Multiple Fingerprint–Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Sugar Content of Polysaccharides
2.2. FTIR Analysis
2.3. Fingerprint Characterization Analysis
2.3.1. Molecular Weight Mapping Based on HPSEC
2.3.2. Monosaccharide Composition Mapping Based on HPAEC
2.3.3. Partial Acid Hydrolysate Mapping Based on PMP–HPLC
2.4. Immune Activity Assay of Polysaccharides In Vitro
2.5. The Fingerprint–Activity Relationship
2.5.1. Molecular Weight and Immune Activity
2.5.2. Monosaccharide Composition and Immune Activity
2.5.3. Partial Acid Hydrolysates and Immune Activity
3. Materials and Methods
3.1. Materials
3.2. Preparation of Polysaccharides
3.3. Determination of Polysaccharide Content and Molecular Weight
3.4. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.5. Monosaccharide Composition Analysis
3.6. Partial Acid Hydrolysates Analysis
3.6.1. Partial Acid Hydrolysis
3.6.2. Preparation of PMP Derivatization and HPLC Analysis
3.7. Immunomodulatory Activity Assay
3.7.1. Cell Culture
3.7.2. Determination of NO and TNF-α In Vitro
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ji, Z.; Tang, Q.J.; Zhang, J.S.; Yang, Y.; Jia, W.; Pan, Y.J. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. J. Ethnopharmacol. 2007, 111, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, C.C.; Xing, Z.; Ahmad, Z.; Li, J.S.; Chang, M.W. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int. J. Biol. Macromol. 2019, 121, 1160–1178. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xu, X.; Liu, S.; Huang, L.; Gu, J. Ganoderma: A cancer immunotherapy review. Front. Pharmacol. 2018, 9, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef]
- Boh, B.; Berovic, M.; Zhang, J.S.; Lin, Z.B. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 2007, 13, 265–301. [Google Scholar] [PubMed]
- Liu, Y.F.; Tang, Q.J.; Zhang, J.S.; Xia, Y.M.; Yang, Y.; Wu, D.; Fan, H.; Cui, S.W. Triple helix conformation of β-D-glucan from Ganoderma lucidum and effect of molecular weight on its immunological activity. Int. J. Biol. Macromol. 2018, 114, 1064–1070. [Google Scholar] [CrossRef]
- Xu, Z.T.; Chen, X.P.; Zhong, Z.F.; Chen, L.D.; Wang, Y.T. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.J.; Du, J.L.; Cao, L.P.; Jia, R.; Shen, Y.J.; Zhao, C.Y.; Xu, P.; Yin, G.J. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int. Immunopharmacol. 2015, 25, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, J.X.; Cao, Y.J.; Lin, Y.C.; Guo, W.L.; Liu, J.Y.; Bai, W.D.; Zhang, Y.Y.; Ni, L.; Liu, B.; et al. Preparation of Ganoderma lucidum polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. Int. J. Biol. Macromol. 2019, 140, 782–793. [Google Scholar] [CrossRef]
- Huie, C.W.; Di, X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J. Chromatogr. B 2004, 812, 241–257. [Google Scholar] [CrossRef]
- Nie, S.P.; Zhang, H.; Li, W.J.; Xie, M.Y. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre. 2013, 1, 10–20. [Google Scholar] [CrossRef]
- Li, N.S.; Yan, C.Y.; Hua, D.H.; Zhang, D.Z. Isolation, purification, and structural characterization of a novel polysaccharide from Ganoderma capense. Int. J. Biol. Macromol. 2013, 57, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Sen, I.K.; Chakraborty, I.; Mondal, S.; Bar, H.; Bhanja, S.K.; Soumitra, M.; Maity, G.N. Biologically active polysaccharide from edible mushrooms: A review. Int. J. Biol. Macromol. 2021, 172, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.B.; Zhang, J.S.; Ye, X.J.; Tang, Q.J.; Liu, Y.F.; Gong, C.Y.; Du, X.J.; Pan, Y.J. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-Il) from Ganoderma lucidum fruit bodies. Carbohydr. Res. 2008, 343, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Zhao, S.J.; Lu, M.M.; Cai, Z.; Pang, J.; Song, L.H. Multiple-fingerprint analysis for investigating quality control of Flammulina velutipes fruiting body polysaccharides. J. Agric. Food Chem. 2014, 62, 12128–12133. [Google Scholar] [CrossRef]
