancer activity of copper(II) complexes with 4′-phenyl-2,2′:6′,2″-terpyridine derivatives. J. Inorg. Biochem. 2014, 141, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.; Winter, A.; Schlutter, F.; Schubert, U.S. Advances in the field of π-conjugated 2,2′:6′,2″-terpyridine. Chem. Soc. Rev. 2011, 40, 1459–1511. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Sanguantrakun, N.; Schulze, B.; Schubert, U.S.; Berlin-Guette, C.P. Bis(tridentate) Ruthenium–Terpyridine Complexes Featuring Microsecond Excited-State Lifetimes. J. Am. Chem. Soc. 2012, 134, 12354–12357. [Google Scholar] [CrossRef]
- Presselt, M.; Dietzek, B.; Schmitt, M.; Rau, S.; Winter, A.; Jäger, M.; Schubert, U.S.; Popp, J. A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenyl−Terpyridine Compounds. J. Phys. Chem. A 2010, 114, 13163–13174. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Lahtinen, M.; Kalenius, E.; Mal, P.; Rissanen, K. 2,2′:6′,2″-Terpyridine Trimethylplatinum(IV) Iodide Complexes as Bifunctional Halogen Bond Acceptors. Cryst. Growth Des. 2016, 16, 2527–2534. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Topić, F.; Sahoo, P.K.; Mal, P.; Linnera, J.; Kalenius, E.; Tuononen, H.M.; Rissanen, K. Synthesis, structure and photophysical properties of a highly luminescent terpyridine diphenylacetylene hybrid fluorophore and its metal complexes. Dalton Trans. 2015, 44, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.W.; Dimitrov, V.S.; Long, N.J.; Orrell, K.G.; Osborne, A.G.; Sik, V.; Hursthouse, M.B.; Mazid, M.A. 2,2′:6′,2″-Terpyridine (terpy) acting as a fluxional bidentate ligand. Part 1. Trimethylplatinum(IV) halide complexes [PtXMe3(terpy)](X = Cl, Br or I): Nuclear magnetic resonance studies of their solution dynamics and crystal structure of [PtIMe3(terpy)]. J. Chem. Soc. Dalton Trans. 1993, 291–298. [Google Scholar] [CrossRef]
- Abhijnakrishna, R.; Magesh, K.; Ayushi, A.; Velmathi, S. Advances in the Biological Studies of Metal-Terpyridine Complexes: An Overview From 2012 to 2022. Coord. Chem. Rev. 2023, 496, 215380. [Google Scholar] [CrossRef]
- Lo, K.K.-W.; Louie, M.-W.; Zhang, K.Y. Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord. Chem. Rev. 2010, 254, 2603–2622. [Google Scholar] [CrossRef]
- Lu, C.; Xu, W.; Shah, H.; Liu, B.; Xu, W.; Sun, L.; Qian, S.Y.; Sun, W. In Vitro Photodynamic Therapy of Mononuclear and Dinuclear Iridium(III) Bis(terpyridine) Complexes. Appl. Bio Mater. 2020, 3, 6865–6875. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.K.-W.; Chung, C.-K.; Nga, D.C.-M.; Zhu, N. Syntheses, characterisation and photophysical studies of novel biological labelling reagents derived from luminescent iridium(III) terpyridine complexes. New J. Chem. 2002, 26, 81–88. [Google Scholar]
- Maekawa, M.; Teradab, K.; Odab, S.; Sugimotoc, K.; Okubob, T.; Kuroda-Sowa, T. Syntheses and structural characterizations of mononuclear Ir(III) hydride complexes with 2,2′:6′,2″-terpyridine in the κ2N,N’ and κ3N,N’,N″ coordination modes. Inorg. Chim. Acta 2021, 514, 119962. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Yamabe, S.; Kanehisa, N.; Kai, Y.; Takashima, H.; Tsukahara, K. Detailed Description of the Metal-to-Ligand Charge-Transfer State in Monoterpyridine IrIII Complexes. Eur. J. Inorg. Chem. 2007, 1911–1919. [Google Scholar] [CrossRef]
- Choroba, K.; Penkala, M.; Palion-Gazda, J.; Malicka, E.; Machura, B. Pyrenyl-Substituted Imidazo [4,5-f][1,10]phenanthroline Rhenium(I) Complexes with Record-High Triplet Excited-State Lifetimes at Room Temperature: Steric Control of Photoinduced Processes in Bichromophoric Systems. Inorg. Chem. 2023, 62, 19256–19269. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Machura, B.; Szłapa-Kula, A.; Maroń, A.M.; Nycz, J.E.; Ledwon, P.; Schab-Balcerzak, E.; Siwy, M.; Grzelak, J.; Maćkowski, S. Effect of carbazole and pyrrolidine functionalization of phenanthroline ligand on ground- and excited-state properties of rhenium(I) complexes. Interplay between 3MLCT and 3IL/3ILCT. Dye. Pigment. 2022, 200, 110113. [Google Scholar] [CrossRef]
