A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects
Abstract
:1. Introduction
2. Results
2.1. The Total Saponin and Total Polysaccharide Content
2.2. Identification of Components from the Cultured Adventitious Root of Ginseng
2.3. Body Weights and the Organ/Body Weight Ratio
2.4. Spleen Lymphocyte Proliferation
2.5. Quantitative Hemolysis of SRBC (QHS) Assay
2.6. Hemolysis Assay
2.7. Phagocytic Function of Peritoneal Macrophages
2.8. Natural Killer Cell Activity
2.9. Network Pharmacology Analysis
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Quantitative Analysis of Total Saponins and Total Polysaccharides
4.3. Immunomodulatory Activity of Cultured Adventitious Ginseng Root
4.4. Network Pharmacology Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, M.W.; Huang, C.L.; Wang, C.; Zheng, J.H.; Zhang, P.; Xu, Y.S.; Chen, H.; Shen, W.L. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training. Biochem. Biophys. Res. Commun. 2013, 441, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Bai, X.Y.; Yu, S.T.; Zhao, W.X.; Qiao, J.H.; Liu, Y.; Zhao, D.Q.; Wang, J.W.; Wang, I.M. Ginsenoside Re inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of Nrf2-antioxidant response in betaamyloid-challenged SH-SY5Y cells. Molecules 2019, 24, 2687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Fan, Y.; Liu, M.L. Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol. Cell Biochem. 2012, 365, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Shergis, J.L.; Zhang, A.L.; Zhou, W.; Xue, C.C. Panax ginseng in randomised controlled trials: A systematic review. Phytother. Res. 2013, 27, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J. Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells. J. Ginseng Res. 2013, 37, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Q.; Li, Y.W. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer. Pharm. Biol. 2016, 54, 561–568. [Google Scholar] [CrossRef]
- Lee, I.A.; Hyam, R.S.; Jang, S.E.; Han, M.J.; Kim, D.H. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J. Agric. Food Chem. 2012, 60, 9595–9602. [Google Scholar] [CrossRef]
- Fan, J.S.; Liu, D.N.; He, C.Y.; Li, X.H.; He, F.T. Inhibiting adhesion events by Panax notoginseng saponins and ginsenoside Rb1 protecting arteries via activation of Nrf2 and suppression of p38-VCAM-1 signal pathway. J. Ethnopharmacol. 2016, 192, 423–430. [Google Scholar] [CrossRef]
- Lee, G.H.; Lee, W.J.; Hur, J.; Kim, E.; Lee, H.G.; Seo, H.G. Ginsenoside Re mitigates 6-hydroxydopamine-induced oxidative stress through upregulation of GPX4. Molecules 2020, 25, 188. [Google Scholar] [CrossRef]
- Kiefer, D.; Pantuso, T. Panax ginseng. Am. Fam. Physician 2003, 68, 1539–1542. [Google Scholar]
- Hahn, E.J.; Kim, Y.S.; Yu, K.W.; Jeong, C.S.; Paek, K.Y. Adventitious root cultures of Panax ginseng C. A. Meyer and ginsenoside production through large-scale bioreactor system. J. Plant Biotechnol. 2003, 5, 1–6. [Google Scholar]
- Paek, K.Y.; Mruthy, H.N.; Hahn, E.J.; Zhong, J.J. Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv. Biochem. Eng. Biotechnol. 2009, 113, 151–176. [Google Scholar] [PubMed]
