Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. UV/Vis and Fluorescence Spectroscopy
2.3. Effects of Solvent Polarity for Compounds 4 and 5
2.4. Electrochemical Studies of [1,2,4]Triazoloquinazolines
2.5. Quantum-Chemical Calculations
3. Experimental Methods
3.1. General Information
3.2. Photophysical Characterization
3.3. Electrochemical Studies
3.4. Quantum-Chemical Calculations
3.5. Crystallography
3.6. Synthesis of Compounds 2a,b, 3a,b, 4a–f and 5a–f
3.6.1. General Procedure for the Synthesis of [1,2,4]Triazolo[4,3-c]quinazolines (2a,b)
- 5-(4-Bromophenyl)-[1,2,4]triazolo[4,3-c]quinazoline (2a). The general procedure was applied using 1 and triethyl orthoformate: colorless powder, yield 83% (method 1), yield 86% (method 2); mp 250–252 °C; 1H NMR (DMSO-d6, 400 MHz) δ 7.78–7.86 (4H, m), 7.99–8.01 (3H, m), 8.52–8.54 (1H, m, H-7 or H-10), 9.32 (1H, s, H-3); 13C {1H} NMR (DMSO-d6, 100 MHz, 40 °C) δ 115.5, 122.7, 125.1, 128.2, 129.1, 130.9, 131.4, 131.8, 131.9, 137.0, 140.8, 144.2, 147.4; EIMS m/z 326 [M + 2]+ (96), 325 [M + 1]+ (54), 324 [M]+ (100), 298 [M − N2 + 2]+ (16), 217 [M − N2 − Br]+ (37); C15H9BrN4 (324.00).
- 5-(4-Bromophenyl)-3-ethyl-[1,2,4]triazolo[4,3-c]quinazoline (2b). The general procedure was applied using 1 and triethyl orthopropionate: beige powder, yield 83%; mp 189–191 °C; 1H NMR (DMSO-d6, 400 MHz) δ 1.12 (3H, t, 3J = 7.3 Hz, CH3), 2.30 (2H, q, 3J = 7.3 Hz, CH2), 7.75–7.85 (6H, m), 7.92–7.94 (1H, m), 8.48–8.50 (1H, m, H-7 or H-10); 13C {1H} NMR (DMSO-d6, 100 MHz) δ 11.2 (CH3), 21.1 (CH2), 116.3, 122.4, 124.1, 127.9, 129.2, 131.1, 131.2, 132.7, 140.2, 145.0, 148.5, 159.7; EIMS m/z 354 [M + 2]+ (97), 353 [M + 1]+ (83), 352 [M]+ (100), 337 [M − CH3]+ (19), 102 (74); C17H13BrN4 (352.03).
3.6.2. General Procedure for the Synthesis of [1,2,4]Triazolo[1,5-c]quinazolines (3a,b)
- 5-(4-Bromophenyl)-[1,2,4]triazolo[1,5-c]quinazoline (3a). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2a as the starting material: beige powder, yield 93% (method 1), yield 91% (method 2); mp 186–188 °C; 1H NMR (DMSO-d6, 400 MHz) δ 7.79–7.84 (3H, m, H-3′, H-5′, H-8 or H-9), 7.93–7.96 (1H, m, H-8 or H-9), 8.10–8.12 (1H, m, H-7 or H-10), 8.50–8.54 (3H, m, H-2′, H-6′, H-7 or H-10), 8.63 (1H, s, H-2); 13C {1H} NMR (DMSO-d6, 100 MHz, 50 °C) δ 117.0, 123.0, 125.2, 128.2, 128.7, 130.4, 131.2, 132.0, 132.2, 141.9, 144.9, 151.2, 153.5; EIMS m/z 326 [M + 2]+ (100), 325 [M + 1]+ (48), 324 [M]+ (97), 298 [M − N2 + 2]+ (17), 217 [M − N2 − Br]+ (49); C15H9BrN4 (324.00).
- 5-(4-Bromophenyl)-2-ethyl-[1,2,4]triazolo[1,5-c]quinazoline (3b). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2b as the starting material: colorless powder, yield 93% (method 1), yield 89% (method 2); mp 132–134 °C; 1H NMR (DMSO-d6, 400 MHz) δ 1.39 (3H, t, 3J = 7.5 Hz, CH3), 2.97 (2H, q, 3J = 7.5 Hz, CH2), 7.80–7.83 (1H, m, H-8 or H-9), 7.86–7.88 (2H, m, H-3′, H-5′), 7.93–7.97 (1H, m, H-8 or H-9), 8.10–8.12 (1H, m, H-7 or H-10), 8.85–8.47 (3H, m, H-2′, H-6′, H-7 or H-10); 13C {1H} NMR (DMSO-d6, 100 MHz, 50 °C) δ 12.1 (CH3), 21.5 (CH2), 116.7, 123.1, 125.2, 128.3, 128.6, 130.7, 131.2, 132.0, 132.2, 142.0, 144.7, 151.7, 167.6; EIMS m/z 354 [M + 2]+ (68), 353 [M + 1]+ (47), 352 [M]+ (70), 339 [M − CH3 + 2]+ (14), 102 (100); C17H13BrN4 (352.03).
- 4-Bromo-N-(2-(3-ethyl-1H-[1,2,4]triazol-5-yl)phenyl)benzamide (3b′). The method 2 was applied. The reaction was stopped after 8 h. After cooling down the water was added until the formation of a precipitate. The product was filtered off, washed with water, and dried. Then it was purified by column chromatograpgy on silica gel, eluent EtOAc/hexane (3:7) to pure EtOAc. Pale orange powder, mp 220–222 °C; 1H NMR (DMSO-d6, 400 MHz) δ 1.33 (3H, t, 3J = 7.4 Hz, CH3), 2.88 (2H, q, 3J = 7.4 Hz, CH2), 7.20–7.24 (1H, m, benzo), 7.44–7.46 (1H, m, benzo), 7.80–7.82 (2H, m, 4-BrC6H4), 8.01–8.04 (2H, m, 4-BrC6H4), 8.17–8.19 (1H, m, benzo), 8.74–8.76 (1H, m, benzo), 12.8 (1H, s, NH), 14.2 (1H, s, NH); EIMS m/z 372 [M + 2]+ (75), 370 [M]+ (78), 185 [C7H4BrO + 2]+ (98), 183 [C7H4BrO]+ (100); C17H15BrN4O (370.04).
