Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of Fungal Species from Sewage Sludge
2.2. Minimal Inhibitory Concentration
2.3. Biodegradation Tests
3. Materials and Methods
3.1. Chemicals
3.2. Isolation of Fungal Strains
3.3. Molecular Identification of Isolated Fungal Species
3.4. Minimal Inhibitory Concentration (MIC) Examination
3.5. Biodegradation Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cull, S.G.; Holbrey, J.D.; Vargas-Mora, V.; Seddon, K.R.; Lye, G.J. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng. 2000, 69, 227–233. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem. 2005, 7, 267–278. [Google Scholar] [CrossRef]
- Docherty, K.M.; Dixon, J.K.; Kulpa, C.F. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 2007, 18, 481–493. [Google Scholar] [CrossRef]
- Gathergood, N.; Garcia, M.T.; Scammels, P.J. Biodegradable ionic liquids Part I. Concept, preliminary targets of evolution. Green Chem. 2004, 6, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Gathergood, N.; Scammells, P.J.; Garcia, M.T. Biodegradable ionic liquids Part III: The first readily biodegradable ionic liquids. Green Chem. 2006, 8, 156–160. [Google Scholar] [CrossRef]
- Garcia, M.T.; Gathergood, N.; Scammells, P.T. Biodegradable ionic liquids. Part II. Effect of the anion and toxicology. Green Chem. 2005, 7, 9–14. [Google Scholar] [CrossRef]
- Stolte, S.M.; Matzke, M.; Arning, J.; Böschen, A.; Pitner, W.R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170–1179. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Ayuso, M.; Villar-Chavero, M.M.; Garcia, J.; Rodriguez, F. Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes. SN Appl. Sci. 2019, 1, 896. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 34, 353–372. [Google Scholar] [CrossRef]
- Romero, A.; Santos, A.; Tojo, J.; Rodríguez, A. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 2008, 151, 268–273. [Google Scholar] [CrossRef]
- Jafari, M.; Keshavarz, M.H.; Salek, H. A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anion. Ecotoxicol. Environ. Saf. 2019, 182, 109429. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Chen, Z.; Zhao, Y. Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors. J. Hazard. Mater. 2020, 397, 122761. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.K.; Mochiduki, K.; Kondo, K. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J. Biosci. Bioeng. 2004, 98, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Grabińska-Sota, E.; Kalka, J. Toxicity of imidazolium chlorides to aquatic organisms. Pol. J. Environ. Stud. 2006, 15, 405–409. [Google Scholar]
- Wells, A.S.; Combe, V.T. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org. Process Res. Dev. 2006, 10, 794–798. [Google Scholar] [CrossRef]
- Pretti, C.; Chiappe, C.; Baldetti, I.; Brunini, S.; Monni, G.; Intorre, L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009, 72, 1170–1176. [Google Scholar] [CrossRef]
- Pirkwieser, P.; López-López, J.A.; Schagerl, M.; Kandioller, W.; Keppler, B.K.; Moreno, C.; Jirsa, F. Heavy Metal Extraction under Environmentally Relevant Conditions Using 3-Hydroxy-2-Naphthoate- Based Ionic Liquids: Extraction Capabilities vs. Acute Algal Toxicity. Appl. Sci. 2020, 10, 3157. [Google Scholar] [CrossRef]
- Grabińska-Sota, E.; Wiśniowska, E.; Ścieranka, B. Wpływ wybranych pestycydów na pracę osadu czynnego. Ochr. Sr. 2000, 2, 39–42. [Google Scholar]
- Bernot, R.J.; Brueseke, M.A.; Evance-White, M.A.; Lamberti, G.A. Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ. Toxicol. Chem. 2005, 24, 87–92. [Google Scholar] [CrossRef]
- Couling, D.J.; Bernot, R.J.; Docherty, K.M.; Dixon, J.N.K.; Maginn, E.J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem. 2006, 8, 82–90. [Google Scholar] [CrossRef]
- Nockemann, P.; Thijs, B.; Driesen, K.; Janssen, C.R.; Van Hecke, K.; Van Meervelt, L.; Kossmann, S.; Kirchner, B.; Binnemans, K. Choline saccharinate and choline acesulfamate: Ionic liquids with low toxicities. J. Phys. Chem. B 2007, 111, 5254–5263. [Google Scholar] [CrossRef]
- Samorì, C.; Pasteris, A.; Galletti, P.; Tagliavini, E. Acute toxicity of oxygenated and nonoxygenated imidazolium-based ionic liquids to Daphnia magna and Vibrio fischeri. Environ. Toxicol. Chem. 2007, 26, 2379–2382. [Google Scholar] [CrossRef]
- Luo, Y.R.; Li, X.Y.; Chen, X.X.; Zhang, B.J.; Sun, Z.J.; Wang, J.J. The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ. Toxicol. 2008, 23, 736–744. [Google Scholar] [CrossRef]