- Yu, K.W.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Ginsenoside production by hairy root cultures of Panax ginseng: Influence of temperature and light quality. Biochem. Eng. J. 2005, 23, 53–56. [Google Scholar] [CrossRef]
- Wu, C.H.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Establishment of adventitious root co-culture Ginseng and Echinacea for the production of secondary metabolites. Acta Physiol. Plant. 2008, 30, 891–896. [Google Scholar] [CrossRef]
- Yu, K.W.; Murthy, H.N.; Jeong, C.S.; Hahn, E.J.; Paek, K.Y. Organic germanium stimulates the growth of ginseng adventitious roots and ginsenoside production. Process Biochem. 2005, 40, 2959–2961. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, B.R.; Kim, Y.C.; Choi, D.J.; Lee, Y.S.; Kim, G.S.; Baek, N.I.; Kim, S.Y.; Lee, D.Y. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017, 22, 2147. [Google Scholar] [CrossRef]
- Zhu, H.L.; Liu, J.L.; Lin, H.Q.; Zhang, Y.; Yang, N.; Zhou, B.S.; Wang, Z.Y.; Hsu, A.C.Y.; Liu, J.P.; Li, P.Y. UPLC-QTOF-MS-guided isolation of anti-COPD ginsenosides from wild ginseng. RSC Adv. 2019, 66, 38658–38668. [Google Scholar] [CrossRef]
- Jie, Y.H.; Cammisuli, S.; Baggiolini, M. Immunomodulatory effects of Panax ginseng C.A. Meyer in the mouse. Agents Actions 1984, 15, 386–391. [Google Scholar] [CrossRef]
- Scaglione, F.; Ferrara, F.; Dugnani, S.; Falchi, M.; Santoro, G.; Fraschini, F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp. Clin. Res. 1990, 16, 537–542. [Google Scholar]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef]
- Shin, J.Y.; Song, J.Y.; Yun, Y.S.; Yang, H.O.; Rhee, D.K.; Pyo, S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 2002, 24, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Bae, K.G.; Jung, I.S.; Kim, C.H.; Yun, Y.S.; Song, J.Y. Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J. Infect. 2002, 45, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Takei, M.; Tachikawa, E.; Hasegawa, H.; Lee, J.J. Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem. Pharmacol. 2004, 68, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Kenarova, B.; Neychev, H.; Hadjiivanova, C.; Petkov, V.D. Immunomodulating activity of ginsenoside Rg1 from Panax ginseng. Jpn. J. Pharmacol. 1990, 54, 447–454. [Google Scholar] [CrossRef] [PubMed]
- See, D.M.; Broumand, N.; Sahl, L.; Tilles, J.G. In vitro effects of echinacea and ginseng on natural killer and antibodydependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients. Immunopharmacology 1997, 35, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Liou, C.J.; Huang, W.C.; Tseng, J. Long-term oral administration of ginseng extract modulates humoral immune response and spleen cell functions. Am. J. Chin. Med. 2005, 33, 651–661. [Google Scholar] [CrossRef]
- Liou, C.J.; Li, M.L.; Tseng, J. Intraperitoneal injection of ginseng extract enhances both immunoglobulin and cytokine production in mice. Am. J. Chin. Med. 2004, 32, 75–88. [Google Scholar] [CrossRef]