3.6.3. General Procedures for the Synthesis of Target Products 4a–f and 5a–f
- 5-(4′-Diethylamino-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[4,3-c]quinazoline (4a). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2a and 4-(diethylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (2/8) → EtOAc/hexane (1/1). Yellow powder, yield 50%; mp 155–157 °C; 1H NMR (CDCl3, 400 MHz) δ 1.22 (6H, t, 3J = 6.9 Hz, 2CH3), 3.43 (4H, q, 3J = 6.9 Hz, 2CH2), 6.78–8.80 (2H, m, 2CHphenylene), 7.58–7.60 (2H, m, 2CHphenylene), 7.71–7.73 (1H, m, H-8 or H-9), 7.78–7.82 (3H, m, 2CHphenylene, H-8 or H-9), 7.96–7.98 (2H, m, 2CHphenylene), 8.88–8.68 (1H, m, H-7 or H-10), 9.07 (1H, s, H-3); 13C {1H} NMR (CDCl3, 100 MHz) δ 12.7 (2CH3), 44.5 (2CH2), 112.0, 115.9, 123.6, 125.8, 126.6, 128.2, 128.7, 129.0, 129.1, 132.0, 136.3, 141.7, 144.8, 145.0, 148.1, 148.7; EIMS m/z 394 [M + 1]+ (20), 393 [M]+ (67), 378 [M − CH3]+ (100); anal. calcd for C25H23N5 (393.20): C 76.31, H 5.89, N 17.80%. Found C 76.25, H 6.11, N 17.56%.
- 5-(4′-Diphenylamino-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[4,3-c]quinazoline (4b). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2a and 4-(diphenylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (1/3) → EtOAc. Additionally, the product was recrystallized from DMSO. Yellow powder, yield 62%; mp 110–112 °C; 1H NMR (CDCl3, 400 MHz) δ 7.06–7.10 (2H, m, 2CHphenyl), 7.16–7.19 (6H, m, 4CHphenyl, 2CHphenylene), 7.29–7.32 (4H, m, 4CHphenyl), 7.55–7.57 (2H, m, 2CHphenylene), 7.73–7.76 (1H, m, H-8 or H-9), 7.81–7.85 (3H, m, 2CHphenylene, H-8 or H-9), 8.00–8.07 (3H, m, 2CHphenylene, H-7 or H-10), 8.68–8.70 (1H, m, H-7 or H-10), 9.06 (1H, s, H-3); 13C {1H} NMR (CDCl3, 150 MHz) 115.9, 123.4, 123.6, 123.7, 125.0, 127.5, 128.0, 128.8, 129.1, 129.4, 129.6, 130.5, 132.2, 132.8, 136.2, 141.7, 144.5, 144.6, 147.5, 148.5, 148.8; EIMS m/z 490 [M + 1]+ (36), 489 [M]+ (100); anal. calcd for C33H23N5×DMSO×1/2H2O: C 72.24, H 4.78, N 12.76%. Found C 72.38, H 4.02, N 12.74%.
- 5-(4′-(9H-Carbazol-9-yl)-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[4,3-c]quinazoline (4c). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2a and 4-(9H-carbazol-9-yl)phenylboronic acid pinacol ester. Eluent for column chromatography: EtOAc/hexane (1/3) → EtOAc. Additionally, the product was recrystallized from DMSO. Beige powder, yield 63%; mp > 250 °C; 1H NMR (CDCl3, 400 MHz) δ 7.31–7.34 (2H, m, 2CHcarbaz.), 7.43–7.47 (2H, m, 2CHcarbaz.), 7.50–7.52 (2H, m, 2CHcarbaz.), 7.73–7.78 (3H, m), 7.83–7.87 (1H, m, H-8 or H-9), 8.92–8.94 (2H, m), 8.97–8.99 (2H, m), 8.08–8.12 (3H, m) 8.17–8.19 (2H, m), 8.70–8.72 (1H, m, H-7 or H-10), 9.09 (1H, s, H-2); 13C {1H} NMR (CDCl3, 150 MHz) δ 109.9, 116.0, 120.4, 120.6, 123.7, 123.8, 126.2, 127.7, 128.2, 128.9, 129.3, 129.5, 131.5, 132.3, 136.2, 138.2, 138.6, 140.8, 141.6, 144.1, 144.4, 148.8; EIMS m/z 488 [M + 1]+ (38), 487 [M]+ (100); anal. calcd for C33H21N5 (487.18): C 81.29, H 4.34, N 14.34%. Found C 81.35, H 4.18, N 14.67%.
- 5-(4′-Diethylamino-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[4,3-c]quinazoline (4d). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2b and 4-(diethylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (1/3) → EtOAc. Additionally, the product was recrystallized twice from the mixture of EtOAc/hexane. Pale yellow powder, yield 61%; mp 154–156 °C; 1H NMR (CDCl3, 400 MHz) δ 1.19–1.24 (9H, m, 3CH3), 2.57 (2H, q, 3J = 7.3 Hz, CH2), 3.43 (4H, q, 3J = 7.3 Hz, 2CH2), 6.78–6.80 (2H, m, 2CHphenylene), 7.59–7.64 (4H, m, 4CHphenylene), 7.64–7.69 (1H, m, H-8 or H-9), 7.75–7.77 (3H, m, 2CHphenylene, H-8 or H-9), 7.96–7.8 (1H, m, H-7 or H-10), 8.66–8.68 (1H, m, H-7 or H-10); 13C {1H} NMR (CDCl3, 100 MHz) δ 11.9 (CH3), 12.2 (2CH3), 21.9 (CH2), 44.5 (2CH2), 112.0, 116.6, 123.3, 125.8, 125.9, 128.0, 128.2, 128.9, 129.0, 130.4, 131.5, 140.8, 143.9, 145.9, 147.9, 149.6, 150.5; EIMS m/z 422 [M + 1]+ (25), 421 [M]+ (76), 406 [M − CH3]+ (100); anal. calcd for C27H27N5 (421.23): C 76.93, H 6.46, N 16.61%. Found C 76.73, H 6.24, N 16.31%.