- Yu, M.Q.; Xu, G.; Qin, M.; Li, Y.L.; Guo, Y.Y.; Ma, Q. Multiple fingerprints and spectrum-effect relationship of polysaccharides from Saposhnikoviae radix. Molecules 2022, 227, 5278. [Google Scholar] [CrossRef]
- Li, H.Y.; Cao, J.L.; Wu, X.; Deng, Y.; Ning, N.; Geng, C.X.; Lei, T.; Lin, R.Z.; Wu, D.T.; Wang, S.P.; et al. Multiple fingerprint profiling for quality evaluation of polysaccharides and related biological activity analysis of Chinese patent drugs: Zishen Yutai Pills as a case study. J. Ethnopharmacol. 2020, 260, 113045. [Google Scholar] [CrossRef]
- Wu, D.T.; Cheong, K.L.; Wang, L.Y.; Lv, G.P.; Ju, Y.J.; Feng, K.; Zhao, J.; Li, S.P. Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC. Carbohydr. Polym. 2014, 103, 100–109. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Zhang, Q.Q.; Zhu, M.H.; Hua, M.L.; Xu, Y.H. Monosaccharide analysis and fingerprinting identification of polysaccharides from Poria cocos and Polyporus umbellatus by HPLC combined with chemometrics methods. Chin. Herb. Med. 2019, 11, 406–411. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, J.; Hu, D.J.; Duan, J.A.; Tang, Y.P.; Li, S.P. Comparison of polysaccharides from two species of Ganoderma. Molecules 2012, 17, 740–752. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Zhang, J.S.; Tang, Q.J.; Yang, Y.; Guo, Q.B.; Wang, Q.; Wu, D.; Cui, S.W. Physicochemical characterization of a high molecular weight bioactive β-D-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydr. Polym. 2014, 101, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Wan-Mohtar, W.A.A.Q.I.; Viegelmann, C.; Klaus, A.; Lim, S.A.H. Antifungal-demelanizing properties and RAW264.7 macrophages stimulation of glucan sulfate from the mycelium of the mushroom Ganoderma lucidum. Food Sci. Biotechnol. 2017, 26, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.M.; Zhao, Q.; Xing, H.Y.; Xu, J.; Li, Z.H.; Zhu, H.; Yang, K.; Sun, P.L.; Cai, M. Gastroprotective effects of Ganoderma lucidum polysaccharides with different molecular weights on ethanol-induced acute gastric injury in rats. Nutrients 2022, 14, 1476. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.Y.; Pang, X.B.; Yao, W.B.; Gao, X.D. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46, 451–457. [Google Scholar] [CrossRef]
- Fan, R.Y.; Mao, G.L.; Xia, H.Q.; Zeng, J.W. Chemical elucidation and rheological properties of a pectic polysaccharide extracted from Citrus medica L. fruit residues by gradient ethanol precipitation. Int. J. Biol. Macromol. 2021, 198, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Xue, Y.; Huang, J.; Zhai, Q.Z.; Wang, X.H. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. Int. J. Biol. Macromol. 2014, 66, 81–85. [Google Scholar] [CrossRef]
- Hammi, K.M.; Hammami, M.; Rihouey, C.; Cerf, D.L.; Ksouri, R.; Majdoub, H. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem. 2016, 212, 476–484. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.L.; Yue, R.Q.; Ko, C.H.; Hu, J.M.; Liu, J.; Ho, H.M.; Yi, T.; Zhao, Z.Z.; Zhou, J.; et al. A novel and rapid HPGPC-based strategy for quality control of saccharide-dominant herbal materials: Dendrobium officinale, a case study. Anal. Bioanal. Chem. 2014, 406, 6409–6417. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, F.F.; Cai, C.; Hu, M.H.; Fan, L.D.; Hao, J.J.; Yu, G.L. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2020, 143, 806–813. [Google Scholar] [CrossRef]
