Multifunctional Spirogyra-hyalina-Mediated Barium Oxide Nanoparticles (BaONPs): Synthesis and Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Preparation and Nanoparticles Synthesis
2.2. FTIR and XRD Analysis of BaONPs
2.3. SEM and EDX Analysis
2.4. Antibacterial Analysis
2.5. Antifungal Activity
2.6. Anti-Inflammatory Assay
2.7. Antioxidant Assay
3. Experimental
3.1. Spirogyra Hyaline Extract Preparation and Nanoparticles Synthesis
3.2. Characterization of BaONPs
3.3. Collection and Preparation of Bacterial Inoculum
3.4. Antibacterial Activity
3.5. Minimum Inhibitory Concentration (MIC)
3.6. Antifungal Activity
3.7. Antioxidant Activity
3.8. Anti-Inflammatory Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shuai, C.; Liu, G.; Yang, Y.; Qi, F.; Peng, S.; Yang, W.; He, C.; Wang, G.; Qian, G. A Strawberry-like Ag-Decorated Barium Titanate Enhances Piezoelectric and Antibacterial Activities of Polymer Scaffold. Nano Energy 2020, 74, 104825. [Google Scholar] [CrossRef]
- Alvino, L.; Pacheco-Herrero, M.; López-Lorente, Á.I.; Quiñones, Z.; Cárdenas, S.; González-Sánchez, Z.I. Toxicity Evaluation of Barium Ferrite Nanoparticles in Bacteria, Yeast and Nematode. Chemosphere 2020, 254, 126786. [Google Scholar] [CrossRef] [PubMed]
- Atay, H.Y.; Çelik, E. Multifunctional Polymer Composites: Antibacterial, Flame Retardant, Radar Absorbing and Self-Healing. J. Compos. Mater. 2015, 49, 2469–2482. [Google Scholar] [CrossRef]
- Bhamare, V.S.; Kulkarni, R.M.; Santhakumari, B. 5% Barium Doped Zinc Oxide Semiconductor Nanoparticles for the Photocatalytic Degradation of Linezolid: Synthesis and Characterisation. SN Appl. Sci. 2019, 1, 103. [Google Scholar] [CrossRef]
- Keller, J.G.; Graham, U.M.; Koltermann-Jülly, J.; Gelein, R.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Oberdörster, G.; Elder, A.; Wohlleben, W. Author Correction: Predicting Dissolution and Transformation of Inhaled Nanoparticles in the Lung Using Abiotic Flow Cells: The Case of Barium Sulphate. Sci. Rep. 2020, 10, 458. [Google Scholar] [CrossRef]
- Molina, R.M.; Konduru, N.V.; Queiroz, P.M.; Figueroa, B.; Fu, D.; Ma-Hock, L.; Groeters, S.; Schaudien, D.; Brain, J.D. Fate of Barium Sulfate Nanoparticles Deposited in the Lungs of Rats. Sci. Rep. 2019, 9, 8163. [Google Scholar] [CrossRef]
- Rajamurugan, G.; Krishnasamy, P.; Muralidharan, B.; Srivastava, S.; Paliwal, P.; Jha, S. Contribution of Hybrid Particles (BaSO4/Fly Ash) on the Drilling and Wear Performance of Flax/Aleovera Fiber Composite. Part. Sci. Technol. 2022, 40, 638–650. [Google Scholar] [CrossRef]
- Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M.T.; Sajid, A.; Mathew, B.; Uddin, M.S.; Aleya, L.; Abdel-Daim, M.M. Nanoparticles and Its Biomedical Applications in Health and Diseases: Special Focus on Drug Delivery. Environ. Sci. Pollut. Res. 2020, 27, 19151–19168. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Parveen, S.; Panda, J.J. The Present and Future of Nanotechnology in Human Health Care. Nanomedicine 2007, 3, 20–31. [Google Scholar] [CrossRef]