- 5-(4′-Diphenylamino-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[4,3-c]quinazoline (4e). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2b and 4-(diphenylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (7/3) → EtOAc/hexane (1/1). Pale yellow powder, yield 72%; mp 154–156 °C; 1H NMR (CDCl3, 400 MHz) δ 1.22 (3H, t, 3J = 7.2 Hz, CH3), 2.55 (2H, q, 3J = 7.2 Hz, CH2), 7.06–7.09 (2H, m, 2CHphenyl), 7.15–7.20 (6H, m, 4CHphenyl, 2CHphenylene), 7.28–7.32 (4H, m, 4CHphenyl), 7.56–7.58 (2H, m, 2CHphenylene), 7.66–7.73 (3H, m, 2CHphenylene, H-8 or H-9), 7.76–7.80 (3H, m, 2CHphenylene, H-8 or H-9), 7.97–7.99 (1H, m, H-7 or H-10), 8.67–8.69 (1H, m, H-7 or H-10); 13C {1H} NMR (CDCl3, 150 MHz) δ 12.0 (CH3), 22.0 (CH2), 116.7, 123.4, 123.5, 123.6, 124.9, 126.8, 128.0, 128.3, 129.2, 129.3, 129.5, 131.6, 131.8, 133.1, 140.9, 143.4, 145.7, 147.6, 148.3, 149.6, 150.5; EIMS m/z 518 [M + 1]+ (44), 517 [M]+ (100); anal. calcd for C35H27N5 (517.23): C 81.21, H 5.26, N 13.53%. Found C 81.05, H 5.11, N 13.22%.
- 5-(4′-(9H-Carbazol-9-yl)-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[4,3-c]quinazoline (4f). The general procedure was applied using [1,2,4]triazolo[4,3-c]quinazoline 2b and 4-(9H-carbazol-9-yl)phenylboronic acid pinacol ester. Eluent for column chromatography: EtOAc/hexane (1/3) → EtOAc. Additionally, the product was washed with hexane. Pale beige powder, yield 72%; mp 255–257 °C; 1H NMR (DCCl3, 400 MHz) δ 1.26 (3H, t, 3J = 7.3 Hz, CH3), 2.59 (2H, q, 3J = 7.3 Hz, CH2), δ 7.31–7.34 (2H, m, 2CHcarbaz.), 7.43–7.47 (2H, m, 2CHcarbaz.), 7.50–7.52 (2H, m, 2CHcarbaz.), 7.71–7.81 (6H, m), 7.92–7.94 (4H, m), 7.99–8.01 (1H, m, H-7 or H-10), 8.17–8.19 (2H, m), 8.69–8.71 (1H, m, H-7 or H-10); 13C {1H} (CDCl3, 100 MHz) δ 12.0 (CH3), 22.1 (CH2), 109.9, 116.8, 120.3, 120.6, 123.5, 123.7, 126.2, 127.5, 127.7, 128.4, 128.8, 129.5, 131.8, 132.7, 138.8, 140.8, 140.9, 143.1, 145.4, 149.7, 150.4; EIMS m/z 516 [M + 1]+ (42), 515 [M]+ (100); anal. calcd for C35H25N5 (515.21): C 81.51, H 4.89, N 13.58%. Found C 80.43, H 5.20, N 13.26%.
- 5-(4′-Diethylamino-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[1,5-c]quinazoline (5a). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3a and 4-(diethylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (1/9). Yellow powder, yield 77%; mp 170–172 °C; 1H NMR (CDCl3, 400 MHz) δ 1.22 (6H, t, 3J = 7.0 Hz, 2CH3), 3.42 (4H, q, 3J = 7.0 Hz, 2CH2), 6.77–6.79 (2H, m, 2CHphenylene), 7.69–7.73 (1H, m, H-8 or H-9), 7.77–7.80 (2H, m, 2CHphenylene), 7.83–7.87 (1H, m, H-8 or H-9), 8.12–8.14 (1H, m, H-7 or H-10), 8.48 (1H, s, H-2), 8.55–8.61 (3H, m, 2CHphenylene, H-7 or H-10); 13C {1H} NMR (CDCl3, 100 MHz) δ 13.1 (2CH3), 44.9 (2CH2), 112.3, 117.8, 124.0, 126.1, 126.9, 128.5, 128.6, 129.1, 129.2, 131.2, 132.6, 143.5, 145.0, 147.0, 148.2, 152.5, 153.9; EIMS m/z 394 [M + 1]+ (21), 393 [M]+ (70), 378 [M − CH3]+ (100); anal. calcd for C25H23N5 (393.20): C 76.31, H 5.89, N 17.80%. Found C 76.55, H 6.26, N 18.21%.
- 5-(4′-Diphenylamino-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[1,5-c]quinazoline (5b). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3a and 4-(diphenylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (3/17). Yellow-green powder, yield 36%; mp 170–172 °C; 1H NMR (CDCl3, 400 MHz) δ 7.05–7.09 (2H, m, 2CHphenyl), 7.16–7.18 (6H, m, 4CHphenyl, 2CHphenylene), 7.26–7.32 (4H, m, 4CHphenyl), 7.57–7.59 (2H, m, 2CHphenylene), 7.72–7.75 (1H, m, H-8 or H-9), 7.72–7.75 (2H, m, 2CHphenylene), 7.85–7.89 (1H, m, H-8 or H-9), 8.14–8.16 (1H, m, H-7 or H-10), 8.49 (1H, s, H-2), 8.57–8.59 (1H, m, H-7 or H-10), 8.62–8.64 (2H, m, 2CHphenylene); 13C {1H} NMR (100 MHz, CDCl3) δ 117.6, 123.4, 123.6, 124.9, 126.6, 128.1, 128.5, 128.9, 129.5, 130.0, 131.0, 132.4, 133.7, 143.1, 144.0, 146.5, 147.6, 148.2, 152.2, 153.6; EIMS m/z 490 [M + 1]+ (40), 489 [M]+ (100); anal. calcd for C33H23N5 (489.20): C 80.96, H 4.74, N 14.31%. Found C 80.88, H 5.00, N 14.04%.