- Yu, M.; Wang, S.H.; Luo, Y.R.; Han, Y.W.; Li, X.Y.; Zhang, B.J.; Wang, J.J. Effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna. Ecotoxicol. Environ. Saf. 2009, 72, 1798–1804. [Google Scholar] [CrossRef]
- Errazquin, D.; Mohamadou, A.; Dupont, L.; De Gaetano, Y.; Garcia, C.B.; Lomba, L.; Giner, B. Ecotoxicity interspecies study of ionic liquids based on phosphonium and ammonium cations. Environ. Sci. Pollut. Res. 2021, 28, 65374–65384. [Google Scholar] [CrossRef]
- Khan, M.I.; Mubashir, M.; Zaini, D.; Mahnashi, M.H.; Alyami, B.A.; Alquarni, A.O.; Show, P.L. Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods. J. Hazard. Matter. 2021, 415, 125364. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, C.; Lu, C.; Li, W.; Li, B.; Wang, J.; Wang, J.; Du, Z.; Zhu, L. Comparison of the toxic effects of non-task-specific and task-specific ionic liquids on zebrafish. Chemosphere 2022, 294, 133643. [Google Scholar] [CrossRef]
- Ventura, S.P.; Gonçalves, A.M.; Gonçalves, F.; Coutinho, J.A. Assessing the toxicity on [C3MIM] [Tf2N] to aquatic organisms of different trophic levels. Aquat. Toxicol. 2010, 96, 290–297. [Google Scholar] [CrossRef]
- Cho, C.W.; Pham, T.P.T.; Zhao, Y.; Stolte, S.; Yun, Y.S. Review of the toxic effects of ionic Liquids. Sci. Total Environ. 2021, 786, 147309. [Google Scholar] [CrossRef]
- Diaz, E.; Monsalvo, V.M.; Lopez, J.; Mena, I.F.; Palomar, J.; Rodriguez, J.J.; Mohedano, A.F. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. Ecotoxicol. Environ. Saf. 2018, 162, 29–34. [Google Scholar] [CrossRef]
- Gomez-Herrero, E.; Tobajas, M.; Polo, A.; Rodriguez, J.J.; Mohedano, A.F. Toxicity and inhibition assessment of ionic liquids by activated sludge. Ecotoxicol. Environ. Saf. 2020, 187, 109836. [Google Scholar] [CrossRef]
- Markiewicz, M.; Jungnickel, C.; Markowska, A.; Szczepaniak, U.; Paszkiewicz, M.; Hupka, J. 1-Methyl-3-Octylimidazolium Chloride-Sorption and Primary Biodegradation Analysis in Activated Sewage Sludge. Molecules 2009, 14, 4396–4405. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. Influence of Imidazolium Ionic Liquids on Dehydrogenase Activity of Activated Sludge Microorganisms. Water Air Soil Pollut. 2011, 221, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Liwarska-Bizukojc, E.; Gendaszewska, D. Removal of imidazolium ionic liquids by microbial associations: Study of the biodegradability and kinetics. J. Biosci. Bioeng. 2013, 115, 71–75. [Google Scholar] [CrossRef]
- Markiewicz, M.; Henke, J.; Brillowska-Dąbrowska, A.; Stolte, S.; Łuczak, J.; Jungnickel, C. Bacterial consortium and axenic cultures isolated from activated sewage sludge for biodegradation of imidazolium-based ionic liquid. Int. J. Environ. Sci. Technol. 2014, 11, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- NCBI (2022) GenBank. Available online: http://www.ncbi.nlm.nih.gov/genbank/ (accessed on 10 August 2022).
- Letunic, I.; Bork, P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Łuczak, J.; Jungnickel, C.; Łącka, I.; Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methyl imidazolium derivatives. Green Chem. 2010, 12, 593–601. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Brillowska-Dąbrowska, A.; Świerkowska, A.; Lindhardt Saunte, D.M.; Cavling Arendrup, M. Diagnostic PCR tests for Microsporum audouinii, M. canis and Trichophyton infections. Med. Mycol. 2010, 48, 486–490. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 301: Ready Biodegradability, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 1992. [Google Scholar] [CrossRef] [Green Version]
- Rivilla, C.P.; Aleu, J.; Collado, I.G. Pollutants Biodegradation by Fungi. Curr. Org. Chem. 2009, 13, 1194–1214. [Google Scholar] [CrossRef]
- Deive, F.J.; Rodríguez, A.; Varela, A.; Rodrígues, C.; Leitão, M.C.; Houbraken, J.A.M.P.; Pereiro, A.B.; Longo, M.A.; Sanromán, M.; Samson, R.A.; et al. Impact of ionic liquids on extreme microbial biotypes from soil. Green Chem. 2011, 13, 687–696. [Google Scholar] [CrossRef]
- Petkovic, M.; Ferguson, J.; Bohn, A.; Trindade, J.; Martins, I.; Carvalho, M.B.; Leitão, M.C.; Rodrigues, C.; Garcia, H.; Ferreira, R.; et al. Exploring fungal activity in the presence of ionic liquids. Green Chem. 2009, 11, 889–894. [Google Scholar] [CrossRef]