- Liou, C.J.; Huang, W.C.; Tseng, J. Short-term oral administration of ginseng extract induces type-1 cytokine production. Immunopharmacol. Immunotoxicol. 2006, 28, 227–240. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, Y.S.; Jung, I.S.; Park, S.Y.; Chung, H.Y.; Lee, I.R.; Yun, Y.S. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 1998, 64, 110–115. [Google Scholar] [CrossRef]
- Nakaya, T.A.; Kita, M.; Kuriyama, H.; Iwakura, Y.; Imanishi, J. Panax ginseng induces production of proinflammatory cytokines via toll-like receptor. J. Interferon Cytokine Res. 2004, 24, 93–100. [Google Scholar] [CrossRef]
- Liu, J.L.; Ma, X.; Zhang, Y.; Xing, D.M.; Deng, S.F.; Sun, Y.J.; Wang, L. Spectrum-effect relationships on enriching blood activities of aerial parts of Angelica sinenis. Zhongguo Zhong Yao Za Zhi 2019, 44, 1416–1424. (In Chinese) [Google Scholar] [PubMed]
- Christensen, L.P.; Kaack, K.; Fretté, X.C. Selection of elderberry (sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol. 2008, 227, 293–305. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Bogucka, B. The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. J. Food Compost. Anal. 2016, 47, 69–75. [Google Scholar] [CrossRef]
- Lin, H.Q.; Zhu, H.L.; Tan, J.; Wang, C.Z.; Dong, Q.H.; Wu, F.L.; Wang, H.; Liu, J.L.; Li, P.Y.; Liu, J.P. Comprehensive investigation on Metabolites of wild-simulated American ginseng root based on ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J. Agric. Food Chem. 2019, 67, 5801–5819. [Google Scholar] [CrossRef] [PubMed]
- Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia. Biomed. Chromatogr. 2005, 19, 586–605. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Murakami, T.; Yashiro, K.; Yamahara, J.; Matsuda, H.; Saijoh, R.; Tanaka, O. Bioactive saponins and glycosides. XI. structures of new dammarane-type triterpene oligoglycosides, quinquenosides I, II, III, IV, and V, from American ginseng, the roots of Panax quinquefolium L. Chem. Pharm. Bull. 1998, 46, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Dan, M.; Su, M.M.; Gao, X.F.; Zhao, T.; Zhao, A.H.; Xie, G.X.; Qiu, Y.P.; Zhou, M.M.; Liu, Z.; Jia, W. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 2008, 69, 2237–2244. [Google Scholar] [CrossRef]
- Ha, L.T.; Pawlicki-Jullian, N.; Pillon-Lequart, M.; Boitel-Conti, M.; Duong, H.X.; Gontier, E. Hairy root cultures of Panax vietnamensis, a promising approach for the production of ocotillol-type ginsenosides. Plant Cell Tiss. Organ Cult. 2016, 126, 93–103. [Google Scholar] [CrossRef]
- Chen, Y.J.; Xu, L.; Zhao, Y.C.; Zhao, Z.Z.; Chen, H.B.; Yi, T.; Qin, M.J.; Liang, Z.T. Tissue-specific metabolite profiling and quantitative analysis of ginsenosides in Panax quinquefolium using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. Chem. Cent. J. 2015, 9, 1–13. [Google Scholar] [CrossRef]
- Tang, S.Y.; Liu, S.; Liu, Z.Q.; Song, F.R.; Liu, S.Y. Analysis and identification of the chemical constituents of Ding-Zhi-Xiao-Wan prescription by HPLC-IT-MSn and HPLC-Q-TOF-MS. Chin. J. Chem. 2015, 33, 451–462. [Google Scholar] [CrossRef]