- 5-(4′-(9H-Carbazol-9-yl)-[1,1′]-biphenyl-4-yl)-[1,2,4]triazolo[1,5-c]quinazoline (5c). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3a and 4-(9H-carbazol-9-yl)phenylboronic acid pinacol ester. After cooling the reaction mixture product was filtered off, washed with hexane. Pale grey powder, yield 67%; mp 257–259 °C; 1H NMR (DMSO-d6, 600 MHz) δ 7.31–7.34 (2H, m, 2CHcarbaz.), 7.46–7.51 (4H, m, 4CHcarbaz.), 7.80–7.81 (2H, m), 7.85–7.87 (1H, m, H-8 or H-9), 7.99–8.01 (1H, m, H-8 or H-9), 8.10–8.11 (2H, m), 8.13–8.14 (2H, m), 8.18–8.19 (1H, m, H-7 or H-10), 8,27–8.28 (2H, m), 8.53–8.54 (1H, m, H-7 or H-10), 8.69–8.71 (2H, m, 2CHphenylene), 8.79 (1H, s, H-2); 13C {1H} NMR (150 MHz, DMSO-d6, 55 °C) δ 109.5, 117.1, 120.1, 120.5, 122.8, 123.2, 126.3, 126.5, 127.1, 128.4, 128.6, 128.7, 130.6, 131.0, 132.4, 136.9, 138.0, 140.0, 142.1, 142.2, 145.7, 151.4, 153.6; EIMS m/z 488 [M + 1]+ (37), 487 [M]+ (100); anal. calcd for C33H21N5 (487.20): C 81.29, H 4.34, N 14.34%. Found C 81.18, H 4.15, N 14.39%.
- 5-(4′-Diethylamino-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[1,5-c]quinazoline (5d). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3b and 4-(diethylamino)phenylboronic acid. Eluent for column chromatography: EtOAc/hexane (1/2) → EtOAc/hexane (1/1). Additionally, the product was recrystallized from a mixture of CH2Cl2/hexane. Yellow powder, yield 51%; mp 116–118 °C; 1H NMR (CDCl3, 400 MHz) δ 1.22 (6H, t, 3J = 6.5 Hz, 2CH3), 1.51 (3H, t, 3J = 7.5 Hz, CH3), 3.08 (2H, q, 3J = 7.5 Hz, CH2), 3.43 (4H, q, 3J = 6.5 Hz, 2CH2), 6.78–6.80 (2H, m, 2CHphenylene), 7.60–7.62 (2H, m, 2CHphenylene), 7.66–7.70 (1H, m, H-8 or H-9), 7.77–7.85 (3H, m, 2CHphenylene, H-8 or H-9), 8.09–8.11 (1H, m, H-7 or H-10), 8.53–8.55 (1H, m, H-7 or H-10), 8.62–8.64 (2H, m, 2CHphenylene); 13C {1H} NMR (CDCl3, 100 MHz) δ 12.8 (2CH3), 12.9 (CH3), 22.6 (CH2), 44.6 (2CH2), 112.0, 117.2, 123.7, 125.8, 126.8, 128.0, 128.3, 128.8, 129.1, 130.9, 132.0, 143.2, 144.5, 146.6, 147.9, 152.7, 168.5; EIMS m/z 422 [M + 1]+ (25), 421 [M]+ (80), 406 [M − CH3]+ (100); anal. calcd for C27H27N5 (421.23): C 76.93, H 6.46, N 16.61%. Found C 76.72, H 6.22, N 16.42%.
- 5-(4′-Diphenylamino-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[1,5-c]quinazoline (5e). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3b and 4-(diphenylamino)phenylboronic acid. Eluent for column chromatography: hexane → EtOAc/hexane (8/2). Additionally, the product was washed with hexane. Yellow–green powder, yield 69%; mp 185–187 °C; 1H NMR (CDCl3, 400 MHz) δ 1.51 (3H, t, 3J = 7.2 Hz, CH3), 3.08 (2H, q, 3J = 7.2 Hz, CH2), 7.05–7.08 (2H, m, 2CHphenyl), 7.16–7.18 (6H, m, 4CHphenyl, 2CHphenylene), 7.28–7.31 (4H, m, 4CHphenyl), 7.57–7.59 (2H, m, 2CHphenylene), 7.68–7.71 (1H, m, H-8 or H-9), 7.79–7.86 (3H, m, 2CHphenylene, H-8 or H-9), 8.10–8.12 (1H, m, H-7 or H-10), 8.54–8.56 (1H, m, H-7 or H-10), 8.65–8.67 (2H, m, 2CHphenylene); 13C {1H} NMR (100 MHz, CDCl3) δ 12.8 (CH3), 22.5 (CH2), 117.3, 123.4, 123.6, 123.7, 124.9, 126.5, 128.0, 128.2, 128.8, 129.5, 130.2, 131.0, 132.0, 133.8, 143.1, 143.8, 146.2, 147.6, 148.1, 152.7, 168.6; EIMS m/z 518 [M + 1]+ (41), 517 [M]+ (100); anal. calcd for C35H27N5 (517.23): C 81.21, H 5.26, N 13.53%. Found C 82.34, H 5.48, N 14.04%.
