Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Micropropagation
2.2. Root Cultures
2.3. Sprinkle Bioreactor Cultures
2.4. Genetic Analysis Using RAPD and SCoT Markers
2.5. Phenolic Compounds Production
2.6. Antioxidant Capacity of Plant Extracts
3. Materials and Methods
3.1. Seed Germination
3.2. Shoot and Root Cultures
3.2.1. Shoot Micropropagation
3.2.2. Hairy Root Cultures
3.2.3. Non-Transformed Root Cultures
3.2.4. Regeneration of Shoots from Roots
3.2.5. Root Cultures in Sprinkle Bioreactor
3.3. PCR Analysis
3.3.1. The Confirmation of Transformation
3.3.2. Genetic Analysis Using Random Amplified Polymorphic DNA (RAPD) and Start Codon Targeted (SCoT) Markers
3.4. Phytochemical Investigation
3.4.1. Sample Preparations
3.4.2. HPLC–UV–DAD Analysis of Phenolic Acids
3.4.3. LCMS-IT-TOF Analysis
3.4.4. Determination of Total Phenolic Compound Content (TPC)
3.5. Antioxidant Activity Analysis
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wilson, S.A.; Roberts, S.C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol. J. 2012, 10, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.M.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Ming, Q.; Lin, B.; Rahman, K.; Zheng, C.; Han, T.; Qin, L. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2014, 36, 215–232. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Sousa, M.J.; Alves, R.C.; Ferreira, I.C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crops Prod. 2016, 82, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, V.P.; Vereshchagina, Y.V.; Veremeichik, G.N. Anticancer polyphenols from cultured plant cells: Production and new bioengineering strategies. Curr. Med. Chem. 2018, 25, 4671–4692. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol. 2018, 102, 7775–7793. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic acid: New aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Petersen, M.; Simmonds, M.S.J. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol. 2012, 32, 203–217. [Google Scholar] [CrossRef]
- Royal Botanic Gardens, Kew, Plants of the World Online. Available online: https://powo.science.kew.org/ (accessed on 20 October 2022).
- Weigend, M.; Luebert, F.; Selvi, F.; Brokamp, G.; Hilger, H.H. Multiple origins for Hound’s tongues (Cynoglossum L.) and Navel seeds (Omphalodes Mill.)—the phylogeny of the borage family (Boraginaceae s.str.). Mol. Phylogenet. Evol. 2013, 68, 604–618. [Google Scholar] [CrossRef]
- Pourghorban, Z.; Salmaki, Y.; Weigend, M. Phylogenetic relationships within the subtribe Cynoglossinae (Cynoglossoideae: Boraginaceae): New insights from nuclear and plastid DNA sequence data. Plant Syst. Evol. 2020, 306, 1–15. [Google Scholar] [CrossRef]
- Bigazzi, M.; Nardi, E.; Selvi, F. Palynological contribution to the systematics of Rindera and the allied genera Paracaryum and Solenanthus (Boraginaceae-Cynoglosseae). Willdenowia 2006, 36, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Kamari, G.; Blanché, C.; Siljak- Yakovlev, S. Mediterranean chromosome number reports—24. Flora Mediterr. 2014, 24, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Walter, K.S.; Gillett, H.J. 1997 IUCN Red List of Threatened Plants; Walter, K.S., Gillett, H.J., Eds.; Complied by the World Conservation Monitoring Centre; IUCN—The World Conservation Union: Gland, Switzerland; Cambridge, UK, 1998; ISBN 2-8317-0328-X. [Google Scholar]