- Du, Z.; Li, J.; Zhang, X.; Pei, J.; Huang, L. An integrated LCMS-based strategy for the quality assessment and discrimination of three Panax species. Molecules 2018, 23, 2988. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kubota, M.; Zhu, S.; Sankawa, U.; Komatsu, K. Analysis of Ginsenosides in Ginseng Drugs Using Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Nat. Prod. Commun. 2007, 2, 625–632. [Google Scholar] [CrossRef]
- Lin, H.Q. Chemical Composition of American Ginseng, Its Anti-COPD Activity and Pharmacokinetics of Noval Active Compounds. Ph.D. Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Rapid characterization of chemical constituents of Platycodon grandiflorum and its adulterant Adenophora stricta by UPLC-QTOF-MS/MS. J. Mass Spectrom. 2017, 52, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Ye, M.; Qiao, X.; Liu, C.F.; Miao, W.J.; Bo, T.; Tao, H.Y.; Guo, D.A. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal. Chim. Acta 2012, 739, 56–66. [Google Scholar] [PubMed]
- Yu, K.W.; Gao, W.; Hahn, E.J.; Paek, K.Y. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem. Eng. J. 2002, 11, 211–215. [Google Scholar] [CrossRef]
- Kang, S.; Min, H. Ginseng, the ‘Immunity Boost’: The Effects of Panax ginseng on Immune System. J. Ginseng Res. 2012, 36, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, D.H.; Jo, S.; Cho, M.J.; Cho, Y.R.; Lee, Y.J.; Byun, S. Immunomodulatory functional foods and their molecular mechanisms. Exp. Mol. Med. 2022, 54, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res. 2020, 161, 105263. [Google Scholar] [CrossRef]
- Vinh, L.B.; Park, J.U.; Duy, L.X.; Nguyet, N.T.M.; Yang, S.Y.; Kim, Y.R.; Kim, Y.H. Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production. Food Sci. Biotechnol. 2018, 28, 237–242. [Google Scholar] [CrossRef]
- Wang, M.; Yan, S.J.; Zhang, H.T.; Li, N.; Liu, T.; Zhang, Y.L.; Li, X.X.; Ma, Q.; Qiu, X.C.; Fan, Q.Y.; et al. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model. Oncol. Lett. 2016, 13, 681–685. [Google Scholar] [CrossRef]
- Tam, D.N.H.; Truong, D.H.; Nguyen, T.T.H.; Quynh, L.N.; Tran, L.; Nguyen, H.D.; Shamandy, B.E.; Le, T.M.H.; Tran, D.K.; Sayed, D.; et al. Ginsenoside Rh1: A Systematic Review of Its Pharmacological Properties. Planta Med. 2018, 84, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Kim, K.H.; Sohn, E.; Park, J.D.; Kim, B.O.; Moon, E.Y.; Rhee, D.K.; Pyo, S. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-gamma results in enhanced macrophage function through activation of the NF-kappaB pathway. Biosci. Biotechnol. Biochem. 2008, 72, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Bryant, D.L.; Farone, A.L. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions. Molecules 2020, 25, 5854. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.O.; Choi, E.; Shin, K.K.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Hossain, M.A.; Kim, H.S.; Yi, Y.S.; Kim, D.; et al. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J. Ginseng Res. 2019, 43, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Wang, C.Z.; Lin, H.Q.; Liu, Y.H.; Li, Y.M.; Zhao, Y.; Li, P.Y.; Liu, J.P. Discovery of the Potential Biomarkers for Discrimination between Hedyotis diffusa and Hedyotis corymbosa by UPLC-QTOF/MS Metabolome Analysis. Molecules 2018, 23, 1525–1549. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Simpson, M.A.; Gozzo, J.J. Spectrophotometric determination of lymphocyte mediated sheepp red blood cell hemopysis in vitro. J. Immunol. Methods 1978, 21, 159–165. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, L.; Li, S.; Zhao, X.; Zhang, Q.; Xiong, Q. Preliminary characterization and immunostimulatory activity of polysaccharides from Glossaulax didyma. Food Chem. Toxicol. 2013, 62, 226–230. [Google Scholar] [CrossRef]
- Okimura, T.; Ogawa, M.; Yamauchi, T. Stress and immune responses. III. Effect of restraint stress on delayed type hypersensitivity (DTH) response, natural killer (NK) activity and phagocytosis in mice. Jpn. J. Pharmacol. 1986, 41, 229–235. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, J.; Cai, M.; Li, C.; Zhang, D.; Hu, Y.; Li, Z. A health food high-peptide meal alleviates immunosuppression induced by hydrocortisone and cyclophosphamide in mice. Food Funct. 2013, 4, 1352–1359. [Google Scholar]
No. | tR (min) | Formula | Theoretical Mass (Da) | Calculated Mass (Da) | Mass Error (ppm) | MSE Fragmentation | Identification | Reference |
---|---|---|---|---|---|---|---|---|
1 | 0.59 | C12H22O11 | 342.1162 | 342.1155 | –2.15 | 387.1137 [M+HCOO]−, 341.1084 [M−H]−, 179.0562 [M−H−Glu]− | Sucrose | s |
2 | 0.65 | C7H12O6 | 192.0634 | 192.0656 | 0.65 | 191.0584 [M−H]−, 173.0460 [M−H−H2O]−, 127.0407 [M−H−H2O−HCOOH]− | Quinic acid | s |
3 | 1.68 | C11H12N2O2 | 204.0899 | 204.0905 | 3.04 | 203.0832 [M−H]−, 159.0938 [M−H−CO2]− | Tryptophan | s |
4 | 2.50 | C16H18O9 | 354.0951 | 354.0944 | −1.93 | 353.0871 [M−H]−, 191.0562 [M−H−C9H6O3]−, 173.0463 [M−H−C9H8O4]− | 1-O-caffeoylquinic acid | [31] |
5 | 4.31 | C16H18O8 | 338.1002 | 338.0992 | −2.95 | 337.0920 [M−H]−, 191.0559 [M−H−C9H6O2]−, 145.0300 [M−H−C7H12O6]− | 3-O-p-Coumaroylquinic acid | [32] |
6 | 5.02 | C17H20O9 | 368.1107 | 368.1098 | –2.44 | 367.1026 [M−H]−, 179.0356 [M−H−C8H12O5]−, 135.0455 [M−H−C9H12O7]− | Methyl 4-caffeoylquinate | [33] |
7 | 5.94 | C48H82O19 | 962.5450 | 962.5436 | –1.50 | 1007.5418 [M+HCOO]−, 961.5354 [M−H]−, 799.4800 [M−H−Glu]− | Notoginsenoside N | [34] |
8 | 5.94 | C48H82O19 | 962.5450 | 962.5436 | −1.43 | 1007.5418 [M+HCOO]−, 781.4742 [M−H−Glu]− | Majoroside F6 | [35] |
9 | 6.61 | C30H54O5 | 494.3971 | 494.3958 | −2.49 | 539.3940 [M+HCOO]−, 347.2520 [M−C8H19O2]− | Dammar-3β, 6α, 12β, 20R, 25-pentaol | CFM-ID |
10 | 7.26 | C48H82O19 | 962.5450 | 962.5428 | −2.25 | 961.5325[M−H]−, 621.4401[M−H−H2O−2Glu]− | Notoginsenoside R6 | [36] |
11 | 7.72 | C48H82O19 | 962.5450 | 962.5414 | −3.62 | 1007.5393 [M+HCOO]−, 799.4836 [M−H−Glu]− | 20-O-D-glucopyranosyl-ginsenoside Rf | [37] |