- Tholkappiyan, R.; Vishista, K. Synthesis and Characterization of Barium Zinc Ferrite Nanoparticles: Working Electrode for Dye Sensitized Solar Cell Applications. Sol. Energy 2014, 106, 118–128. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, S.; Baskar, V.; Skymoon, R.; Pooja, T.; Gangadhar, B.H.; Umadevi, S.; Saravana Murali, K.; Chung, I.M.; Thiruvengadam, M. Green Synthesis of Nanoparticles and Their Uses in Agriculture. In Nano-Enabled Agrochemicals in Agriculture; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Siddiqi, K.S.; Husen, A. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application. Nanoscale Res. Lett. 2016, 11, 98. [Google Scholar] [CrossRef]
- Singh, I. Biosynthesis of Silver Nanoparticle from Fungi, Algae and Bacteria. Eur. J. Biol. Res. 2019, 9, 45–56. [Google Scholar] [CrossRef]
- Mohandesi, M.; Tavakolian, M.; Rahimpour, M.R. Eggplant as an Appreciable Bio-Template for Green Synthesis of NiO Nanoparticles: Study of Physical and Photocatalytic Properties. Ceram. Int. 2022, 48, 22820–22826. [Google Scholar] [CrossRef]
- Singh, Y.; Sodhi, R.S.; Singh, P.P.; Kaushal, S. Biosynthesis of NiO Nanoparticles Using Spirogyra Sp. Cell-Free Extract and Their Potential Biological Applications. Mater. Adv. 2022, 3, 4991–5000. [Google Scholar] [CrossRef]
- Abdullah; Al-Radadi, N.S.; Hussain, T.; Faisal, S.; Ali Raza Shah, S. Novel Biosynthesis, Characterization and Bio-Catalytic Potential of Green Algae (Spirogyra hyalina) Mediated Silver Nanomaterials. Saudi. J. Biol. Sci. 2022, 29, 411–419. [Google Scholar] [CrossRef]
- Sharif, M.S.; Hameed, H.; Waheed, A.; Tariq, M.; Afreen, A.; Kamal, A.; Mahmoud, E.A.; Elansary, H.O.; Saqib, S.; Zaman, W. Biofabrication of Fe3O4 Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and Their Antibacterial Applications. Molecules 2023, 28, 3403. [Google Scholar] [CrossRef]
- Sulfahri; Amin, M.; Sumitro, S.B.; Saptasari, M. Bioethanol Production from Algae Spirogyra hyalina Using Zymomonas Mobilis. Biofuels 2016, 7, 621–626. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sarkar, D.; Sasmal, S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front. Microbiol. 2021, 12, 693899. [Google Scholar] [CrossRef]
- Ansari, M.A.; Jahan, N. Structural and Optical Properties of BaO Nanoparticles Synthesized by Facile Co-Precipitation Method. Mater. Highlights 2021, 2, 23–28. [Google Scholar] [CrossRef]
- Abramowitz, S.; Acquista, N. The Infrared Spectrum of Matrix Isolated Ba0 2*. Physics and Chemistry 75. Available online: https://nvlpubs.nist.gov/nistpubs/jres/75A/jresv75An1p23_A1b.pdf (accessed on 10 August 2023).
- Sundharam, E.; Jeevaraj, A.K.S.; Chinnusamy, C. Effect of Ultrasonication on the Synthesis of Barium Oxide Nanoparticles. J. Bionanoscience 2017, 11, 310–314. [Google Scholar] [CrossRef]
- Suresh, G.; Nirmala, P.N. Synthesis of Barium Oxide Nanorod by Chemical Bath Deposition. Turk. J. Phys. 2012, 36, 392–397. [Google Scholar] [CrossRef]
- Ahmad, N.; Wahab, R.; Alam, M. Facile Growth of Barium Oxide Nanorods: Structural and Optical Properties. J. Nanosci. Nanotechnol. 2014, 14, 5342–5346. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.; Ansari, S.; Shimpi, N.G. Novel Sonochemical Green Approach for Synthesis of Highly Crystalline and Thermally Stable Barium Sulphate Nanoparticles Using Azadirachta Indica Leaf Extract. Bull. Mater. Sci. 2019, 42, 22. [Google Scholar] [CrossRef]
- Dubal, D.P.; Gund, G.S.; Lokhande, C.D.; Holze, R. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Mater. Res. Bull. 2013, 48, 923–928. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Wang, H.; Zheng, Y.; Qi, Z.; Chang, G.; Xu, S.; Li, R.; Wu, T.; Xu, W. Green Synthesis of Barium Sulfate Particles Using Plant Extracts. In MATEC Web of Conferences; EDP Sciences: Chiang Mai, Thailand, 2016; Volume 67. [Google Scholar]
- Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Green Synthesis of Zerovalent Copper Nanoparticles for Efficient Reduction of Toxic Azo Dyes Congo Red and Methyl Orange. Green Process. Synth. 2019, 8, 135–143. [Google Scholar] [CrossRef]
- Mohseni, S.; Aghayan, M.; Ghorani-Azam, A.; Behdani, M.; Asoodeh, A. Evaluation of Antibacterial Properties of Barium Zirconate Titanate (BZT) Nanoparticle. Braz. J. Microbiol. 2014, 45, 1393. [Google Scholar] [CrossRef]
- Shah, A.A.; Khan, A.; Dwivedi, S.; Musarrat, J.; Azam, A. Antibacterial and Antibiofilm Activity of Barium Titanate Nanoparticles. Mater. Lett. 2018, 229, 130–133. [Google Scholar] [CrossRef]
- Sivakumar, S.; Soundhirarajan, P.; Venkatesan, A.; Khatiwada, C.P. Synthesis, Characterization and Anti-Bacterial Activities of Pure and Co-Doped BaSO4 Nanoparticles via Chemical Precipitation Route. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 137–147. [Google Scholar] [CrossRef]
- Sooch, B.S.; Mann, M.K.; Sharma, M. Metal-Doped Barium Sulphate Nanoparticles Decorated with Gelatin as Antibacterial Agents. J. Clust. Sci. 2021, 32, 1141–1154. [Google Scholar] [CrossRef]
- Sarkar, D.; Ganguli, S.; Praveen, A.E.; Mahalingam, V. Defect Induced “Super Mop” like Behaviour of Eu3+-Doped Hierarchical Bi2SiO5 Nanoparticles for Improved Catalytic and Adsorptive Behaviour. Mater. Adv. 2020, 1, 2019–2032. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Singh, S.; Datta, S.; Kumar, S.; Bhadrecha, P.; Dhanjal, D.S.; Singh, J. Biotechnological Aspects of Nanoparticles Driven from Natural Products for Drug Delivery System and Other Applications. In Bioactive Natural Products in Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tang, A.; Ren, Q.; Wu, Y.; Wu, C.; Cheng, Y. Investigation into the Antibacterial Mechanism of Biogenic Tellurium Nanoparticles and Precursor Tellurite. Int. J. Mol. Sci. 2022, 23, 11697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial Mechanism and Activity of Cerium Oxide Nanoparticles. Sci. China Mater. 2019, 62, 1727–1739. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; et al. Antibacterial Activity and Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas Aeruginosa. Int. J. Nanomed. 2019, 14, 1469–1487. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y. Ben Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small 2012, 8, 3326–3337. [Google Scholar] [CrossRef]
- Ozdal, M.; Gurkok, S. Recent Advances in Nanoparticles as Antibacterial Agent. ADMET DMPK 2022, 10, 115–129. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Dey, A.; Neogi, S. An Insight into the Mechanism of Antibacterial Activity by Magnesium Oxide Nanoparticles. J. Mater. Chem. B 2021, 9, 5329–5339. [Google Scholar] [CrossRef]
- Ananthalakshmi, R.; Rathinam, S.R.X.R.; Sadiq, A.M. Evaluation of Anti-Inflammatory and Anti-Arthritic Activity of Luffa Acutangula Peel Extract Mediated Zno Nanoparticles. Res. J. Pharm. Technol. 2021, 14, 2004–2008. [Google Scholar] [CrossRef]
- Fitzpatrick, F. Cyclooxygenase Enzymes: Regulation and Function. Curr. Pharm. Des. 2005, 10, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Surendra, B.S.; Mallikarjunaswamy, C.; Pramila, S.; Rekha, N.D. Bio-Mediated Synthesis of ZnO Nanoparticles Using Lantana Camara Flower Extract: Its Characterizations, Photocatalytic, Electrochemical and Anti-Inflammatory Applications. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100442. [Google Scholar] [CrossRef]