- 5-(4′-(9H-Carbazol-9-yl)-[1,1′]-biphenyl-4-yl)-2-ethyl-[1,2,4]triazolo[1,5-c]quinazoline (5f). The general procedure was applied using [1,2,4]triazolo[1,5-c]quinazoline 3b and 4-(9H-carbazol-9-yl)phenylboronic acid pinacol ester. After cooling the reaction mixture product was filtered off, washed with hexane and recrystallized from DMSO. Pale beige powder, yield 55%; mp 286–288 °C; 1H NMR (DMSO-d6, 400 MHz) δ 1.49 (3H, t, 3J = 7.5 Hz, CH3), 3.03 (2H, q, 3J = 7.5 Hz, CH2), δ 7.26–7.30 (2H, m, 2CHcarbaz.), 7.41–7.44 (2H, m, 2CHcarbaz.), 7.49–7.51 (2H, m, 2CHcarbaz.), 7.76–7.80 (3H, m), 7.90–7.94 (1H, m, H-8 or H-9), 8.00–8.02 (2H, m), 8.08–8.12 (3H, m), 8.18–8.19 (2H, m), 8.48–8.50 (1H, m, H-7 or H-10), 8.77–8.79 (2H, m, 2CHphenylene); 13C NMR was not recorded due to poor solubility of the sample. EIMS m/z 516 [M + 1]+ (40), 515 [M]+ (100); anal. calcd for C35H25N5 (515.21): C 81.51, H 4.89, N 13.58%. Found C 81.46, H 5.04, N 14.05%.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jabeen, T.; Aslam, S.; Ahmad, M.; ul Haq, A.; Al-Hussain, S.A.; Zaki, M.E.A. Triazoloquinazoline: Synthetic Strategies and Medicinal Importance. In Recent Advances on Quinazoline [Working Title]; IntechOpen: London, UK, 2023. [Google Scholar]
- Abuelizz, H.A.; Al-Salahi, R. An Overview of Triazoloquinazolines: Pharmacological Significance and Recent Developments. Bioorg. Chem. 2021, 115, 105263. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, M.; Doan, T.H.; Hibner-Kulicka, P.; Otake, R.; Lukarska, M.; Lohier, J.F.; Ozawa, K.; Nanbu, S.; Alayrac, C.; Suzuki, Y.; et al. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-Quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem. Asian J. 2021, 16, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Zhang, X.; Zhu, B.; Wang, J.; Wu, G.; Yin, Y.; Song, Q. Comparative Studies of Organic Dyes with a Quinazoline or Quinoline Chromophore as π-Conjugated Bridges for Dye-Sensitized Solar Cells. Dye. Pigment. 2016, 124, 72–81. [Google Scholar] [CrossRef]
- Bonnaud, T.; Scaviner, M.; Robin-le Guen, F.; Achelle, S. 4-substituted Push-pull Quinazoline Chromophores with Extended π-conjugated Linker. J. Heterocycl. Chem. 2024, 61, 358–364. [Google Scholar] [CrossRef]
- Lipunova, G.N.; Nosova, E.V.; Charushin, V.N.; Chupakhin, O.N. Functionalized Quinazolines and Pyrimidines for Optoelectronic Materials. Curr. Org. Synth. 2018, 15, 793–814. [Google Scholar] [CrossRef]
- Li, P.; Xiang, Y.; Gong, S.; Lee, W.K.; Huang, Y.H.; Wang, C.Y.; Yang, C.; Wu, C.C. Quinazoline-Based Thermally Activated Delayed Fluorescence Emitters for High-Performance Organic Light-Emitting Diodes with External Quantum Efficiencies about 28%. J. Mater. Chem. C 2021, 9, 12633–12641. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; Su, S.; Guo, F.; Cao, Y.; Zhang, Y. Quinazoline-Based Thermally Activated Delayed Fluorecence for High-Performance OLEDs with External Quantum Efficiencies Exceeding 20%. Adv. Opt. Mater. 2019, 7, 1801496. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, J.; Wang, H.; Shen, B.; Zhang, J.; Hao, J.; Cao, J.; Wang, Z. Synthesis, Photophysical and Optoelectronic Properties of Quinazoline-Centered Dyes and Their Applications in Organic Light-Emitting Diodes. Dye. Pigment. 2016, 125, 299–308. [Google Scholar] [CrossRef]
- Plaza-Pedroche, R.; Georgiou, D.; Fakis, M.; Fihey, A.; Katan, C.; Guen, F.R.-l.; Achelle, S.; Rodríguez-López, J. Effect of Protonation on the Photophysical Properties of 4-Substituted and 4,7-Disubstituted Quinazoline Push-Pull Chromophores. Dye. Pigment. 2021, 185, 108948. [Google Scholar] [CrossRef]
- Kumar, Y.; Kumar Singh, N.; Mukhopadhyay, S.; Shankar Pandey, D. AIE Active Quinazoline Based Probes for Selective Detection of Fe3+ and Acidochromism. Inorganica Chim. Acta 2023, 546, 121294. [Google Scholar] [CrossRef]
- Dwivedi, B.K.; Singh, V.D.; Paitandi, R.P.; Pandey, D.S. Substituent-Directed ESIPT-Coupled Aggregation-Induced Emission in Near-Infrared-Emitting Quinazoline Derivatives. ChemPhysChem 2018, 19, 2672–2682. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, G.; Wong, W.Y. Functionalization of Phosphorescent Emitters and Their Host Materials by Main-Group Elements for Phosphorescent Organic Light-Emitting Devices. Chem. Soc. Rev. 2015, 44, 8484–8575. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, Q.; Ao, L.; Zhong, C.; Yang, C.; Qin, J.; Ma, D. Highly Efficient Phosphorescent Organic Light-Emitting Diodes Hosted by 1,2,4-Triazole-Cored Triphenylamine Derivatives: Relationship between Structure and Optoelectronic Properties. J. Phys. Chem. C 2010, 114, 601–609. [Google Scholar] [CrossRef]
