Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Optimum Preparation Conditions of the CS/β-CDP Composite Membrane
2.1.1. Single-Factor Experiment
2.1.2. Response Surface Model
2.2. SEM Analysis of the CS/β-CDP Composite Membrane before and after the Adsorption of BSA
2.3. The Analysis of FT-IR and XRD
2.3.1. FT-IR
2.3.2. XRD
2.4. Effects of Adsorption Temperature and pH on Adsorption Capacity of BSA
2.4.1. Temperature
2.4.2. pH
2.5. The Analysis of Mechanical Properties
2.6. The Analysis of Contact Angle and Swelling Degree
2.7. The Analysis of Kinetic Studies and Thermodynamics
2.7.1. Adsorption Isotherms
2.7.2. Adsorption Kinetics
2.7.3. Thermodynamic
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Methods
3.2.1. Preparation of β-CDP
3.2.2. Preparation of the CS/β-CDP Composite Membrane
3.2.3. The Adsorption of BSA
3.2.4. Single-Factor Experiment
3.2.5. Response Surface Methodology Experiment
3.2.6. Effects of Adsorption Temperature and pH on the Adsorption Capacity of BSA
3.2.7. Mechanical Performance Test
3.2.8. Swelling Degree
3.2.9. Contact Angle Measurements
3.2.10. Scanning Electron Microscopy (SEM)
3.2.11. FT-IR Analysis
3.2.12. X-ray Diffraction (XRD) Analysis
3.2.13. Adsorption Isotherm Studies
3.2.14. Kinetic Studies
3.2.15. Thermodynamic of Adsorption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Zan, F.; Iqbal, A.; Lu, X.; Wu, X.; Chen, G. Food waste-wastewater-energy/resource nexus: Integrating food waste management with wastewater treatment towards urban sustainability. Water Res. 2022, 211, 118089. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, V.; Ali, I.; Marjub, M.M.; Rene, E.R.; Soto, A.M.F. Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere 2022, 293, 133553. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Liu, Y.; Zhu, G.; Chen, C.; Hantoko, D.; Yan, M. COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. J. Water Process Eng. 2022, 45, 102462. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Yew, G.Y.; Leong, W.H.; Lim, J.W.; Lam, M.K.; Ho, Y.-C.; Ng, H.S.; Munawaroh, H.S.H.; Show, P.L. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. Bioresour. Technol. 2021, 342, 125947. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xing, T.; Wang, Y.; Xu, X.; Zhou, G. Isoelectric solubilization/precipitation processing modified sarcoplasmic protein from pale, soft, exudative-like chicken meat. Food Chem. 2019, 287, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Herman, C.E.; Xu, X.; Traylor, S.J.; Ghose, S.; Li, Z.J.; Lenhoff, A.M. Behavior of weakly adsorbing protein impurities in flow-through ion-exchange chromatography. J. Chromatogr. A 2022, 1664, 462788. [Google Scholar] [CrossRef]
- Ai, M.; Huang, K.; Ji, Z.; Wang, Y.; Liu, Y.; Xiao, L.; Xiao, P.; Zheng, Q.; Wang, H. Unveiling Hg-binding protein within black deposit formed on Golgi-Cox-stained brain neuron. Neurosci. Lett. 2021, 742, 135537. [Google Scholar] [CrossRef]
- Zeng, W.; Qiu, J.; Wang, D.; Wu, Z.; He, L. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. Sci. Total Environ. 2022, 810, 151294. [Google Scholar] [CrossRef]