- Majumdar, S.; Hira, S.K.; Tripathi, H.; Kumar, A.S.; Manna, P.P.; Singh, S.P.; Krishnamurthy, S. Synthesis and Characterization of Barium-Doped Bioactive Glass with Potential Anti-Inflammatory Activity. Ceram. Int. 2021, 47, 7143–7158. [Google Scholar] [CrossRef]
- Zheng, T.; Yu, Y.; Pang, Y.; Zhang, D.; Wang, Y.; Zhao, H.; Zhang, X.; Leng, H.; Yang, X.; Cai, Q. Improving Bone Regeneration with Composites Consisting of Piezoelectric Poly(l-Lactide) and Piezoelectric Calcium/Manganese Co-Doped Barium Titanate Nanofibers. Compos. B Eng. 2022, 234, 109734. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and Antibacterial Activity of Silver Nanoparticles Synthesized by Cestrum Nocturnum. J. Ayurveda. Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef]
- Patel, M.P.; Patel, J.K. Biomedical Applications of Nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Candito, M.; Simoni, E.; Gentilin, E.; Martini, A.; Marioni, G.; Danti, S.; Astolfi, L. Neuron Compatibility and Antioxidant Activity of Barium Titanate and Lithium Niobate Nanoparticles. Int. J. Mol. Sci. 2022, 23, 1761. [Google Scholar] [CrossRef] [PubMed]
- Lashari, A.; Mona Hassan, S.; Sharif Mughal, S. Biosynthesis, Characterization and Biological Applications of BaO Nanoparticles Using Linum usitatissimum. Am. J. Appl. Sci. Res. 2022, 8, 58–68. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Dias, A.M.; Zille, A. Synergistic Effects between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS Appl. Nano Mater. 2022, 5, 3030–3064. [Google Scholar] [CrossRef]
- Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Guo, Z.; Lee, S.E.; Kim, H.; Park, S.; Hahn, H.T.; Karki, A.B.; Young, D.P. Fabrication, Characterization and Microwave Properties of Polyurethane Nanocomposites Reinforced with Iron Oxide and Barium Titanate Nanoparticles. Acta Mater. 2009, 57, 267–277. [Google Scholar] [CrossRef]
- Hamadneh, I.; Alhayek, H.; Al-Mobydeen, A.; Jaber, A.A.; Albuqain, R.; Alsotari, S.; Al-Dujaili, A. Green Synthesis and Characterization of Yttrium Oxide, Copper Oxide and Barium Carbonate Nanoparticles Using Azadirachta Indica (the Neem Tree) Fruit Aqueous Extract. Egypt. J. Chem. 2019, 62, 573–581. [Google Scholar] [CrossRef]
- Bazeera, A.Z.; Amrin, M.I. Synthesis and Characterization of Barium Oxide Nanoparticles. IOSR J. Appl. Phys. 2017, 1, 76–80. [Google Scholar] [CrossRef]
- Montero-Recalde, M.; Mira, J.C.; Avilés-Esquivel, D.; Pazmiño-Miranda, P.; Erazo-Gutiérrez, R. Antimicrobial Efficacy of Thyme Essential Oil (Thymus vulgaris) on a Staphylococcus aureus Strain. Rev. De Investig. Vet. Del Peru 2018, 29, 588–593. [Google Scholar] [CrossRef]
- Baiomy, A.A.; Serry, F.E.; Kadry, A.A.; Yahya, G.; Doijad, S.; Mostafa, A.; Mraheil, M.A.; El-Ganiny, A.M. Genome Analysis of Pseudomonas Aeruginosa Strains from Chronically Infected Patients with High Levels of Persister Formation. Pathogens 2023, 12, 426. [Google Scholar] [CrossRef]
- De Wet, M.M.M.; Horstmann, C.; Brink, H.G. Heavy Metal Tolerance of Aspergillus Piperis Using the Agar Well Diffusion Method. Chem. Eng. Trans. 2020, 79, 343–348. [Google Scholar] [CrossRef]