- Lee, J.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. Oxadiazole- and Triazole-Based Highly-Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. J. Mater. Chem. C 2013, 1, 4599–4604. [Google Scholar] [CrossRef]
- Olesiejuk, M.; Kudelko, A.; Światkowski, M. Highly Luminescent 4H-1,2,4-Triazole Derivatives: Synthesis, Molecular Structure and Photophysical Properties. Materials 2020, 13, 5627. [Google Scholar] [CrossRef] [PubMed]
- Olesiejuk, M.; Kudelko, A.; Swiatkowski, M.; Kruszynski, R. Synthesis of 4-Alkyl-4H-1,2,4-Triazole Derivatives by Suzuki Cross-Coupling Reactions and Their Luminescence Properties. Molecules 2019, 24, 652. [Google Scholar] [CrossRef] [PubMed]
- Abdurahman, A.; Wang, L.; Zhang, Z.; Feng, Y.; Zhao, Y.; Zhang, M. Novel Triazole-Based AIE Materials: Dual-Functional, Highly Sensitive and Selective Fluorescence Probe. Dye. Pigment. 2020, 174, 108050. [Google Scholar] [CrossRef]
- Wu, J.; You, Q.; Lan, J.; Guo, Q.; Li, X.; Xue, Y.; You, J. Cu-Catalysed Direct C-H (Hetero)Arylation of [1,2,4]Triazolo[4,3-a]Pyridine to Construct Deep-Blue-Emitting Luminophores. Org. Biomol. Chem. 2015, 13, 5372–5375. [Google Scholar] [CrossRef] [PubMed]
- Vadagaonkar, K.S.; Yang, C.J.; Zeng, W.H.; Chen, J.H.; Patil, B.N.; Chetti, P.; Chen, L.Y.; Chaskar, A.C. Triazolopyridine Hybrids as Bipolar Host Materials for Green Phosphorescent Organic Light-Emitting Diodes (OLEDs). Dye. Pigment. 2019, 160, 301–314. [Google Scholar] [CrossRef]
- Cao, C.; Chen, W.C.; Tian, S.; Chen, J.X.; Wang, Z.Y.; Zheng, X.H.; Ding, C.W.; Li, J.H.; Zhu, J.J.; Zhu, Z.L.; et al. A Novel D-π-A Blue Fluorophore Based on [1,2,4]Triazolo[1,5-a] Pyridine as an Electron Acceptor and Its Application in Organic Light-Emitting Diodes. Mater. Chem. Front. 2019, 3, 1071–1079. [Google Scholar] [CrossRef]
- Song, W.; Shi, L.; Gao, L.; Hu, P.; Mu, H.; Xia, Z.; Huang, J.; Su, J. Triazolo[1,5-a]Pyridine as Building Blocks for Universal Host Materials for High-Performance Red, Green, Blue and White Phosphorescent Organic Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 5714–5722. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Fang, R.; Liu, S. Organic Compound for Light-Emitting Device, and Organic Light-Emitting Device Comprising the Same. Patent WO2022078250, 21 April 2022. [Google Scholar]
- Sun, E.; Fang, R.; Liu, S. Organic Compound for Light-Emitting Device, Application of Organic Compound and Organic Light-Emitting Device. Patent CN112174968A, 5 January 2021. [Google Scholar]
- Sun, E.; Zeng, L.; Liu, S.; Fang, R.; Wu, J. Preparation of Spiro[Acridine-Fluorene]-Derivative Luminescent Material for Organic Electroluminescent Devices. Patent CN112442037, 5 March 2021. [Google Scholar]
- Sun, E.; Liu, S.; Li, Z.; Zhang, X. Compound and Organic Electroluminescent Device Using Same. Patent CN109824672, 31 May 2019. [Google Scholar]
- Sun, E.; Liu, S.; Wu, J.; Feng, J. Organic Electroluminescent Material and Device. Patent WO2019206242, 31 October 2019. [Google Scholar]
- Sun, E.; Liu, S.; Wu, J.; Shao, S. Organic Electroluminescent Material and Device. Patent CN110407838, 5 November 2019. [Google Scholar]
- Li, Z.-P.; Zhao, H.; Zhang, Z.-H.; Qiu, Z.-X.; Li, X.-F.; Huang, L.-J. A Novel [1, 2, 4]Triazolo[5,1-b]Quinazoline Derivative as a Fluorescent Probe for Highly Selective Detection of Fe3+ Ions. J. Asian Nat. Prod. Res. 2024, 26, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Kopotilova, A.E.; Moshkina, T.N.; Nosova, E.V.; Lipunova, G.N.; Starnovskaya, E.S.; Kopchuk, D.S.; Kim, G.A.; Gaviko, V.S.; Slepukhin, P.A.; Charushin, V.N. 3-Aryl-5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]Quinazolines: Synthesis and Photophysical Properties. Molecules 2023, 28, 1937. [Google Scholar] [CrossRef] [PubMed]
- Moshkina, T.N.; Nosova, E.V.; Permyakova, J.V.; Lipunova, G.N.; Valova, M.S.; Slepukhin, P.A.; Sadieva, L.K.; Charushin, V.N. Synthesis and Photophysical Properties of 2-Aryl-4-(Morpholin-4-yl)Quinazoline Chromophores: The Effect of π-Linker Moiety. Dye. Pigment. 2022, 206, 110592. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Nosova, E.V.; Permyakova, J.V.; Lipunova, G.N.; Zhilina, E.F.; Kim, G.A.; Slepukhin, P.A.; Charushin, V.N. Push-Pull Structures Based on 2-Aryl/Thienyl Substituted Quinazolin-4(3H)-Ones and 4-Cyanoquinazolines. Molecules 2022, 27, 7156. [Google Scholar] [CrossRef] [PubMed]
- Nosova, E.V.; Kopotilova, A.E.; Ivan’kina, M.A.; Moshkina, T.N.; Kopchuk, D.S. Synthesis of 5-(4-Bromophenyl)- and 5-(5-Bromothiophen-2-yl)-Substituted 3-Aryl[1,2,4]Triazolo[4,3-c]Quinazolines. Russ. Chem. Bull. 2022, 71, 1483–1487. [Google Scholar] [CrossRef]