- Sharma, P.; Nanda, K.; Yadav, M.; Shukla, A.; Srivastava, S.K.; Kumar, S.; Singh, S.P. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. Chemosphere 2022, 292, 133380. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Sellaoui, L.; Reynel-Ávila, H.E.; Landín-Sandoval, V.; Mendoza-Castillo, D.I.; Jaime-Leal, J.E.; Lima, E.C.; Bonilla-Petriciolet, A.; Lamine, A.B. Adsorption mechanism of Zn(2+), Ni(2+), Cd(2+), and Cu(2+) ions by carbon-based adsorbents: Interpretation of the adsorption isotherms via physical modelling. Environ. Sci. Pollut. Res. Int. 2021, 28, 30943–30954. [Google Scholar] [CrossRef]
- Nakbi, A.; Bouzid, M.; Ayachi, F.; Aouaini, F.; Lamine, A.B. Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog. Biophys. Mol. Biol. 2019, 149, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Yazidi, A.; Atrous, M.; Soetaredjo, F.E.; Sellaoui, L.; Ismadji, S.; Erto, A.; Bonilla-Petriciolet, A.; Dotto, G.L.; Lamine, A.B. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem. Eng. J. 2020, 379, 122320. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Tian, X.; Hua, T.; Poon, T.; Koo, M.; Chan, W. Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydr. Polym. 2022, 280, 119031. [Google Scholar] [CrossRef]
- Ji, Y.; Han, C.; Liu, E.; Li, X.; Meng, X.; Liu, B. Pickering emulsions stabilized by pea protein isolate-chitosan nanoparticles: Fabrication, characterization and delivery EPA for digestion in vitro and in vivo. Food Chem. 2022, 378, 132090. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Restani, R.; Carvalho, M.P.; Correia, I.; Aguiar-Ricardo, A.; Bonifácio, V.D.B. Biocompatible oligo-oxazoline crosslinkers: Towards advanced chitosans for controlled dug release. React. Funct. Polym. 2021, 161, 104846. [Google Scholar] [CrossRef]
- Li, K.; Zhu, J.; Guan, G.; Wu, H. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. Int. J. Biol. Macromol. 2019, 122, 485–492. [Google Scholar] [CrossRef]
- Alizadeh, N.; Poorbagher, N. Host-guest inclusion complexes of sulfabenzamide with β- and methyl-β-cyclodextrins: Characterization, antioxidant activity and DFT calculation. J. Mol. Struct. 2022, 1260, 132809. [Google Scholar] [CrossRef]
- Bhuyan, N.N.; Joardar, A.; Bag, B.P.; Chakraborty, H.; Mishra, A. Exploring the inclusion complex formation of 3-acetylcoumarin with β-cyclodextrin and its delivery to a carrier protein: A spectroscopic and computational study. Appl. Biochem. Biotechnol. 2021, 195, 441–457. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Fu, J.; Ding, X.; Zhao, J. Zn(2+) adsorption from wastewater using a chitosan/β-cyclodextrin-based composite membrane. Appl. Biochem. Biotechnol. 2020, 191, 331–343. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Liu, K.; Jiang, Y.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M.; et al. Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: Adsorption behavior and mechanism. Appl. Biochem. Biotechnol. 2021, 193, 1177–1192. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, S.; Koohestani, F. Composite of cross-linked chitosan beads and a cyclodextrin nanosponge: A metal-free catalyst for promoting ultrasonic-assisted chemical transformations in aqueous media. Appl. Biochem. Biotechnol. 2021, 193, 1455–1467. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Simultaneous adsorption of heavy metals and organic dyes by β-Cyclodextrin-Chitosan based cross-linked adsorbent. Appl. Biochem. Biotechnol. 2021, 193, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Vedula, S.S.; Yadav, G.D. Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. Appl. Biochem. Biotechnol. 2022, 196, 226–245. [Google Scholar] [CrossRef]