- Sena, D.W.; Kulacki, K.J.; Chaloner, D.T.; Lamberti, G.A. The role of the cell wall in the toxicity of ionic liquids to the alga Chlamydomonas reinhardtii. Green Chem. 2010, 12, 1066–1071. [Google Scholar] [CrossRef]
- De Groot, P.W.; Brandt, B.W.; Horiuchi, H.; Ram, A.F.; de Koster, C.; Klis, F.M. Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, S72–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semighini, C.P.; Hornby, J.M.; Dumitru, R.; Nickerson, K.W.; Harris, S.D. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol. Microbiol. 2006, 59, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zong, Y.; Qin, G.; Li, B.; Tian, S. Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Curr. Microbiol. 2010, 61, 274–279. [Google Scholar] [CrossRef]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites—Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef]
- Williams, R.B.; Henrikson, J.C.; Hoover, A.R.; Lee, A.E.; Cichewicz, R.H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem. 2008, 6, 1895–1897. [Google Scholar] [CrossRef]
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef]
- Russell, A.D. Similarities and differences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 2003, 52, 750–763. [Google Scholar] [CrossRef]
- Evans, K.O. Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids—A QCM-D and AFM study. Int. J. Mol. Sci. 2008, 9, 498–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Abrusci, C.; Palomar, J.; Pablos, J.L.; Rodriguez, F.; Catalina, F. Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chem. 2011, 13, 709–717. [Google Scholar] [CrossRef]
- Petkovic, M.; Ferguson, J.L.; Gunaratne, H.Q.N.; Ferreira, R.; Leitão, M.C.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Novel biocompatible cholinium-based ionic liquids—Toxicity and biodegradability. Green Chem. 2010, 12, 643–649. [Google Scholar] [CrossRef]
Number | Fungal Strain |
---|---|
1. | Aspergillus terreus |
2. | Aspergillus fumigatus |
3. | Paecilomyces variotii |
4. | Penicillium adametzioides |
5. | Penicillium crustosum |
6. | Penicillium italicum |
7. | Geotrichum candidum/ Galactomyces geotrichum complex |
8. | Aspergillus tubingensis |
9. | Candida tropicalis |
10. | Trichosporon domesticum |
11. | Candida glabrata |
12. | Trichoderma longibrachiatum |
13. | Candida sake |
14. | Magnusiomyces capitatus |
Fungal Strain | Antifungal Activity of Neoteric Solvents under Investigation Expressed as MIC [mM] | |||
---|---|---|---|---|
[BMIM][Cl] | [OMIM][Cl] | [BMIM][Tf2N] | [OMIM][Tf2N] | |
Aspergillus terreus | 500 | 3.91 | >1.4 | >8 |
Aspergillus fumigatus | 500 | 3.91 | >1.4 | >8 |
Paecilomyces variotii | 15.63 | <0.49 | 1 | >8 |
Penicillum adametzioides | 250 | 0.98 | >1.4 | >8 |
Penicillum crustosum | 500 | 1.95 | >1.4 | >8 |
Penicillum italicum | 125 | 0.49 | 0.7 | >8 |
Geotrichum candidum/ Galactomyces geotrichum complex | 125 | 0.98 | >1.4 | >8 |
Aspergillus tubingensis | 500 | 3.91 | >1.4 | >8 |
Candida tropicalis | 15.63 | 31.25 | 1 | >8 |
Trichosporon domesticum | 500 | 3.91 | >1.4 | >8 |
Candida glabrata | 31.25 | 0.49 | 0.7 | >8 |
Trichoderma longibrachiatum | 250 | 1.95 | >1.4 | >8 |
Candida sake | 31.25 | <0.49 | 0.7 | >8 |
Abbreviation | Name | Empirical formula | Structure | Molecular Mass (g/mol) |
---|---|---|---|---|
[OMIM][Cl] | 1-methyl-3-octylimidazolium chloride | C12H23ClN2 | 230.78 | |
[BMIM][Cl] | 1-butyl-3-methylimidazolium chloride | C8H15ClN2 | 174.67 | |
[OMIM][Tf2N] | 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | C14H23F6N3O4S2 | 475.47 | |
[BMIM][TF2N] | 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | C10H15F6N3O4S2 | 419.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, J.; Łuczak, J.; Brillowska-Dąbrowska, A. Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge. Molecules 2023, 28, 1268. https://doi.org/10.3390/molecules28031268
Klein J, Łuczak J, Brillowska-Dąbrowska A. Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge. Molecules. 2023; 28(3):1268. https://doi.org/10.3390/molecules28031268
Chicago/Turabian StyleKlein, Joanna, Justyna Łuczak, and Anna Brillowska-Dąbrowska. 2023. "Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge" Molecules 28, no. 3: 1268. https://doi.org/10.3390/molecules28031268
APA StyleKlein, J., Łuczak, J., & Brillowska-Dąbrowska, A. (2023). Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge. Molecules, 28(3), 1268. https://doi.org/10.3390/molecules28031268