- Mosaddegh, M.; Naghibi, F.; Moazzeni, H.; Pirani, A.; Esmaeili, S. Ethnobotanical survey of herbal remedies traditionally used in Kohgiluyeh va Boyer Ahmad province of Iran. J. Ethnopharmacol. 2012, 141, 80–95. [Google Scholar] [CrossRef]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia-Soc. Behav. Sci. 2011, 19, 756–777. [Google Scholar] [CrossRef] [Green Version]
- Civra, A.; Francese, R.; Sinato, D.; Donalisio, M.; Cagno, V.; Rubiolo, P.; Ceylan, R.; Uysal, A.; Zengin, G.; Lembo, D. In vitro screening for antiviral activity of Turkish plants revealing methanolic extract of Rindera lanata var. lanata active against human rotavirus. BMC Complement. Altern. Med. 2017, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yücel, T.B.; Karaoğlu, Ş.A.; Yaylı, N. Antimicrobial activity and composition of Rindera lanata (LAM.) Bunge var. canescens (A.D.C.) Kosn. essential oil obtained by hydrodistillation and microwave assisted distillation. Rec. Nat. Prod. 2017, 11, 328–333. [Google Scholar]
- Ganos, C.; Aligiannis, N.; Chinou, I.; Naziris, N.; Chountoulesi, M.; Mroczek, T.; Graikou, K. Rindera graeca (Boraginaceae) phytochemical profile and biological activities. Molecules 2020, 25, 3625. [Google Scholar] [CrossRef]
- Graikou, K.; Damianakos, H.; Ganos, C.; Sykłowska-Baranek, K.; Jeziorek, M.; Pietrosiuk, A.; Roussakis, C.; Chinou, I. Chemical profile and screening of bioactive metabolites of Rindera graeca (A. DC.) Bois. & Heldr. (Boraginaceae) in vitro cultures. Plants 2021, 10, 834. [Google Scholar] [CrossRef]
- Dong, M.; Liu, D.; Li, Y.-H.H.; Chen, X.-Q.Q.; Luo, K.; Zhang, Y.-M.M.; Li, R.-T.T. Naphthoquinones from Onosma paniculatum with potential anti-inflammatory activity. Planta Med. 2017, 83, 631–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeziorek, M.; Damianakos, H.; Kawiak, A.; Laudy, A.E.; Zakrzewska, K.; Sykłowska-Baranek, K.; Chinou, I.; Pietrosiuk, A. Bioactive rinderol and cynoglosol isolated from Cynoglossum columnae Ten. in vitro root culture. Ind. Crop. Prod. 2019, 137, 446–452. [Google Scholar] [CrossRef]
- Naliwajski, M.R.; Wileńska, B.; Misicka, A.; Pietrosiuk, A.; Sykłowska-Baranek, K. HPLC-PDA-ESI-HRMS-based profiling of secondary metabolites of Rindera graeca anatomical and hairy roots treated with drought and cold stress. Cells 2022, 11, 931. [Google Scholar] [CrossRef]
- Perić, M.; Dmitrović, S.; Živković, S.; Filipović, B.; Skorić, M.; Simonović, A.; Todorović, S. In vitro growth, morphogenesis, and acclimatization of endangered Rindera umbellata (Waldst. & Kit.) Bunge. HortScience 2012, 47, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Aliloo, A.A.; Darabinejad, S. Evaluation of different techniques for breaking seed dormancy of Heliotropium europaeum L. (Boraginaceae). J. Biol. Environ. Sci. 2013, 7, 87–91. [Google Scholar]
- Sollenberger, D.; Thomas, C.; Egerton-Warburton, L. Germination and propagation of Lithospermum canescens (Michx.) Lehm., a difficult-to-grow prairie species. Nativ. Plants J. 2022, 23, 309–323. [Google Scholar] [CrossRef]
- Rout, G.R.; Samantaray, S.; Das, P. In vitro manipulation and propagation of medicinal plants. Biotechnol. Adv. 2000, 18, 91–120. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, Y.-G.G.; Guo, Y.-M.M.; Guo, Z.-C.C.; Chen, Y.-Z.Z.; Bo, J.; Yang, Y.-G.G.; Guo, Y.-M.M.; Guo, Z.-C.C.; Chen, Y.-Z.Z. Thidiazuron-induced in vitro shoot organogenesis of the medicinal plant Arnebia euchroma (Royle) Johnst. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 677–681. [Google Scholar] [CrossRef]