- Gharbani, P.; Mehrizad, A. Preparation and characterization of graphitic carbon nitrides/polyvinylidene fluoride adsorptive membrane modified with chitosan for Rhodamine B dye removal from water: Adsorption isotherms, kinetics and thermodynamics. Appl. Biochem. Biotechnol. 2022, 196, 479–496. [Google Scholar] [CrossRef]
- Shen, J.J.; Zhu, A.S.; Gao, T.T.; Zhao, J.Z. Optimization of extraction technology of sterols from discarded soybean pod by response surface methodology. Appl. Biochem. Biotechnol. 2021, 193, 569–582. [Google Scholar] [CrossRef]
- Luo, L.; Wang, G.; Wang, Z.; Ma, J.; He, Y.; He, J.; Yang, H. Optimization of Fenton process on removing antibiotic resistance. Sci. Total Environ. 2021, 788, 147889. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Li, H.; Huang, Y.; Yang, S.; Hu, S. An efficient graphic processing unit parallel optimal point searching approach on complex product response surface. Appl. Biochem. Biotechnol. 2020, 149, 102893. [Google Scholar] [CrossRef]
- Nazlioglu, S.; Lee, J. Response surface estimates of the LM unit root tests. Appl. Biochem. Biotechnol. 2020, 192, 109136. [Google Scholar] [CrossRef]
- Feng, Z.; Shao, Z.; Yao, J.; Huang, Y.; Chen, X. Protein adsorption and separation with chitosan-based amphoteric membranes. Appl. Biochem. Biotechnol. 2009, 50, 1257–1263. [Google Scholar] [CrossRef]
- Verma, M.; Lee, I.; Hong, Y.; Kumar, V.; Kim, H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environ. Pollut. 2022, 292, 118447. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Y.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, D.; Cui, H.; Lin, L.; He, J.; et al. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, C.; Wu, W.; Li, X.; Ma, S.; Li, C.; Shen, Y.; Ou, J. Bioinspired honeycomb-like 3D architectures self-assembled. Microporous Mesoporous Mater. 2022, 335, 111859. [Google Scholar] [CrossRef]
- Ulu, A.; Birhanlı, E.; Ateş, B. Tunable and Tough Porous Chitosan/β-Cyclodextrin/Tannic Acid Biocomposite Membrane with Mechanic, Antioxidant, and Antimicrobial Properties. Appl. Biochem. Biotechnol. 2021, 195, 781–794. [Google Scholar] [CrossRef]
- Moghaddam, N.; Oroujzadeh, N.; Salehirad, A. Fabrication of Bioactive Glass/Chitosan/Zeolite Bio-nanocomposite: Influence of Synthetic Route on Structural and Mechanical Properties. Appl. Biochem. Biotechnol. 2022, 200, 659–674. [Google Scholar] [CrossRef]
- Nie, B.; Wang, H.; Zhang, Y.; Rao, C.; Wang, H.; Gao, X.; Li, W.; Niu, B. Effect of sodium alginate/phosphate-stabilized amorphous calcium carbonate nanoparticles on chitosan membranes. Food Biosci. 2022, 46, 101570. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Hanna, D.H.; Elella, M.H.A.; Mohamed, R.R. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Mater. Sci. Eng. C 2019, 94, 1044–1055. [Google Scholar] [CrossRef]
- Ssekatawa, K.; Byarugaba, D.K.; Wampande, E.M.; Moja, T.N.; Nxumalo, E.; Maaza, M.; Sackey, J.; Ejobi, F.; Kirabira, J.B. Isolation and Characterization of Chitosan from Ugandan Edible Mushrooms, Nile Perch Scales and Banana Weevils for Biomedical Applications. Appl. Biochem. Biotechnol. 2021, 195, 685–700. [Google Scholar] [CrossRef]