- Małecka, M.; Szlapa-Kula, A.; Maroń, A.M.; Ledwon, P.; Siwy, M.; Schab-Balcerzak, E.; Sulowska, K.; Maćkowski, S.; Erfurt, K.; Machura, B. Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes [ReCl(CO)3(4′-An-terpy-κ2N)]. Inorg. Chem. 2022, 61, 15070–15084. [Google Scholar] [CrossRef]
- Maron, A.M.; Choroba, K.; Pedzinski, T.; Machura, B. Towards better understanding of photophysics of platinum(II) coordination compounds with anthracene and pyrene substituted 2,6-bis(thiazol-2-yl)pyridines. Dalton Trans. 2020, 49, 13440–13448. [Google Scholar] [CrossRef] [PubMed]
- Choroba, K.; Machura, B.; Szlapa-Kula, A.; Malecki, J.G.; Raposo, L.; Roma-Rodrigues, C.; Cordeiro, S.; Baptista, P.V.; Fernandes, A.R. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur. J. Med. Chem. 2021, 218, 113404. [Google Scholar] [CrossRef] [PubMed]
- Choroba, K.; Palion-Gazda, J.; Machura, B.; Bieńko, A.; Wojtala, D.; Bieńko, D.; Rajnák, C.; Boča, R.; Ozarowski, A.; Ozerov, M. Large Magnetic Anisotropy in Mono- and Binuclear cobalt(II) Complexes: The Role of the Distortion of the Coordination Sphere in Validity of the Spin-Hamiltonian Formalism. Inorg. Chem. 2024, 63, 1068–1082. [Google Scholar] [CrossRef] [PubMed]
- Choroba, K.; Machura, B.; Erfurt, K.; Casimiro, A.R.; Cordeiro, S.; Baptista, P.V.; Fernandes, A.R. Copper(II) Complexes with 2,2′:6′,2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J. Med. Chem. 2024, 67, 5813–5836. [Google Scholar] [CrossRef] [PubMed]
- Vogler, L.M.; Scott, B.; Brewer, K.J. Investigation of the Photochemical, Electrochemical, and Spectroelectrochemical Properties of an Iridium(III)/Ruthenium(II) Mixed-Metal Complex Bridged by 2,3,5,6-Tetrakis(2-pyridyl)pyrazine. Inorg. Chem. 1993, 32, 898–903. [Google Scholar] [CrossRef]
- Qin, Q.P.; Meng, T.; Tan, M.X.; Liu, Y.C.; Luo, X.J.; Zou, B.Q.; Liang, H. Synthesis and in vitro biological evaluation of three 40 -(4- methoxyphenyl)-2,2’:6’,2”-terpyridine iridium(III) complexes as new telomerase inhibitors. Eur. J. Med. Chem. 2018, 143, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, L.M.; Young, V.G., Jr.; Mann, K.R. Mono- and bis-tolylterpyridine iridium(III) complexes. Acta Cryst. Sect. C Cryst. Struct. Commun. 2010, 66, m62. [Google Scholar] [CrossRef]
- Dobroschke, M.; Geldmacher, Y.; Ott, I.; Harlos, M.; Kater, L.; Wagner, L.; Gust, R.; Sheldrick, W.S.; Prokop, A. Cytotoxic Rhodium(III) and Iridium(III) Polypyridyl Complexes: Structure–Activity Relationships, Antileukemic Activity, and Apoptosis Induction. ChemMedChem 2009, 4, 177–187. [Google Scholar] [CrossRef]
- Toda, T.; Saitoh, K.; Yoshinari, A.; Ikariya, T.; Kuwata, S. Synthesis and Structures of NCN Pincer-Type Ruthenium and Iridium Complexes Bearing Protic Pyrazole Arms. Organometallics 2017, 36, 1188–1195. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, Z.-L.; Ho, C.-L.; Yiu, S.-M.; Lee, C.-S.; Suramitr, S.; Hannongbua, S.; Chi, Y. Stepwise Access of Emissive Ir(III) Complexes Bearing a Multi Dentate Heteroaromatic Chelate: Fundamentals and Applications. Inorg. Chem. 2022, 61, 4384–4393. [Google Scholar] [CrossRef] [PubMed]
- Davaasuren, B.; Padhy, H.; Rothenberger, A. Crystal structure of trichlorido(4’-ferrocenyl-2,2’:6’,2”-terpyridine-κ3N,N’,N”)iridium(III) acetonitrile disolvate. Acta Cryst. Sec. E Cryst. Commun. 2015, 71, m69. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edfinfton, P.R.; McCabe, P.; Pidcock, E.; Rodríguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer17; University of Western Australia: Perth, WA, Australia, 2017. [Google Scholar]
- Mamo, A.; Stefio, I.; Parisi, M.F.; Credi, A.; Venturi, M.; Di Pietro, C.; Campagna, S. Luminescent and Redox-Active Iridium(III)-Cyclometalated Compounds with Terdentate Ligands. Inorg. Chem. 1997, 36, 5947–5950. [Google Scholar] [CrossRef] [PubMed]