- Ooi, L.S.M.; Ooi, V.E.; Fung, M.C. Induction of gene expression of immunomodulatory cytokines in the mouse by a polysaccharide from Ganoderma lucidum (Curt.: Fr.) P. Karst. Int. J. Med. Mushrooms 2002, 4, 27–35. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, J.; Zhang, J.; Yang, Y.; Wei, B.; Wang, Q.S. Spectrum-effect relationship of Bupleurum chinense for hepatoprotective effect based on cluster analysis and typical correlation analysis. Chin. Tradit. Herb. Drugs 2013, 44, 2696–2702. [Google Scholar]
- Li, Y.J.; Lin, D.D.; Jiao, B.; Xu, C.T.; Qin, J.K.; Ye, G.J.; Su, G.F. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada hayata. Int. J. Biol. Macromol. 2015, 77, 307–313. [Google Scholar] [CrossRef]
- Sherahi, M.H.; Fathi, M.; Zhandari, F.; Hashemi, S.M.B.; Rashidi, A. Structural characterization and physicochemical properties of Descurainia sophia seed gum. Food Hydrocoll. 2017, 66, 82–89. [Google Scholar] [CrossRef]
- Pan, D.; Wang, L.Q.; Chen, C.H.; Teng, B.S.; Wang, C.D.; Xu, Z.X.; Hu, B.W.; Zhou, P. Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chem. 2012, 135, 1097–1103. [Google Scholar] [CrossRef]
- Wang, J.G.; Ma, Z.C.; Zhang, L.N.; Fang, Y.P.; Jiang, F.T.; Phillips, G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011, 86, 844–851. [Google Scholar] [CrossRef]
- Zhu, B.W.; Ni, F.; Xiong, Q.; Yao, Z. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 60–74. [Google Scholar] [CrossRef]
- Bao, X.F.; Wang, X.S.; Dong, Q.; Fang, J.N.; Li, X.Y. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 2002, 59, 175–181. [Google Scholar] [CrossRef]
- Peñarando, J.; Aranda, E.; Rodríguez-Ariza, A. Immunomodulatory roles of nitric oxide in cancer: Tumor microenvironment says “NO” to antitumor immune response. Transl. Res. 2019, 210, 99–108. [Google Scholar] [CrossRef]
- Wang, N.F.; Jia, G.G.; Wang, X.F.; Liu, Y.; Li, Z.J.; Bao, H.H.; Guo, Q.B.; Wang, C.L.; Xiao, D.G. Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydr. Polym. 2020, 256, 117514. [Google Scholar] [CrossRef]
- Liu, Z.; Qu, J.M.; Ke, F.; Zhang, H.T.; Zhang, Y.W.; Zhang, Q.; Li, Q.; Bi, K.S.; Xu, H.R. Material basis elucidation and quantification of dandelion through spectrum-effect relationship study between UHPLC fingerprint and antioxidant activity via multivariate statistical analysis. Molecules 2022, 27, 2632. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.J.; Wang, C.P.; Xiao, Y.; Deng, J.; Tian, Y.; Song, J.J.; Cheng, X.J.; Sun, G.F. Thermal properties of coal during low temperature oxidation using a grey correlation method. Fuel 2020, 260, 116287. [Google Scholar] [CrossRef]
- Deng, Y.; Xie, J.; Luo, Z.; Li, S.P.; Zhao, J. Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int. J. Biol. Macromol. 2020, 165, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Ghani, I.M.M.; Ahmad, S. Comparison methods of multiple linear regressions in fish landing. Aust. J. Basic Appl. Sci. 2011, 5, 25–30. [Google Scholar]
- Zhang, T.T.; Ye, J.F.; Xue, C.H.; Wang, Y.M.; Liao, W.Z.; Mao, L.M.; Yuan, M.M.; Lian, S. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr. Polym. 2018, 197, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, M.Q.; Zhang, W.Q.; Xu, Z.Z.; Xia, W. Correlation analysis between HPLC fingerprint of polysaccharides from Poria Cocos and immunological activity. J. East China Univ. Sci. Technol. 2020, 46, 672–679. [Google Scholar]
- Chen, Y.; Wang, T.; Zhang, X.; Zhang, F.M.; Linhardt, R.J. Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydr. Polym. 2021, 254, 117462. [Google Scholar] [CrossRef]
- Yi, Y.; Lamikanra, O.; Sun, J.; Wang, L.M.; Min, T.; Wang, H.X. Activity diversity structure-activity relationship of polysaccharides from lotus root varieties. Carbohydr. Polym. 2017, 190, 67–76. [Google Scholar] [CrossRef]