- Alizadeh, N.; Nazari, F. Thymol Essential Oil/β-Cyclodextrin Inclusion Complex into Chitosan Nanoparticles: Improvement of Thymol Properties in vitro Studies. Appl. Biochem. Biotechnol. 2022, 198, 2276–2293. [Google Scholar] [CrossRef]
- Balbino, T.A.C.; Bellato, C.R.; da Silva, A.D.; Marques Neto, J.d.O.; Guimarães, L.d.M. Magnetic Cross-Linked Chitosan Modified with Ethylenediamine and β-Cyclodextrin for Removal of Phenolic Compounds. Appl. Biochem. Biotechnol. 2020, 191, 641–658. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Vigneshwaran, S.; Nikitha, M.; Hassan, C.A.A.; Meenakshi, S. Ce(III) Networked Chitosan/β-Cyclodextrin Beads for the Selective Removal of Toxic Dye Molecules: Adsorption Performance and Mechanism. Appl. Biochem. Biotechnol. 2020, 190, 1358–1375. [Google Scholar] [CrossRef]
- Voswinkel, L.; Etzel, M.R.; Kulozik, U. Adsorption of beta-lactoglobulin in anion exchange membrane chromatography versus the contacting mode and temperature. Appl. Biochem. Biotechnol. 2017, 79, 78–83. [Google Scholar] [CrossRef]
- Bazzaz, F.; Binaeian, E.; Heydarinasab, A.; Ghadi, A. Adsorption of BSA onto hexagonal mesoporous silicate loaded by APTES and tannin: Isotherm, thermodynamic and kinetic studies. Appl. Biochem. Biotechnol. 2018, 29, 1664–1675. [Google Scholar] [CrossRef]
- Lin, Q.; Zheng, Y.; Wang, G.; Shi, X.; Zhang, T.; Yu, J.; Sun, J. Protein adsorption behaviors of carboxymethylated bacterial cellulose membranes. Appl. Biochem. Biotechnol. 2015, 73, 264–269. [Google Scholar] [CrossRef]
- Gruppuso, M.; Iorio, F.; Turco, G.; Marsich, E.; Porrelli, D. Hyaluronic acid/lactose-modified chitosan electrospun wound dressings—Crosslinking and stability criticalities. Appl. Biochem. Biotechnol. 2022, 288, 119375. [Google Scholar] [CrossRef]
- Alshahrani, A.; Alharbi, A.; Alnasser, S.; Almihdar, M.; Alsuhybani, M.; AlOtaibi, B. Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Appl. Biochem. Biotechnol. 2021, 276, 119300. [Google Scholar] [CrossRef]
- Correia, C.; Sousa, R.O.; Vale, A.C.; Peixoto, D.; Silva, T.H.; Reis, R.L.; Pashkuleva, I.; Alves, N.M. Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Appl. Biochem. Biotechnol. 2022, 213, 112409. [Google Scholar] [CrossRef]
- Tu, G.; Li, S.; Han, Y.; Li, Z.; Liu, J.; Liu, X.; Li, W. Fabrication of chitosan membranes via aqueous phase separation: Comparing the use of acidic and alkaline dope solutions. J. Membr. Sci. 2022, 646, 120256. [Google Scholar] [CrossRef]
- Dolinina, E.S.; Vlasenkova, M.I.; Parfenyuk, E.V. Effect of trehalose on structural state of bovine serum albumin adsorbed onto mesoporous silica and the protein release kinetics in vitro. Colloids Surf. A Physicochem. Eng. Asp. 2017, 527, 101–108. [Google Scholar] [CrossRef]
- Machado, T.S.; Crestani, L.; Marchezi, G.; Melara, F.; de Mello, J.R.; Dotto, G.L.; Piccin, J.S. Synthesis of glutaraldehyde-modified silica/chitosan composites for the removal of water-soluble diclofenac sodium. Carbohydr. Polym. 2022, 277, 118868. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, S.; Zhu, Y.; Shen, Y.; Gao, X.; Shi, W.; Tay, J.H. Adsorption Mechanisms of Crude Oil onto Polytetrafluoroethylene Membrane: Kinetics and Isotherm, and Strategies for Adsorption Fouling Control. Appl. Biochem. Biotechnol. 2020, 192, 569–584. [Google Scholar] [CrossRef]