- Klemens, T.; Świtlicka-Olszewska, A.; Machura, B.; Grucela, M.; Schab-Balcerzak, E.; Smolarek, K.; Mackowski, S.; Szlapa, A.; Kula, A.; Krompiec, S.; et al. Rhenium(I) terpyridine complexes– synthesis, photophysical properties and application in organic light emitting devices. Dalton Trans. 2016, 45, 1746–1762. [Google Scholar] [CrossRef] [PubMed]
- Maroń, A.; Szlapa, A.; Klemens, T.; Kula, S.; Machura, B.; Krompiec, S.; Małecki, J.G.; Świtlicka-Olszewska, A.; Erfurt, K.; Chrobok, A. Tuning the photophysical properties of 4’-substituted terpyridines–an experimental and theoretical study. Org. Biomol. Chem. 2016, 14, 3793–3808. [Google Scholar] [CrossRef] [PubMed]
- Klemens, T.; Czerwińska, K.; Szlapa-Kula, A.; Kula, S.; Świtlicka, A.; Kotowicz, S.; Siwy, M.; Bednarczyk, K.; Krompiec, S.; Smolarek, K.; et al. Synthesis, spectroscopic, electrochemical and computational studies of rhenium(I) tricarbonyl complexes based on bidentate-coordinated 2,6-di(thiazol-2-yl)pyridine derivatives. Dalton Trans. 2017, 46, 9605–9620. [Google Scholar] [CrossRef] [PubMed]
- Grucela-Zajac, M.; Bijak, K.; Kula, S.; Filapek, M.; Wiacek, M.; Janeczek, H.; Skorka, L.; Gasiorowski, J.; Hingerl, K.; Sariciftci, N.S.; et al. (Photo)physical Properties of New Molecular Glasses End-Cappedwith Thiophene Rings Composed of Diimide and Imine Units. J. Phys. Chem. C 2014, 118, 13070–13086. [Google Scholar] [CrossRef]
- CrysAlis PRO; Oxford Diffraction/Agilent Technologies UK Ltd.: Yarnton, UK, 2011.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.a.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, N.; Yamabe, S.; Kanehisa, N.; Inoue, T.; Takashima, H.; Tsukahara, K. Detailed Description of the Metal-to-Ligand Charge-Transfer State in Monoterpyridine IrIII Complexes. Eur. J. Inorg. Chem. 2009, 2067–2073. [Google Scholar] [CrossRef]
- Tessore, F.; Roberto, D.; Ugo, R.; Pizzotti, M. Terpyridine Zn(II), Ru(III), and Ir(III) Complexes: The Relevant Role of the Nature of the Metal Ion and of the Ancillary Ligands on the Second-Order Nonlinear Response of Terpyridines Carrying Electron Donor or Electron Acceptor Groups. Inorg. Chem. 2005, 44, 8967–8978. [Google Scholar] [CrossRef] [PubMed]
Compound | Medium | λem [nm] | λex [nm] | ϴ [%] | τ [ns] | χ2 |
---|---|---|---|---|---|---|
1 | DMSO | 612, 660 (sh) | 525 | 4.69 | 866 (24%) 4337 (76%) | 1.091 |
77 K | 579, 625, 681 | 505 | 1760 (15%), 11,630 (65%) | 1.134 | ||
38 880 (20%) | ||||||
2 | DMSO | 698, 767 | 530 | 5.30 | 4914.5 (96%) 17115.5 (4%) | 1.018 |
77 K | 693, 766 | 523 | 12745 | 0.952 | ||
3 | DMSO | 620, 677 (sh) | 525 | 4.42 | 1899.5 (46%) 6603 (54%) | 1.091 |
77 K | 586, 638 | 496 | 6450 (17%) 14,894 (83%) | 1.002 | ||
4 | DMSO | 642, 683 (sh) | 535 | 4.72 | 202 (84%), 1257 (16%) | 1.091 |
77 K | 605, 661 | 520 | 15437 | 1.013 | ||
5 | DMSO | 709, 771 | 540 | 1.62 | 5734 (62%) 12,812 (38%) | 0.961 |
77 K | 691, 766 | 545 | 5300 (4%) 15,617 (96%) | 0.993 | ||
6 | DMSO | 648, 705 (sh) | 535 | 1.27 | 206 (79%) 1197 (21%) | 1.108 |
77 K | 616, 670 | 529 | 59 (7.5%) 7728 (14.5%) 14,939 (78%) | 1.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zowiślok, B.; Świtlicka, A.; Maroń, A.; Siwy, M. Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines. Molecules 2024, 29, 2496. https://doi.org/10.3390/molecules29112496
Zowiślok B, Świtlicka A, Maroń A, Siwy M. Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines. Molecules. 2024; 29(11):2496. https://doi.org/10.3390/molecules29112496
Chicago/Turabian StyleZowiślok, Bartosz, Anna Świtlicka, Anna Maroń, and Mariola Siwy. 2024. "Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines" Molecules 29, no. 11: 2496. https://doi.org/10.3390/molecules29112496
APA StyleZowiślok, B., Świtlicka, A., Maroń, A., & Siwy, M. (2024). Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines. Molecules, 29(11), 2496. https://doi.org/10.3390/molecules29112496