Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Optical and Mesomorphic Properties
2.3. Comparison with Related Materials
2.4. DFT Study
2.4.1. Optimized Geometry and Thermal Parameters
2.4.2. Frontier Molecular Orbitals
2.4.3. Chemical Reactivity Descriptors
2.4.4. Molecular Electrostatic Potential (MEP)
3. Conclusions
- Except for the shortest chain derivative I6, all synthesized compounds show enantiotropic temperature mesomorphic ranges;
- The presently investigated compounds and the previously reported trifluoromethyl and thioether systems were compared and revealed to the benzyloxy group impact the smectogenic properties are totally removed from the N phases;
- Both the length of the alkoxy chain and the rigidity of the terminal benzyloxy substituent have a significant impact on the geometrical characteristics of the formed compounds;
- By enhancing the lateral attraction, smectic mesophase is improved as the dipole moment increases;
- The electrical properties of the terminal substituent had an effect on the FMOs energy gap and the global softness (S).
4. Experimental
4.1. Instruments and Apparatus
4.2. General Method for Synthesis of (E)-4-(alkyloxy)-N-(4-(benzyloxy)benzylidene)aniline In
- (E)-4-(hexyloxy)-N-(4-(benzyloxy)benzylidene)aniline I6
- (E)-4-(octyloxy)-N-(4-(benzyloxy)benzylidene)aniline I8
- (E)-4-(hexdecyloxy)-N-(4-(benzyloxy)benzylidene)aniline I16
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Imrie, C.T.; Henderson, P.; Yeap, G.-Y. Liquid crystal oligomers: Going beyond dimers. Liq. Cryst. 2009, 36, 755–777. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Lee, H.-C.; Mahmood, W.A.K.; Imrie, C.T.; Takeuchi, D.; Osakada, K. Synthesis, thermal and optical behaviour of non-symmetric liquid crystal dimers α-(4-benzylidene-substituted-aniline-4′-oxy)-ω-[pentyl-4-(4′-phenyl) benzoateoxy] hexane. Phase Transit. 2011, 84, 29–37. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Osman, F.; Imrie, C.T. Non-symmetric dimers: Effects of varying the mesogenic linking unit and terminal substituent. Liq. Cryst. 2015, 42, 543–554. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Hng, T.-C.; Yeap, S.-Y.; Gorecka, E.; Ito, M.M.; Ueno, K.; Okamoto, M.; Mahmood, W.A.K.; Imrie, C.T. Why do non-symmetric dimers intercalate? The synthesis and characterisation of the α-(4-benzylidene-substituted-aniline-4′-oxy)-ω-(2-methylbutyl-4′-(4″-phenyl) benzoateoxy) alkanes. Liq. Cryst. 2009, 36, 1431–1441. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pathak, S.K.; De, J.; Pal, S.K.; Achalkumar, A.S. Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores. J. Mater. Chem. C 2018, 6, 1844–1852. [Google Scholar] [CrossRef]
- Pathak, S.K.; Nath, S.; De, J.; Pal, S.K.; Achalkumar, A.S. The effect of regioisomerism on the mesomorphic and photophysical behavior of oxadiazole-based tris(N-salicylideneaniline)s: Synthesis and characterization. New J. Chem. 2017, 41, 9908–9917. [Google Scholar] [CrossRef]
- Pramanik, A.; Das, M.K.; Das, B.; Żurowska, M.; Dąbrowski, R. Electro-optical properties of a new series of fluorinated antiferroelectric orthoconic liquid crystalline esters. Liq. Cryst. 2015, 42, 412–421. [Google Scholar] [CrossRef]
- Heilmeier, G.H.; Castellano, J.A.; Zanoni, L.A. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett. 1968, 13, 91–92. [Google Scholar] [CrossRef]