- Malik, S.; Sharma, S.; Sharma, M.; Ahuja, P.S. Direct shoot regeneration from intact leaves of Arnebia euchroma (Royle) Johnston using thidiazuron. Cell Biol. Int. 2010, 34, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Turker, A.U.; Yildirim, A.B.; Taş, İ.; Ucar Turker, A.; Yildirim, A.B.; Taş, İ. In vitro adventitious plant regeneration of Echium orientale L., an endemic plant: The evaluation of biological activities and phenolic content. Indian J. Biochem. Biophys. 2018, 55, 264–272. [Google Scholar]
- Parray, J.A.; Kamili, A.N.; Jan, S.; Mir, M.Y.; Shameem, N.; Ganai, B.A.; Abd-Allah, E.F.; Hashem, A.; Alqarawi, A.A. Manipulation of plant growth regulators on phytochemical constituents and DNA protection potential of the medicinal plant Arnebia benthamii. Biomed Res. Int. 2018, 2018, 6870139. [Google Scholar] [CrossRef] [Green Version]
- Shekhawat, M.S.; Shekhawat, N.S. Micropropagation of Arnebia hispidissima (Lehm). DC. and production of alkannin from callus and cell suspension culture. Acta Physiol. Plant. 2011, 33, 1445–1450. [Google Scholar] [CrossRef]
- Pal, M.; Chaudhury, A. High frequency direct plant regeneration, micropropagation and shikonin induction in Arnebia hispidissima. J. Crop. Sci. Biotechnol. 2010, 13, 13–20. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, Z. Organogenesis and pigmentation in cultures of Lithospermum erythrorhizon. J. Herbs. Spices Med. Plants 1993, 1, 57–63. [Google Scholar] [CrossRef]
- Sykłowska-Baranek, K.; Pietrosiuk, A.; Dłuska, H.; Furmanowa, M. Clonal multiplication of Lithospermum canescens (Michx.) Lehm. and Onosma paniculatum (Bur. and Franch). Herba Pol. 2004, 50, 55–64. [Google Scholar]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.; Karibasappa, G.S. Microsatellite and RAPD analysis of grape (Vitis spp.) accessions and identification of duplicates/misnomers in germplasm collection. Indian J. Hortic. 2010, 67, 8–15. [Google Scholar]
- Chavhan, R.L.; Sable, S.; Narwade, A.V.; Hinge, V.R.; Kalbande, B.B.; Mukherjee, A.K.; Chakrabarty, P.K.; Kadam, U.S. Multiplex molecular marker-assisted analysis of significant pathogens of cotton (Gossypium sp.). Biocatal. Agric. Biotechnol. 2023, 47, 102557. [Google Scholar] [CrossRef]
- Hinge, V.R.; Shaikh, I.M.; Chavhan, R.L.; Deshmukh, A.S.; Shelake, R.M.; Ghuge, S.A.; Dethe, A.M.; Suprasanna, P.; Kadam, U.S. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Miguel, C.; Marum, L. An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. J. Exp. Bot. 2011, 62, 3713–3725. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W.L.; Wang, L. An evolutionary view of plant tissue culture: Somaclonal variation and selection. Plant Cell Rep. 2012, 31, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Ferreira, M.; de Jesus Rocha, A.; dos Santos Nascimento, F.; dos Santos Oliveira, W.D.; da Silva Soares, J.M.; Rebouças, T.A.; Morais Lino, L.S.; Haddad, F.; Ferreira, C.F.; Santos-Serejo, J.A.; et al. The role of somaclonal variation in plant genetic improvement: A systematic review. Agronomy 2023, 13, 730. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 2016, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Duta-Cornescu, G.; Constantin, N.; Pojoga, D.M.; Nicuta, D.; Simon-Gruita, A. Somaclonal variation—Advantage or disadvantage in micropropagation of the medicinal plants. Int. J. Mol. Sci. 2023, 24, 838. [Google Scholar] [CrossRef]