12 | 7.74 | C47H80O18 | 932.5345 | 932.5318 | –2.84 | 977.5300 [M+HCOO]−, 799.4836 [M−H−Xyl]− | Notoginsenoside R1 | s |
13 | 8.17 | C42H72O14 | 800.4922 | 800.4882 | –5.04 | 845.4864 [M+HCOO]−, 799.6775 [M−H]−, 637.4304 [M−H−Glu]−, 476.3833 [M−H−2Glu]− | Ginsenoside Rg1 | s |
14 | 8.21 | C48H82O18 | 946.5501 | 946.5454 | –4.98 | 991.5436 [M+HCOO]−, 945.5383 [M−H]−, 783.4896 [M−H−Glu]−, 476.3833 [M−H−2Glu−Rha]− | Ginsenoside Re | s |
15 | 8.52 | C44H74O15 | 842.5028 | 842.5006 | −2.58 | 841.4933 [M−H]−, 799.4831 [M−Ac]−, 679.4391 [M−Rha]−, 637.4319 [M−Ac−Rha]− | Vinaginsenoside R1 | [38] |
16 | 8.80 | C51H84O21 | 1032.5505 | 1032.5474 | –3.00 | 1031.5401 [M−H]−, 987.5516 [M−H−Ac]− | Malonyl-ginsenoside Re | [39] |
17 | 9.20 | C48H82O19 | 962.5450 | 962.5419 | –3.25 | 1007.5401 [M+HCOO]−, 961.5376 [M−H]−, 799.4810 [M−H−Glc]− | Ginsenoside Re3 | [40] |
18 | 9.41 | C48H82O19 | 962.5450 | 962.5426 | –2.57 | 1007.5408 [M+HCOO]−, 961.5353 [M−H]−, 946.5444 [M−H−CH3]−, 800.4871 [M−H−Glu]− | Majoroside F1 | [34] |
19 | 10.23 | C42H72O14 | 800.4922 | 800.4875 | –5.83 | 845.4857 [M+HCOO]−, 799.4807 [M−H]−, 637.4313 [M−H−Glu]−, 475.3780 [M−H−2Glu]− | Ginsenoside Rf | s |
20 | 10.51 | C41H70O13 | 770.4816 | 770.4783 | –4.38 | 815.4765 [M+HCOO]−, 769.4706 [M−H]−, 637.4313 [M−H−Ara]− | Ginsenoside F5 | s |
21 | 10.59 | C54H92O23 | 1108.6029 | 1108.5960 | –6.22 | 1153.5942 [M+HCOO]−, 1107.5890 [M−H]−, 945.5387 [M−H−Glu]−, 765.4771 [M−H−2Glu]− | Ginsenoside Rb1 | s |
22 | 10.69 | C57H94O26 | 1194.6033 | 1194.5973 | –5.05 | 1193.5900 [M−H]−, 1089.5804 [M−H−mal]−, 927.5304 [M−H−mal−Glu]− | Malonyl-ginsenoside Rb1 | [34] |
23 | 10.72 | C41H70O13 | 770.4816 | 770.4791 | –3.34 | 815.4773 [M+HCOO]−, 769.4724 [M−H]−, 637.4290 [M−H−Ara]−, 475.3764 [M−H−Ara−Glu]− | Notoginsenoside R2 | s |
24 | 10.79 | C53H90O22 | 1078.5924 | 1078.5870 | –4.96 | 1123.5852 [M+HCOO]−, 915.5283 [M−H−Glu]−, 765.4773 [M−H−Glu−Ara]−, 621.4376 [M−H−2Glu−Ara]− | Ginsenoside Rb2 | s |
25 | 10.82 | C42H72O13 | 784.4973 | 784.4936 | –4.77 | 829.4918 [M+HCOO]−, 637.4306 [M−H−Rha]−, 475.3793 [M−H−Glu−Rha]− | 20(R)-Ginsenoside Rg2 | s |
26 | 10.86 | C36H62O9 | 638.4394 | 638.4374 | –3.07 | 683.4356 [M+HCOO]−, 637.4293 [M−H]−, 475.3793 [M−H−Glu]− | 20(S)-Ginsenoside Rh1 | s |
27 | 10.91 | C56H92O25 | 1164.5928 | 1164.5875 | –4.53 | 1163.5802 [M−H]−, 1119.5900 [M−H−CO2]−, 1059.5708 [M−H−Mal]−, 1031.5398 [M−H−Ara]−, 945.5390 [M−H−Ara−Mal]− | Malonyl-ginsenoside Rc | [34] |
28 | 10.97 | C48H76O19 | 956.4981 | 956.4938 | –4.49 | 955.4865 [M−H]−, 793.4361 [M−H−Glc]− | Ginsenoside Ro | s |
29 | 11.03 | C53H90O22 | 1078.5924 | 1078.5856 | –6.26 | 1123.5852 [M+HCOO]−, 1077.5802 [M−H]−, 915.5301 [M−H−Glu]−, 783.4883[M−H−Glu−Xyl]−, 621.4378 [M−H−2Glu−Xyl]− | Ginsenoside Rb3 | s |
30 | 11.20 | C56H92O25 | 1164.5928 | 1164.5875 | –4.53 | 1163.5802 [M−H]−, 1060.4652 [M−H−Mal]−, 928.5332 [M−H−Ara−Mal]−, 619.4217 [M−H−2Glu−Ara−Mal]− | Malonyl-ginsenoside Rb2 | [34] |
31 | 11.29 | C47H74O18 | 926.4875 | 926.4863 | −1.34 | 925.4790 [M−H]−, 569.3833 [M−H−Ara−Glu−HCOOH]− | Chikusetsu saponin Ib | [41] |