- Heilmeier, G.; Zanoni, L.; Barton, L. Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals. Proc. IEEE 1968, 56, 1162–1171. [Google Scholar] [CrossRef]
- Goodby, J. Ferroelectric liquid crystals. Principles, properties and applications. Ferroelectr. Relat. Phenom. 1991, 7, 10006878793. [Google Scholar]
- Carlton, R.J.; Hunter, J.T.; Miller, D.S.; Abbasi, R.; Mushenheim, P.C.; Tan, L.N.; Abbott, N.L. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev. 2013, 1, 29–51. [Google Scholar] [CrossRef]
- Veerabhadraswamy, B.N.; Rao, D.S.S.; Yelamaggad, C.V. Ferroelectric liquid crystals: Synthesis and thermal behavior of optically active, three-ring schiff bases and salicylaldimines. Chem.—Asian J. 2018, 13, 1012–1023. [Google Scholar] [CrossRef]
- Huang, C.-C.; Hsu, C.-C.; Chen, L.-W.; Cheng, Y.-L. The effect of position of (S)-2-octyloxy tail on the formation of frustrated blue phase and antiferroelectric phase in Schiff base liquid crystals. Soft Matter 2014, 10, 9343–9351. [Google Scholar] [CrossRef]
- Segura, J.L.; Mancheño, M.J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671. [Google Scholar] [CrossRef]
- Gowda, A.; Jacob, L.; Joy, N.; Philip, R.; Pratibha, R.; Kumar, S. Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals. New J. Chem. 2018, 42, 2047–2057. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Naoum, M.M.; Al-Zahrani, S.A.; Ahmed, H.A. New nitro-laterally substituted azomethine derivatives; Synthesis, mesomorphic and computational characterizations. Molecules 2021, 26, 1927. [Google Scholar] [CrossRef]
- Singh, S. Liquid Crystals: Fundamentals; World Scientific: Singapore, 2002. [Google Scholar]
- Collings, P.J.; Hird, M.; Huang, C.C. Introduction to Liquid Crystals Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lin, Y.-H.; Wang, Y.-J.; Reshetnyak, V. Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 2017, 5, 111–143. [Google Scholar] [CrossRef]
- Collyer, A. Thermotropic liquid crystal polymers for engineering applications. Mater. Sci. Technol. 1989, 5, 309–322. [Google Scholar] [CrossRef]
- Picken, S.; Sikkema, D.; Boerstoel, H.; Dingemans, T.; van der Zwaag, S. Liquid crystal main-chain polymers for high-performance fibre applications. Liq. Cryst. 2011, 38, 1591–1605. [Google Scholar] [CrossRef]
- Hagen, R.; Bieringer, T. Photoaddressable polymers for optical data storage. Adv. Mater. 2001, 13, 1805–1810. [Google Scholar] [CrossRef]
- Cheng, H.K.F.; Basu, T.; Sahoo, N.G.; Li, L.; Chan, S.H. Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers 2012, 4, 889–912. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; White, T.; Urbas, A.; Li, Q. Light-driven nanoscale chiral molecular switch: Reversible dynamic full range color phototuning. Chem. Commun. 2010, 46, 3463–3465. [Google Scholar] [CrossRef] [PubMed]
- Blinov, L.M.; Palto, S.P. Cholesteric helix: Topological problem, photonics and electro-optics. Liq. Cryst. 2009, 36, 1037–1047. [Google Scholar] [CrossRef]
- Pathak, S.K.; Nath, S.; De, J.; Pal, S.K.; Achalkumar, A.S. Contrasting effects of heterocycle substitution and branched tails in the arms of star-shaped molecules. New J. Chem. 2017, 41, 4680–4688. [Google Scholar] [CrossRef]
- Dąbrowski, R. From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals. Liq. Cryst. 2015, 42, 783–818. [Google Scholar] [CrossRef]