- Ryoyama, K.; Idachi, Y.; Yamaguchi, H.; Kajiura, H.; Takata, H. Anti-tumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan glycogen. Biosci. Biotechnol. Biochem. 2004, 68, 2332–2340. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.S.; Lin, Z.J.; Xiao, M.L.; Niu, H.J.; Zhang, B. The spectrum-effect relationship-a rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Liu, Y.F.; Wang, Y.T.; Zhou, S.; Yan, M.Q.; Tang, Q.J.; Zhang, J.S. Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. Int. J. Biol. Macromol. 2021, 180, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.L.; Li, F.L.; Zhang, J.X.; Bai, S.P.; Zhou, L.S.; Fung, H.Y.; Zhang, Q.W.; Ma, D.L.; Leung, C.H.; Zhao, Z.Z.; et al. Oligosaccharide-marker approach for qualitative and quantitative analysis of specific polysaccharide in herb formula by ultra-high-performance liquid chromatography- quadrupole-time-of-flight mass spectrometry: Dendrobium officinale, a case study. J. Chromatogr. A 2019, 1607, 460388. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Wang, H.H.; Han, X.F.; Chen, S.W.; Zhu, S.; Dai, J. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr. Polym. 2014, 114, 432–439. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Yield/% | Sugar Content/% |
---|---|---|
S1 | 0.29 ± 0.01 | 46.37 ± 1.57 |
S2 | 0.34 ± 0.04 | 45.34 ± 3.30 |
S3 | 0.44 ± 0.03 | 39.59 ± 1.29 |
S4 | 0.22 ± 0.05 | 44.24 ± 2.45 |
S5 | 0.32 ± 0.02 | 46.41 ± 1.15 |
S6 | 0.20 ± 0.04 | 41.23 ± 1.6 |
S7 | 0.49 ± 0.04 | 40.80 ± 1.27 |
S8 | 0.74 ± 0.04 | 45.20 ± 1.27 |
S9 | 0.23 ± 0.03 | 41.30 ± 1.69 |
S10 | 0.18 ± 0.03 | 44.05 ± 1.39 |
S11 | 0.24 ± 0.03 | 48.96 ± 2.32 |
S12 | 0.37 ± 0.04 | 44.13 ± 2.69 |
Sample No. | Monosaccharides (mol%) | ||||||
---|---|---|---|---|---|---|---|
Fucose | Arabinose | Glucosamine | Galactose | Glucose | Mannose | Glucuronic Acid | |
S1 | 1.77 | 0.18 | 1.99 | 11.82 | 75.26 | 7.05 | 1.40 |
S2 | 1.04 | 0.15 | 0.84 | 8.44 | 85.76 | 2.67 | 1.10 |
S3 | 2.87 | 0.25 | 1.77 | 4.88 | 78.25 | 8.42 | 0.97 |
S4 | 1.54 | 0.13 | 1.48 | 9.15 | 82.08 | 4.83 | 0.93 |
S5 | 1.74 | 0.45 | 4.2 | 16.01 | 54.16 | 20.51 | 1.65 |
S6 | 1.95 | 0.26 | 1.02 | 16.57 | 60.33 | 17.12 | 2.28 |
S7 | 0.82 | 0.30 | 2.11 | 14.43 | 69.58 | 11.18 | 1.58 |
S8 | 0.18 | 0.66 | 1.02 | 8.53 | 70.76 | 18.36 | 0.49 |
S9 | 1.08 | 0.12 | 0.86 | 15.09 | 74.22 | 6.70 | 2.04 |
S10 | 1.94 | 0.73 | 0.06 | 39.40 | 56.20 | 0.4 | 1.02 |
S11 | 1.75 | 0.27 | 1.34 | 20.87 | 73.77 | 0.26 | 1.54 |
S12 | 7.77 | 1.26 | 4.36 | 6.28 | 65.16 | 11.99 | 2.81 |
Peak No. | Correlation Degree | Peak No. | Correlation Degree |
---|---|---|---|
1 | 0.650 | 8 | 0.793 |
2 | 0.777 | 9 | 0.696 |
3 | 0.819 | 10 | 0.713 |
4 | 0.814 | 11 | 0.611 |
5 | 0.640 | 12 | 0.716 |
6 | 0.714 | 13 | 0.598 |
7 | 0.665 | 14 | 0.702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, J.; Feng, J.; Tang, C.; Yan, M.; Zhou, S.; Chen, W.; Wang, W.; Liu, Y. Multiple Fingerprint–Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods. Molecules 2023, 28, 2913. https://doi.org/10.3390/molecules28072913
Liu J, Zhang J, Feng J, Tang C, Yan M, Zhou S, Chen W, Wang W, Liu Y. Multiple Fingerprint–Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods. Molecules. 2023; 28(7):2913. https://doi.org/10.3390/molecules28072913
Chicago/Turabian StyleLiu, Jing, Jingsong Zhang, Jie Feng, Chuanhong Tang, Mengqiu Yan, Shuai Zhou, Wanchao Chen, Wenhan Wang, and Yanfang Liu. 2023. "Multiple Fingerprint–Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods" Molecules 28, no. 7: 2913. https://doi.org/10.3390/molecules28072913
APA StyleLiu, J., Zhang, J., Feng, J., Tang, C., Yan, M., Zhou, S., Chen, W., Wang, W., & Liu, Y. (2023). Multiple Fingerprint–Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods. Molecules, 28(7), 2913. https://doi.org/10.3390/molecules28072913