- Rosly, N.Z.; Ishak, S.; Abdullah, A.H.; Kamarudin, M.A.; Ashari, S.E.; Alang Ahmad, S.A. Fabrication and optimization calix[8]arene-PbS nanoadsorbents for the adsorption of methylene blue: Isotherms, kinetics and thermodynamics studies. J. Saudi Chem. Soc. 2022, 26, 101402. [Google Scholar] [CrossRef]
- Abbas, M.A.; Ismail, A.S.; Zakaria, K.; El-Shamy, A.; El Abedin, S.Z. Adsorption, thermodynamic, and quantum chemical investigations of an ionic liquid that inhibits corrosion of carbon steel in chloride solutions. Sci. Rep. 2022, 12, 12536. [Google Scholar] [CrossRef]
- Abdelfattah, I.; El-Saied, F.A.; Almedolab, A.A.; El-Shamy, A.M. Biosorption as a perfect technique for purification of wastewater contaminated with ammonia. Appl. Biochem. Biotechnol. 2022, 194, 4105–4134. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, F.P.; Carvalho, A.; Carneiro AC, O.; de Magalhães, M.A.; Xisto, M.F.; Canal, W.D. Adsorption of neutral red dye by chitosan and activated carbon composite films. Heliyon 2021, 7, e07629. [Google Scholar] [CrossRef] [PubMed]
- Sabarish, R.; Unnikrishnan, G. PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: Fabrication, characterization, adsorption, kinetics and antimicrobial properties. J. Environ. Chem. Eng. 2018, 6, 3860–3873. [Google Scholar] [CrossRef]
- Esfahani, H.; Prabhakaran, M.P.; Salahi, E.; Tayebifard, A.; Keyanpour-Rad, M.; Rahimipour, M.R.; Ramakrishna, S. Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm. J. Colloid Interface Sci. 2015, 443, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-J.; Li, M.-F.; Ma, J.-F.; Bian, J.; Peng, F. Chitosan crosslinked composite based on corncob lignin biochar to adsorb methylene blue: Kinetics, isotherm, and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128621. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Sellaoui, L.; Taamalli, S.; Louis, F.; El Bakali, A.; Cadaval Junior, T.R.S.a.; Bonilla-Petriciolet, A.; Marques Junior, J.L.; VallerãoIgansi, A.; Frantz, T.S.; et al. A statistical physics analysis of the adsorption of Fe3+, Al3+ and Cu2+ heavy metals on chitosan films via homogeneous and heterogeneous monolayer models. J. Mol. Liq. 2021, 343, 117617. [Google Scholar] [CrossRef]
- Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L. Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. J. Environ. Chem. Eng. 2014, 2, 1434–1444. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Lawa, Y.; Naat, J.N.; Riwu, A.A.P.; Iqbal, M.; Darmokoesoemo, H.; Kusuma, H.S. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic. J. Mater. Res. Technol. 2020, 9, 6544–6556. [Google Scholar] [CrossRef]
- Huang, W.; Yuan, Y.; Zhong, D.; Ma, W.; Yuan, Y.; Zhang, P. Adsorption and catalytic performance of pipe growth rings from water distribution networks using 5-BSA as the target pollutant. Chemosphere 2021, 284, 131343. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; Shi, W.; Tian, Y.; Liu, J.; Qin, X. Dye adsorption properties of poly(p-phenylene terephthalamide)-embedded hollow fiber composite membranes. React. Funct. Polym. 2022, 170, 105135. [Google Scholar] [CrossRef]