- Goodby, J.W.; Mandle, R.J.; Davis, E.J.; Zhong, T.; Cowling, S.J. What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 2015, 42, 593–622. [Google Scholar] [CrossRef]
- Ahmed, H.A.; El-Atawy, M.A.; Alamro, F.S.; Al-Kadhi, N.S.; Alhaddad, O.A.; Omar, A.Z. Mesomorphic, Computational Investigations and Dyeing Applications of Laterally Substituted Dyes. Molecules 2022, 27, 8980. [Google Scholar] [CrossRef]
- Al-Zahrani, S.A.; Ahmed, H.A.; El-Atawy, M.A.; Abu Al-Ola, K.A.; Omar, A.Z. Synthetic, Mesomorphic, and DFT Investigations of New Nematogenic Polar Naphthyl Benzoate Ester Derivatives. Materials 2021, 14, 2587. [Google Scholar] [CrossRef]
- Alamro, F.S.; Ahmed, H.A.; El-Atawy, M.A.; Al-Zahrani, S.A.; Omar, A.Z. Induced Nematic Phase of New Synthesized Laterally Fluorinated Azo/Ester Derivatives. Molecules 2021, 26, 4546. [Google Scholar] [CrossRef]
- Hammood, A.J.; Kased, A.F.H.; Al-Karawi, A.J.M.; Raseen, S.R.; Tomi, I.; OmarAli, A.-A.B. Efficient and practical method for the synthesis of hydrophobic azines as liquid crystalline materials. Mol. Cryst. Liq. Cryst. 2017, 648, 114–129. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Heinen, M.; Jusys, Z.; Behm, R.J. Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation. ChemPhysChem 2007, 8, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.A.; El-Atawy, M.A. Synthesis, mesomorphic and geometrical approaches of new non-symmetrical system based on central naphthalene moiety. Liq. Cryst. 2021, 48, 1940–1952. [Google Scholar] [CrossRef]
- Al-Mutabagani, L.A.; Alshabanah, L.A.; Ahmed, H.A.; El-Atawy, M.A. Synthesis, optical and DFT characterizations of laterally fluorinated phenyl cinnamate liquid crystal non-symmetric system. Symmetry 2021, 13, 1145. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Alhaddad, O.A.; Ahmed, H.A. Experimental and geometrical structure characterizations of new synthesized laterally fluorinated nematogenic system. Liq. Cryst. 2021, 48, 2106–2116. [Google Scholar] [CrossRef]
- Alamro, F.S.; Tolan, D.A.; El-Nahas, A.M.; Ahmed, H.A.; El-Atawy, M.A.; Al-Kadhi, N.S.; Aziz, S.G.; Shibl, M.F. Wide Nematogenic Azomethine/Ester Liquid Crystals Based on New Biphenyl Derivatives: Mesomorphic and Computational Studies. Molecules 2022, 27, 4150. [Google Scholar] [CrossRef]
- Alamro, F.S.; Ahmed, H.A.; Bedowr, N.S.; Khushaim, M.S.; El-Atawy, M.A. New advanced liquid crystalline materials bearing bis-azomethine as central spacer. Polymers 2022, 14, 1256. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Ahmed, H.A.; Khan, M.T.; Al-Ola, K.A.; Al-Refai, H.; El-Atawy, M.A. New Self-Organizing Optical Materials and Induced Polymorphic Phases of Their Mixtures Targeted for Energy Investigations. Polymers 2022, 14, 456. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Omar, A.Z.; Alazmi, M.L.; Alsubaie, M.S.; Hamed, E.A.; Ahmed, H.A. Synthesis and characterization of new imine liquid crystals based on terminal perfluoroalkyl group. Heliyon 2023, 9, e14871. [Google Scholar] [CrossRef]
- Omar, A.Z.; El-Atawy, M.A.; Alsubaie, M.S.; Alazmi, M.L.; Ahmed, H.A.; Hamed, E.A. Synthesis and Computational Investigations of New Thioether/Azomethine Liquid Crystal Derivatives. Crystals 2023, 13, 378. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Li, T.; Yu, Z.; Zhang, S. Fuorinated hydrogen bonding liquid crystals based on Schiff base. J. Fluor. Chem. 2013, 147, 36–39. [Google Scholar] [CrossRef]