- Postovskii, I.Y.; Vereshchagina, N.N.; Mertsalov, S.L. Researches on benzodiazines VI. Synthesis of 2-R-4-hydrazinoquinazolines, 5-R-[8,4-c]-s-triazolo-and 5-R-[1,5-c]tetrazoloquinazolines. Chem. Heterocycl. Compd. 1966, 2, 94–97. [Google Scholar] [CrossRef]
- Mamedov, V.A.; Zhukova, N.A.; Kadyrova, M.S. The Dimroth Rearrangement in the Synthesis of Condensed Pyrimidines—Structural Analogs of Antiviral Compounds. Chem. Heterocycl. Compd. 2021, 57, 342–368. [Google Scholar] [CrossRef] [PubMed]
- Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hovakimyan, A.A.; Noravyan, A.S. Synthesis and Structure of Condensed Triazolo- and Tetrazolopyrimidines. Tetrahedron 2013, 69, 10637–10643. [Google Scholar] [CrossRef]
- Vorob’ev, E.V.; Kletskii, M.E.; Krasnikov, V.V.; Mezheritskii, V.V.; Steglenko, D.V. Studies on mechanisms of the rearrangement of thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidines into thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines. Russ Chem Bull. 2006, 55, 2247–2255. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Le Poul, P.; Barsella, A.; Pytela, O.; Bureš, F.; Robin-Le Guen, F.; Achelle, S.; Nosova, E.V.; Lipunova, G.N.; Charushin, V.N. Electron-Withdrawing Substituted Quinazoline Push-Pull Chromophores: Synthesis, Electrochemical, Photophysical and Second-Order Nonlinear Optical Properties. European J. Org. Chem. 2020, 2020, 5445–5454. [Google Scholar] [CrossRef]
- Starnovskaya, E.S.; Valieva, M.I.; Aluru, R.; Kopchuk, D.S.; Khasanov, A.F.; Taniya, O.S.; Novikov, A.S.; Kalinichev, A.A.; Santra, S.; Zyryanov, G.V.; et al. Carbazole/Fluorene-Substituted 5-Phenyl-2,2′-Bipyridine D-π-A Fluorophores: Photophysical Data, Hyperpolarizability and CT-Indices. New J. Chem. 2023, 47, 12393–12402. [Google Scholar] [CrossRef]
- Porrès, L.; Holland, A.; Pålsson, L.O.; Monkman, A.P.; Kemp, C.; Beeby, A. Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere. J. Fluoresc. 2006, 16, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, I.S.; Taniya, O.S.; Sadieva, L.K.; Volkova, N.N.; Minin, A.S.; Grzhegorzhevskii, K.V.; Gorbunov, E.B.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N.; et al. Bola-Type PAH-Based Fluorophores/Chemosensors: Synthesis via an Unusual Clemmensen Reduction and Photophysical Studies. J. Photochem. Photobiol. A Chem. 2021, 420, 113466. [Google Scholar] [CrossRef]
- Kournoutas, F.; Fihey, A.; Malval, J.P.; Spangenberg, A.; Fecková, M.; Le Poul, P.; Katan, C.; Robin-Le Guen, F.; Bureš, F.; Achelle, S.; et al. Branching Effect on the Linear and Nonlinear Optical Properties of Styrylpyrimidines. Phys. Chem. Chem. Phys. 2020, 22, 4165–4176. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Peng, Z.; Wang, Z.; Wang, Y.; Lu, P. Preparation and Photophysical Properties of Quinazoline-Based Fluorophores. RSC Adv. 2020, 10, 30297–30303. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Lippert, E. Spektroskopische Bestimmung Des Dipolmomentes Aromatischer Verbindungen Im Ersten Angeregten Singulettzustand. Z. Elektrochem. Berichte Bunsenges. Phys. Chem. 1957, 61, 962–975. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Abraham, M.H.; Zissimos, A.M. Fast Calculation of van Der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68, 7368–7373. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Maka, V.K.; Moorthy, J.N. Remarkable Influence of ‘Phane Effect’ on the Excited-State Properties of Cofacially Oriented Coumarins. Phys. Chem. Chem. Phys. 2017, 19, 4758–4767. [Google Scholar] [CrossRef]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011, 23, 2367–2371. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, T.; Chen, Q. An Sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity. Carbon N. Y. 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Alegre-Requena, J.V.; Sowndarya, S.V.S.; Pérez-Soto, R.; Alturaifi, T.M.; Paton, R.S. AQME: Automated Quantum Mechanical Environments for Researchers and Educators. WIREs Comput. Mol. Sci. 2023, 13, e1663. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
Compound | Solvent | λabs, nm (ε, 104 M−1cm−1) | λem, nm | ΔνSt a, cm−1 | ΦF b, % |
---|---|---|---|---|---|
4a | Toluene | 371 (1.93) | 476 | 5946 | 90 |
MeCN | 276 sh (1.77), 366 (2.41) | 605 | 10,793 | 29 | |
Solid | - | 500 | - | 8 | |
4b | Toluene | 370 (2.27) | 469 | 5705 | 97 |
MeCN | 295 (2.67), 359 (3.08) | 609 | 11,435 | 14 | |
Solid | - | 509 | - | 17 | |
4c | Toluene | 329 (3.61), 341 (3.31) | 422 | 5629 | 13 |
MeCN | 291 (1.84), 325 (1.63), 337 sh (1.54) | 548 | 12,521 | 43 | |