- Guerrero-Coronilla, I.; Morales-Barrera, L.; Cristiani-Urbina, E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J. Environ. Manag. 2015, 152, 99–108. [Google Scholar] [CrossRef]
- Salehi, E.; Madaeni, S.S.; Heidary, F. Dynamic adsorption of Ni(II) and Cd(II) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane: Isotherms, thermodynamics and kinetics. Sep. Purif. Technol. 2012, 94, 1–8. [Google Scholar] [CrossRef]
- Parvin, S.; Biswas, B.K.; Rahman, M.A.; Rahman, M.H.; Anik, M.S.; Uddin, M.R. Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere 2019, 236, 124326. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Kamran, M.; Khan, S.A.; Shaheen, K.; Shah, Z.; Suo, H.; Khan, Q.; Shah, A.B.; Rehman, W.U.; Al-Ghamdi, Y.O.; et al. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 2021, 168, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Johir MA, H.; Pradhan, M.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies. J. Environ. Manag. 2016, 167, 167–174. [Google Scholar] [CrossRef]
- Latour, R.A. Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf. B Biointerfaces 2020, 191, 110992. [Google Scholar] [CrossRef]
- Almeida, A.d.S.V.d.; Mastelaro, V.R.; da Silva, M.G.C.; Prediger, P.; Vieira, M.G.A. Adsorption of 17α-ethinylestradiol onto a novel nanocomposite based on graphene oxide, magnetic chitosan and organoclay (GO/mCS/OC): Kinetics, equilibrium, thermodynamics and selectivity studies. J. Water Process Eng. 2022, 47, 102729. [Google Scholar] [CrossRef]
- Banisheykholeslami, F.; Hosseini, M.; Najafpour Darzi, G. Design of PAMAM grafted chitosan dendrimers biosorbent for removal of anionic dyes: Adsorption isotherms, kinetics and thermodynamics studies. Appl. Biochem. Biotechnol. 2021, 195, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Cheng, Z.; Tian, Y.; Qiu, F.; Chang, H.; Li, S.; Cai, Y.; Quan, X. Adsorption of Ni(II) on detoxified chromite ore processing residue using citrus peel as reductive mediator: Adsorbent preparation, kinetics, isotherm, and thermodynamics analysis. Appl. Biochem. Biotechnol. 2021, 195, 378–395. [Google Scholar] [CrossRef]
- Bagher, Z.; Ehterami, A.; Safdel, M.H.; Khastar, H.; Semiari, H.; Asefnejad, A.; Davachi, S.M.; Mirzaii, M.; Salehi, M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. Appl. Biochem. Biotechnol. 2020, 190, 118–133. [Google Scholar] [CrossRef]
- Ioelovich, M. Crystallinity and hydrophility of chitin and chitosan. J. Chem. 2014, 3, 7–14. [Google Scholar]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
The mass ratio (CS: β-CDP) | 1:1.5 | 1:2 | 1:2.5 |
Temperature (℃) | 30 | 40 | 50 |
Glutaraldehyde (mL) | 1 | 1.5 | 2 |
CS: β-CDP the Mass Ratio (A) | Temperature (B) °C | Glutaraldehyde (C) mL | Adsorption Capacity mg/g | |
---|---|---|---|---|
1 | 1 | 1 | 0 | 17.6264 ± 0.35 |
2 | 0 | 0 | 0 | 44.4734 ± 0.24 |
3 | 0 | 1 | −1 | 20.3549 ± 0.16 |
4 | −1 | 1 | 0 | 10.1752 ± 0.65 |
5 | 1 | 0 | 1 | 6.2239 ± 0.24 |
6 | 1 | 0 | −1 | 20.8845 ± 0.75 |
7 | 0 | 0 | 0 | 43.5690 ± 0.34 |
8 | −1 | 0 | 1 | 6.2889 ± 0.66 |
9 | 0 | 0 | 0 | 43.0253 ± 0.24 |
10 | 1 | −1 | 0 | 13.0875 ± 0.15 |
11 | 0 | 0 | 0 | 47.3997 ± 0.72 |
12 | 0 | −1 | 1 | 13.3404 ± 0.63 |
13 | −1 | 0 | −1 | 7.4853 ± 0.45 |
14 | 0 | 0 | 0 | 44.7543 ± 0.12 |
15 | −1 | −1 | 0 | 15.6978 ± 0.49 |