32 | 11.45 | C48H82O17 | 930.5552 | 930.5524 | –3.02 | 873.4846 [M+HCOO]−, 784.4798 [M−H−COCH3]−, 695.2912 [M−H−Xyl]−, 491.4938 [M−H−Xyl−Glu−Ac]−, 455.2535 [M−H−Xyl−Glu−Ac−2H2O]− | Gypenoside XI | [34] |
33 | 11.49 | C55H92O23 | 1120.6029 | 1120.5987 | –3.75 | 1119.5915 [M−H]−, 1077.5815 [M−H−Ac]−, 915.5313 [M−H−Ac−Glu]−, 781.4724 [M−H−Ac−Ara−Glu]− | Ginsenoside Rs1 | s |
34 | 11.49 | C36H62O9 | 638.4394 | 638.4381 | –2.01 | 683.4363 [M+HCOO]−, 637.4310 [M−H]−, 475.3796 [M−H−Glu]− | Ginsenoside F1 | s |
35 | 11.50 | C53H90O22 | 1078.5924 | 1078.5896 | –2.55 | 1123.5878 [M+HCOO]−, 1077.5646 [M−H]−, 915.5313 [M−H−Glu]−, 781.4724 [M−H−Ara−Glu]−, 576.4474 [M−H−Ara−2Glu]− | Ginsenoside Rc | s |
36 | 11.65 | C48H82O18 | 946.5501 | 946.5448 | –5.65 | 991.5430 [M+HCOO]−, 945.5379 [M−H]−, 783.4878 [M−H−Glu]−, 621.4353 [M−H−2Glu]− | Ginsenoside Rd | s |
37 | 11.76 | C51H84O21 | 1032.5505 | 1032.5457 | –4.65 | 1031.5384 [M−H]−, 987.5494 [M−H−CO2]−, 927.5294 [M−H−mal]−, 765.4797 [M−H−mal−Glu]− | Malonyl-ginsenoside Rd | [34] |
38 | 11.86 | C55H92O23 | 1120.6029 | 1120.5991 | –3.45 | 1165.5973 [M+HCOO]−, 1159.5869 [M−H]−, 985.5371 [M−H−Ara]−, 915.5299 [M−H−Glu−Ac]− | Ginsenoside Rs2 | s |
39 | 12.08 | C48H82O18 | 946.5501 | 946.5456 | –4.81 | 991.5438 [M+HCOO]−, 945.5389 [M−H]−, 783.4880 [M−H−Glu]−, 621.4338 [M−H−2Glu]− | Gypenoside XVII | s |
40 | 12.25 | C47H80O17 | 916.5396 | 916.5367 | –3.16 | 961.5349 [M+HCOO]−, 915.5290 [M−H]−, 783.4881 [M−H−Ara]− | Notoginsenoside Fe | [34] |
41 | 12.43 | C47H80O17 | 916.5396 | 916.5342 | –5.87 | 961.5324 [M+HCOO]−, 915.5276 [M−H]−, 783.4874 [M−H−Ara]−, 621.4362 [M−H−Ara−Glu]− | Ginsenoside Rd2 | s |
42 | 12.59 | C47H80O17 | 916.5396 | 916.5356 | –4.28 | 961.5338 [M+HCOO]−, 915.5283 [M−H]−, 621.4359 [M−H−Glu−Ara]− | Notoginsenoside Fd | s |
43 | 12.70 | C47H80O17 | 916.5396 | 916.5343 | −5.48 | 961.7556 [M+HCOO]−, 915.7454 [M−H]−, 765.4754 [M−H−Xyl]− | Chikusetsu saponin Ⅲ | [42] |
44 | 13.34 | C48H82O17 | 930.5552 | 930.5524 | −2.80 | 975.5507 [M+HCOO]−, 765.4807 [M−H−Rha]− | Gypenoside X | [43] |
45 | 13.56 | C42H72O13 | 784.4973 | 784.4933 | –5.10 | 829.4915 [M+HCOO]−, 783.4892 [M−H]−, 621.4357 [M−H−Glu]−, 459.4833 [M−H−2Glu]− | Ginsenoside F2 | [34] |
46 | 14.05 | C42H66O14 | 794.4453 | 794.4407 | –5.74 | 839.4409 [M+HCOO]−, 795.4334 [M−H]−, 613.3729 [M−H−Glu]−, 569.3844 [M−H−Glu−H2O−Ac]− | Chikusetsusaponin IVA | [34] |
47 | 14.52 | C42H72O13 | 784.4973 | 784.4927 | –5.85 | 829.4909 [M+HCOO]−, 783.4880 [M−H]−, 621.4374 [M−H−Glc]− | 20(S)-Ginsenoside Rg3 | s |
48 | 14.60 | C42H70O12 | 766.4867 | 766.4840 | –3.58 | 811.4822 [M+HCOO]−, 765.4780 [M−H]−, 747.4664 [M+H−H2O]−, 619.4188 [M−H−Rha]− | Ginsenoside F4 | s |
49 | 14.67 | C42H72O13 | 784.4973 | 784.4945 | –3.62 | 829.4921 [M+HCOO]−, 783.4902 [M−H]−, 621.4396 [M−H−Glu]− | 20(R)-Ginsenoside Rg3 | s |
50 | 15.01 | C41H64O13 | 764.4347 | 764.4325 | −2.93 | 763.4252 [M−H]−, 613.3720 [M−H−Xyl]−, 569.3848 [M−H−Xyl−CO2]− | Pseudoginsenoside Rp1 | CFM-ID |
51 | 15.28 | C41H70O12 | 754.4867 | 754.4847 | −2.50 | 799.4829 [M+HCOO]−, 621.4355 [M+H−H2O−Xyl]−, | Chikusetsusaponin Ia | CFM-ID |