- Murza, M.M.; Kopelev, V.I. Synthesis and investigation of the mesomorphic properties of pyran derivatives. Chem. Heterocycl. Compd. 1992, 28, 272–274. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Omar, A.Z.; Mohamed, M.G.; Hamed, E.A.; El-Atawy, M.A. Characterization, DFT calculations and dyeing performance on polyester fabrics of some azo disperse dyes containing pyrazole ring. J. Saudi Chem. Soc. 2022, 27, 101594. [Google Scholar] [CrossRef]
- Omar, A.Z.; Hamdy, E.; Hamed, E.A.; Hafez, E.; Abdelkhalek, A. The curative activity of some arylidene dihydropyrimidine hydrazone against Tobacco mosaic virus infestation. J. Saudi Chem. Soc. 2022, 26, 101504. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Alshaye, N.A.; Elrubi, N.; Hamed, E.A.; Omar, A.Z. Pyrimidines-Based Heterocyclic Compounds: Synthesis, Cytoxicity Evaluation and Molecular Docking. Molecules 2022, 27, 4912. [Google Scholar] [CrossRef]
- Omar, A.Z.; Alshaye, N.A.; Mosa, T.M.; El-Sadany, S.K.; Hamed, E.A.; El-Atawy, M.A. Synthesis and antimicrobial activity screening of piperazines bearing n, n′-bis (1, 3, 4-thiadiazole) moiety as probable enoyl-ACP reductase inhibitors. Molecules 2022, 27, 3698. [Google Scholar] [CrossRef]
Comp. | Phase Transition Temperature (Enthalpy of Transition) | ∆S/R |
---|---|---|
I6 | H: Cr 135.0(47.4) I C: I 131.4 (5.5) SmA 107.7 (22.3) Cr | |
I8 | H: Cr 127.9 (53.0) SmA 129.2 (5.7) I C: I 128.8 (4.2) SmA 105.0 (27.2) Cr | |
I16 | H: Cr 118.5 (46.9) SmA 135.5 (6.4) I C: I 134.6 (5.1) SmA 102.3 (21.4) Cr |
Compound | ZPE (Kcal/Mol) | Thermal Energy (Kcal/Mol) | Enthalpy (Kcal/Mol) | Gibbs Free Energy (Kcal/Mol) | Entropy (Cal mol.k) | Polarizability (α) Bohr 3 | Dipole Moment (D) |
---|---|---|---|---|---|---|---|
I6 | 308.622 | 325.451 | 326.044 | 269.085 | 191.042 | 348.111 | 1.484 |
I8 | 344.690 | 363.716 | 364.308 | 301.278 | 211.409 | 373.355 | 1.472 |
I16 | 487.347 | 513.274 | 513.867 | 433.658 | 269.024 | 452.945 | 0.992 |
Parameter | I6 | I8 | I16 |
---|---|---|---|
EHOMO (eV) | −5.53139 | −5.50037 | −5.19643 |
ELUMO (eV) | −1.56598 | −1.53414 | −1.21904 |
∆E (eV) | 3.96542 | 3.96623 | 3.97739 |
IP (eV) | 5.53139 | 5.50037 | 5.19643 |
EA (eV) | 1.56598 | 1.53414 | 1.21904 |
χ (eV) | 3.54868 | 3.51726 | 3.20773 |
µ (eV) | −3.54868 | −3.51726 | −3.20773 |
η (eV) | 1.98271 | 1.98312 | 1.98869 |
σ (eV−1) | 0.50436 | 0.50426 | 0.50284 |
ω (eV) | 3.17575 | 3.11910 | 2.58701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, A.Z.; Alazmi, M.L.; Alsubaie, M.S.; Hamed, E.A.; Ahmed, H.A.; El-Atawy, M.A. Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties. Molecules 2023, 28, 3804. https://doi.org/10.3390/molecules28093804
Omar AZ, Alazmi ML, Alsubaie MS, Hamed EA, Ahmed HA, El-Atawy MA. Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties. Molecules. 2023; 28(9):3804. https://doi.org/10.3390/molecules28093804
Chicago/Turabian StyleOmar, Alaa Z., Mohammed L. Alazmi, Mai S. Alsubaie, Ezzat A. Hamed, Hoda A. Ahmed, and Mohamed A. El-Atawy. 2023. "Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties" Molecules 28, no. 9: 3804. https://doi.org/10.3390/molecules28093804
APA StyleOmar, A. Z., Alazmi, M. L., Alsubaie, M. S., Hamed, E. A., Ahmed, H. A., & El-Atawy, M. A. (2023). Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties. Molecules, 28(9), 3804. https://doi.org/10.3390/molecules28093804