16 | 0 | 1 | 1 | 26.9946 ± 0.34 |
17 | 0 | −1 | −1 | 24.5480 ± 0.16 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 3560.16 | 9 | 395.57 | 55.39 | <0.0001 | ** |
A | 41.29 | 1 | 41.29 | 5.78 | 0.0472 | * |
B | 8.98 | 1 | 8.98 | 1.26 | 0.2991 | |
C | 52.15 | 1 | 52.15 | 7.30 | 0.0305 | * |
AB | 25.31 | 1 | 25.31 | 3.54 | 0.1018 | |
AC | 45.32 | 1 | 45.32 | 6.35 | 0.0399 | * |
BC | 79.63 | 1 | 79.63 | 11.15 | 0.0124 | * |
A2 | 1820.45 | 1 | 1820.45 | 254.89 | <0.0001 | ** |
B2 | 396.53 | 1 | 396.53 | 55.52 | 0.0001 | ** |
C2 | 782.27 | 1 | 782.27 | 109.53 | <0.0001 | ** |
Residual | 50.00 | 7 | 7.14 | |||
Lack of fit | 38.58 | 3 | 12.86 | 4.51 | 0.0899 | |
Pure Error | 11.41 | 4 | 2.85 | |||
Cor Total | 3610.15 | 16 |
Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | |
---|---|---|---|
Pure CS membrane | 4.95 ± 0.22 | 2.68 ± 0.17 | 5.12 ± 0.67 |
CS/β-CDP Composite membrane | 6.37 ± 0.31 | 3.79 ± 0.56 | 7.56 ± 0.78 |
Films | Water Contact Angle (°) | Glycerol Contact Angle (°) | Swelling Degree (%) |
---|---|---|---|
Pure CS membrane | 66.43 ± 1.13 | 74.68 ± 1.04 | 71.06 ± 1.34 |
CS/β-CDP Composite membrane | 91.23 ± 0.89 | 98.62 ± 2.42 | 35.48 ± 1.27 |
Langmuir | Freundlich | Temkin | |
---|---|---|---|
Parameter model | y = 0.0050x + 0.0121 | y = 0.6941x + 4.3376 | y = 12.8721x + 49.0612 |
R2 | 0.9932 | 0.9453 | 0.9565 |
Parameter | a = 82.6446, b = 2.3725 | n = 1.4407, K = 76.5237 | b = 12.8721, A = 45.2137 |
Pseudo-First-Order | Pseudo-Second-Order | Intraparticle Diffusion | |
---|---|---|---|
Parameter Model | y = −0.0221x + 3.7533 | y = 0.6477x + 0.0177 | y = 3.6024x + 5.0022 |
R2 | 0.7806 | 0.9874 | 0.9301 |
Parameters | k = 0.0221 | a = 0.6477, b = 0.0177 | k = 3.6024, C = 5.0022 |
Temperature (K) | ΔG (kJ/mol) | ΔH (kJ/mol) | ΔS (J/mol·K) |
---|---|---|---|
288 | −5.4181 | 66.0601 | 251.7563 |
298 | −8.9981 | ||
308 | −12.2254 | ||
318 | −12.9653 | ||
328 | −13.37105 |
Influencing Factors | Level | ||||
---|---|---|---|---|---|
Mass ratio (CS:β-CDP) Temperature (°C) Glutaraldehyde (mL) | 1:1 | 1:1.5 | 1:2 | 1:2.5 | 1:3 |
20 °C | 30 °C | 40 °C | 50 °C | 60 °C | |
0.5 mL | 1 mL | 1.5 mL | 2 mL | 2.5 mL |
Isothermal Equation | Langmuir | Freundlich | Temkin |
---|---|---|---|
Original equation | |||
Linear equation |
Dynamical Equation | Pseudo-First-Order | Pseudo-Second-Order | Intraparticle Diffusion |
---|---|---|---|
Original Equation |
Thermodynamic Parameters | ΔH | ΔG | |
---|---|---|---|
Original equation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Li, J.; Lei, H.; Zhen, X.; Wang, Y.; Gou, D.; Zhao, J. Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins. Molecules 2023, 28, 3484. https://doi.org/10.3390/molecules28083484
Liu T, Li J, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins. Molecules. 2023; 28(8):3484. https://doi.org/10.3390/molecules28083484
Chicago/Turabian StyleLiu, Tong, Junbo Li, Hongyu Lei, Xinyu Zhen, Yue Wang, Dongxia Gou, and Jun Zhao. 2023. "Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins" Molecules 28, no. 8: 3484. https://doi.org/10.3390/molecules28083484
APA StyleLiu, T., Li, J., Lei, H., Zhen, X., Wang, Y., Gou, D., & Zhao, J. (2023). Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins. Molecules, 28(8), 3484. https://doi.org/10.3390/molecules28083484