52 | 16.27 | C30H52O4 | 476.3865 | 476.3860 | −0.89 | 521.3843 [M+HCOO]−, 475.3791 [M−H]− | 20(S)-Protopanaxatriol | s |
53 | 16.75 | C36H62O8 | 622.4445 | 622.4425 | –3.22 | 667.4407 [M+HCOO]−, 621.4346 [M−H]−, 459.3818 [M−H−Glu]− | Ginsenoside Rh2 | s |
54 | 16.82 | C42H70O12 | 766.4867 | 766.4854 | −1.69 | 811.4837 [M+HCOO]−, 765.6676 [M−H]− | Ginsenoside Rg4 | [44] |
55 | 17.05 | C42H70O12 | 766.4867 | 766.4855 | –1.64 | 811.4837 [M+HCOO]−, 765.4777 [M−H]−, 603.4244 [M−H−Glu]− | Ginsenoside Rg5 | [45] |
56 | 17.35 | C36H62O8 | 622.4445 | 622.4431 | –2.13 | 667.4413 [M+HCOO]−, 621.4354 [M−H]−, 459.3826 [M−H−Glu]− | Ginsenoside CK | s |
57 | 21.34 | C18H30O2 | 278.2246 | 278.2244 | –0.82 | 277.2244 [M−H]−, 259.2146 [M−H−H2O]−, 135.1178 [M−H−C8H14O2]− | Linolenic acid | s |
58 | 22.80 | C18H32O2 | 280.2402 | 280.2398 | –1.54 | 325.2387 [M+HCOO]−, 279.2325 [M−H]−, 261.2225 [M−H−H2O]− | Linoleic acid | s |
59 | 24.49 | C18H34O2 | 282.2559 | 282.2552 | –2.34 | 327.2541 [M+HCOO]−, 281.2479 [M−H]−, 236.2496 [M−H−COOH] | 9-Octadecenoic acid | s |
60 | 27.95 | C35H60O6 | 576.4390 | 576.4377 | −2.03 | 621.4359 [M+HCOO]−, 575.3045 [M−H]− | β-daucosterol | CFM-ID |
Lymphocyte Proliferation | QHS Assay | Hemolysis Assay | Phagocytic Function | NK Cell Activity | |
---|---|---|---|---|---|
Stimulation Index | OD | HC50 U/mL | Phagocytosis Rate % | Cell Activity % | |
Control | 0.231 ± 0.038 | 0.297 ± 0.010 | 56.031 ± 5.465 | 25.30 ± 1.64 | 11.94 ± 3.92 |
21 mg/kg BW | 0.396 ± 0.023 | 0.346 ± 0.007 | 71.531 ± 13.578 | 33.20 ± 2.90 | 35.29 ± 12.25 |
42 mg/kg BW | 0.358 ± 0.033 | 0.345 ± 0.008 | 81.651 ± 21.554 | 42.40 ± 4.22 | 39.64 ± 3.65 |
83 mg/kg BW | 0.317 ± 0.037 | 0.325 ± 0.005 | 91.397 ± 48.498 | 48.90 ± 3.07 | 50.18 ± 1.49 |
125 mg/kg BW | 0.336 ± 0.050 | 0.387 ± 0.032 | 91.248 ± 40.844 | 72.00 ± 3.92 | 38.89 ± 6.59 |
No. | Compound Name | Degree |
---|---|---|
1 | 20(S)-Protopanaxatriol | 37 |
2 | Ginsenoside F1 | 35 |
3 | Ginsenoside Rh2 | 34 |
4 | Ginsenoside CK | 32 |
5 | 20(S)-Ginsenoside Rg3 | 25 |
6 | Ginsenoside Rg5 | 16 |
7 | 20(E)-Ginsenoside F4 | 12 |
8 | Ginsenoside Rg4 | 12 |
9 | 20(S)-Ginsenoside Rh1 | 12 |
10 | Ginsenoside Rg1 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, X.; Chi, H.; Li, Z.; Wang, C.; Wang, Q.; Feng, H.; Li, P. A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects. Molecules 2024, 29, 111. https://doi.org/10.3390/molecules29010111
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects. Molecules. 2024; 29(1):111. https://doi.org/10.3390/molecules29010111
Chicago/Turabian StyleChen, Hong, Xiangzhu Li, Hang Chi, Zhuo Li, Cuizhu Wang, Qianyun Wang, Hao Feng, and Pingya Li. 2024. "A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects" Molecules 29, no. 1: 111. https://doi.org/10.3390/molecules29010111
APA StyleChen, H., Li, X., Chi, H., Li, Z., Wang, C., Wang, Q., Feng, H., & Li, P. (2024). A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects. Molecules, 29(1), 111. https://doi.org/10.3390/molecules29010111