- Khan, A.U.; Hussain, T.; Abdullah; Khan, M.A.; Almostafa, M.M.; Younis, N.S.; Yahya, G. Antibacterial and Antibiofilm Activity of Ficus Carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles. Molecules 2023, 28, 5553. [Google Scholar] [CrossRef]
- Faisal, S.; Tariq, M.H.; Ullah, R.; Zafar, S.; Rizwan, M.; Bibi, N.; Khattak, A.; Amir, N. Abdullah Exploring the Antibacterial, Antidiabetic, and Anticancer Potential of Mentha Arvensis Extract through in-Silico and in-Vitro Analysis. BMC Complement. Med. Ther. 2023, 23, 267. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of Minimum Inhibitory Concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Abdullah; Hussain, T.; Faisal, S.; Rizwan, M.; Saira; Zaman, N.; Iqbal, M.; Iqbal, A.; Ali, Z. Green Synthesis and Characterization of Copper and Nickel Hybrid Nanomaterials: Investigation of Their Biological and Photocatalytic Potential for the Removal of Organic Crystal Violet Dye. J. Saudi Chem. Soc. 2022, 26, 101486. [Google Scholar] [CrossRef]
- Fekry, M.; Yahya, G.; Osman, A.; Al-Rabia, M.W.; Mostafa, I.; Abbas, H.A. GC-MS Analysis and Microbiological Evaluation of Caraway Essential Oil as a Virulence Attenuating Agent against Pseudomonas Aeruginosa. Molecules 2022, 27, 8532. [Google Scholar] [CrossRef]
- Al-Radadi, N.S.; Abdullah; Faisal, S.; Alotaibi, A.; Ullah, R.; Hussain, T.; Rizwan, M.; Saira; Zaman, N.; Iqbal, M.; et al. Zingiber Officinale Driven Bioproduction of ZnO Nanoparticles and Their Anti-Inflammatory, Anti-Diabetic, Anti-Alzheimer, Anti-Oxidant, and Anti-Microbial Applications. Inorg. Chem. Commun. 2022, 140, 109274. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Oliveira-Costa, J.F.; Meira, C.S.; das Neves, M.V.G.; Dos Reis, B.P.Z.C.; Soares, M.B.P. Anti-Inflammatory Activities of Betulinic Acid: A Review. Front. Pharmacol. 2022, 13, 883857. [Google Scholar] [CrossRef]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-Inflammatory Activity of Natural Products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef]
Bacteria | BaONPs (20 µg/mL) | |
---|---|---|
Zone of Inhibition | MIC (ug/mL) | |
E. coli | 19.12 ± 0.31 | 2.0 |
S. aureus | 16.56 ± 0.37 | 9.0 |
P. aeruginosa | 18.83 ± 0.44 | 4.5 |
S. epidermidis | 15.75 ± 0.38 | 5.5 |
Klebsiella pneumoniae | 17.31 ± 0.59 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah; Rahman, A.u.; Faisal, S.; Almostafa, M.M.; Younis, N.S.; Yahya, G. Multifunctional Spirogyra-hyalina-Mediated Barium Oxide Nanoparticles (BaONPs): Synthesis and Applications. Molecules 2023, 28, 6364. https://doi.org/10.3390/molecules28176364
Abdullah, Rahman Au, Faisal S, Almostafa MM, Younis NS, Yahya G. Multifunctional Spirogyra-hyalina-Mediated Barium Oxide Nanoparticles (BaONPs): Synthesis and Applications. Molecules. 2023; 28(17):6364. https://doi.org/10.3390/molecules28176364
Chicago/Turabian StyleAbdullah, Anees ur Rahman, Shah Faisal, Mervt M. Almostafa, Nancy S. Younis, and Galal Yahya. 2023. "Multifunctional Spirogyra-hyalina-Mediated Barium Oxide Nanoparticles (BaONPs): Synthesis and Applications" Molecules 28, no. 17: 6364. https://doi.org/10.3390/molecules28176364
APA StyleAbdullah, Rahman, A. u., Faisal, S., Almostafa, M. M., Younis, N. S., & Yahya, G. (2023). Multifunctional Spirogyra-hyalina-Mediated Barium Oxide Nanoparticles (BaONPs): Synthesis and Applications. Molecules, 28(17), 6364. https://doi.org/10.3390/molecules28176364