Solid | - | - d | - | <1 | |
4d | Toluene | 343 (2.82) | 481 | 8364 | 16 |
MeCN | 340 (4.26) | 608 | 12,964 | 41 | |
Solid | - | 455 | - | 32 | |
4e | Toluene | 355 (1.53) | 467 | 6756 | 11 |
MeCN | 296 (1.72), 345 (2.30) | 609 | 12,565 | 25 | |
Solid | - | 468 | - | 10 | |
4f | Toluene | 327 (3.92), 339 sh (3.53) | 423 | 6940 | < 1 |
MeCN | 292 (3.18), 312 (2.54) | 538 | 13,464 | 3 | |
Solid | - | 432 | - | 14 | |
5a | Toluene | 298 (0.55), 383 (1.47) | 479 | 5233 | 90 |
MeCN | 375 (3.01) | 598 | 9944 | 34 | |
Solid | - | 510 | - | 3 | |
5b | Toluene | 377 (2.78) | 472 | 5339 | >98 |
MeCN | 298 (3.25), 365 (3.73) | 603 | 10,814 | 24 | |
Solid | - | 479 | - | 42 | |
5c | Toluene | 294 (-) c, 342 (-) | 441 | 6564 | 75 |
MeCN | 292, 328, 337 (sh) | 537 | 11,257 | 57 | |
5d | Toluene | 297 (-), 380 (-) | 486 | 5740 | >98 |
MeCN | 253 (-), 291 (sh) (-), 374 (-) | 579 | 9467 | 90 | |
Solid | - | 517 | - | 8 | |
5e | Toluene | 287 (3.76), 375 (2.41) | 465 | 5161 | >98 |
MeCN | 297 (1.35), 363 (1.59) | 593 | 10,684 | 39 | |
Solid | - | 481 | - | 28 | |
5f | Toluene | 293 (-), 342 (-) | 420 | 5430 | >98 |
MeCN | 292 (-), 328 (-), 339 (sh) (-) | 530 | 10,630 | 96 | |
Solid | - | 427 | - | 31 |
Comp. | τav, ns | kr a, 107 s−1 | knr a, 109 s−1 |
---|---|---|---|
4a | 1.73 | 52.02 | 5.78 |
4b | 1.85 | 52.43 | 1.62 |
4c | 0.49 | 26.53 | 177.55 |
4d | 0.22 | 72.73 | 381.82 |
4e | 1.47 | 7.48 | 60.54 |
5a | 1.68 | 53.57 | 5.95 |
5b | 1.74 | 56.32 | 1.15 |
5c | 1.26 | 59.52 | 19.84 |
5d | 1.60 | 61.25 | 1.25 |
5e | 1.66 | 59.04 | 1.20 |
5f | 1.11 | 88.29 | 1.80 |
Comp. | Slopes | R2 | a1 a, Å | Δµ1, D | a2 b, Å | Δµ2, D | ΔµDFT, D |
---|---|---|---|---|---|---|---|
4a | 17,676 | 0.97 | 4.36 | 12.08 | 9.11 | 36.47 | 20.67 |
4d | 18798 | 0.93 | 4.50 | 13.06 | 9.36 | 39.12 | 15.59 |
5a | 16405 | 0.97 | 4.36 | 11.64 | 9.10 | 35.08 | 21.26 |
5d | 13456 | 0.94 | 4.50 | 11.05 | 9.35 | 33.08 | 20.55 |
5e | 18364 | 0.97 | 4.79 | 14.14 | 9.94 | 42.36 | 26.93 |
5f | 19123 | 0.92 | 4.70 | 14.06 | 9.88 | 42.81 | 30.69 |
Compound | EOxonset, V a | EHOMOel, eV b | EHOMODFT, eV | ELUMODFT, eV | EgDFT, eV |
---|---|---|---|---|---|
4a | 0.31 | −5.41 | −5.61 | −1.87 | 3.74 |
4b | 0.47 | −5.57 | −5.60 | −2.02 | 3.58 |
4c | 0.77 | −5.87 | −5.98 | −2.21 | 3.77 |
4d | 0.31 | −5.41 | −5.58 | −1.64 | 3.94 |
4e | 0.46 | −5.56 | −5.58 | −1.82 | 3.76 |
4f | 0.81 | −5.91 | −5.96 | −2.01 | 3.95 |
5a | 0.27 | −5.37 | −5.44 | −1.84 | 3.60 |
5b | 0.43 | −5.53 | −5.47 | −2.00 | 3.47 |
5c | 0.77 | −5.87 | −5.86 | −2.15 | 3.71 |
5d | 0.28 | −5.38 | −5.41 | −1.75 | 3.66 |
5e | 0.47 | −5.57 | −5.45 | −1.92 | 3.53 |
5f | 0.78 | −5.88 | −5.85 | −2.07 | 3.78 |
Comp | Sr (a.u.) a | D-Index (Å) b | H-Index (Å) c | t-Index (Å) d | Ec e |
---|---|---|---|---|---|
4a | 0.50544 | 6.310 | 3.719 | 2.895 | 3.08 |
4b | 0.50926 | 6.850 | 4.106 | 3.163 | 2.76 |
4c | 0.39654 | 7.830 | 3.934 | 4.350 | 2.42 |
4d | 0.50724 | 6.356 | 3.755 | 2.951 | 2.98 |
4e | 0.52832 | 6.586 | 4.149 | 2.880 | 2.79 |
4f | 0.45366 | 6.982 | 4.116 | 3.333 | 2.66 |
5a | 0.49229 | 6.546 | 3.698 | 3.176 | 2.94 |
5b | 0.48785 | 7.272 | 4.074 | 3.620 | 2.63 |
5c | 0.40714 | 8.170 | 3.994 | 4.616 | 2.34 |
5d | 0.51262 | 6.317 | 3.748 | 3.026 | 2.85 |
5e | 0.50296 | 7.018 | 4.104 | 3.406 | 2.61 |
5f | 0.42992 | 7.809 | 4.068 | 4.233 | 2.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshkina, T.N.; Kopotilova, A.E.; Ivan’kina, M.A.; Starnovskaya, E.S.; Gazizov, D.A.; Nosova, E.V.; Kopchuk, D.S.; El’tsov, O.S.; Slepukhin, P.A.; Charushin, V.N. Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines. Molecules 2024, 29, 2497. https://doi.org/10.3390/molecules29112497
Moshkina TN, Kopotilova AE, Ivan’kina MA, Starnovskaya ES, Gazizov DA, Nosova EV, Kopchuk DS, El’tsov OS, Slepukhin PA, Charushin VN. Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines. Molecules. 2024; 29(11):2497. https://doi.org/10.3390/molecules29112497
Chicago/Turabian StyleMoshkina, Tatyana N., Alexandra E. Kopotilova, Marya A. Ivan’kina, Ekaterina S. Starnovskaya, Denis A. Gazizov, Emiliya V. Nosova, Dmitry S. Kopchuk, Oleg S. El’tsov, Pavel A. Slepukhin, and Valery N. Charushin. 2024. "Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines" Molecules 29, no. 11: 2497. https://doi.org/10.3390/molecules29112497
APA StyleMoshkina, T. N., Kopotilova, A. E., Ivan’kina, M. A., Starnovskaya, E. S., Gazizov, D. A., Nosova, E. V., Kopchuk, D. S., El’tsov, O. S., Slepukhin, P. A., & Charushin, V. N. (2024). Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines. Molecules, 29(11), 2497. https://doi.org/10.3390/molecules29112497