- Altamura, M.M. Agrobacterium rhizogenes rolB and rolD genes: Regulation and involvement in plant development. Plant Cell. Tissue Organ Cult. 2004, 77, 89–101. [Google Scholar] [CrossRef]
- Gantait, S.; Mukherjee, E. Hairy root culture technology: Applications, constraints and prospect. Appl. Microbiol. Biotechnol. 2021, 105, 35–53. [Google Scholar] [CrossRef]
- Roychowdhury, D.; Majumder, A.; Jha, S. Agrobacterium rhizogenes -mediated transformation in medicinal plants: Prospects and challenges. In Biotechnology for Medicinal Plants; Chandra, S., Lata, H.A.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 29–68. ISBN 9783642299742. [Google Scholar]
- Schmülling, T.; Schell, J.; Spena, A. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 1988, 7, 2621–2629. [Google Scholar] [CrossRef]
- Mauro, M.L.; Costantino, P.; Bettini, P.P. The never ending story of rol genes: A century after. Plant Cell. Tissue Organ. Cult. 2017, 131, 201–212. [Google Scholar] [CrossRef]
- De-Eknamkul, W.; Ellis, B.E. Rosmarinic acid production and growth characteristics of Anchusa officinalis cell suspension cultures. Planta Med. 1984, 50, 346–350. [Google Scholar] [CrossRef]
- Mizukami, H.; Ogawa, T.; Ohashi, H.; Ellis, B.E. Induction of rosmarinic acid biosynthesis in Lithospermum erythorhizon cell suspension cultures by yeast extract. Plant Cell Rep. 1992, 11, 480–483. [Google Scholar] [CrossRef]
- Mizukami, H.; Tabira, Y.; Ellis, B.E. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 1993, 12, 706–799. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Zhao, P.; Yazaki, K.; Inoue, K. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures. Chem. Pharm. Bull. 2002, 50, 1086–1090. [Google Scholar] [CrossRef] [Green Version]
- Mehrabani, M.; Shams-Ardakani, M.; Ghannadi, A.; Ghassemi, N.; Sajjadi-Jazi, S.E. Production of rosmarinic acid in Echium amoenum Fisch. and C.A. Mey cell cultures. Iran. J. Pharm. Res. 2005, 2, 111–115. [Google Scholar]
- Inyushkina, Y.V.; Bulgakov, V.P.; Veselova, M.V.; Bryukhanov, V.M.; Zverev, Y.F.; Lampatov, V.V.; Azarova, O.V.; Tchernoded, G.K.; Fedoreyev, S.A.; Zhuravlev, Y.N. High rabdosiin and rosmarinic acid production in Eritrichium sericeum callus cultures and the effect of the calli on masugi-nephritis in rats. Biosci. Biotechnol. Biochem. 2007, 71, 1286–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryukhanov, V.M.; Bulgakov, V.P.; Zverev, Y.F.; Fedoreev, S.A.; Lampartov, V.; Veselova, M.V.; Azarova, O.V.; Zyablova, O.N.; Inyushkina, Y.V. An Eritrichium sericeum Lehm. (Boraginaceae) cell culture—A source of polyphenol compounds with pharmacological activity. Pharm. Chem. J. 2008, 42, 344–347. [Google Scholar] [CrossRef]
- Fedoreyev, S.A.; Inyushkina, Y.V.; Bulgakov, V.P.; Veselova, M.V.; Tchernoded, G.K.; Gerasimenko, A.V.; Zhuravlev, Y.N. Production of allantoin, rabdosiin and rosmarinic acid in callus cultures of the seacoastal plant Mertensia maritima (Boraginaceae). Plant Cell Tissue Organ. Cult. 2012, 110, 183–188. [Google Scholar] [CrossRef]
- Ogata, A.; Tsuruga, A.; Matsuno, M.; Mizukami, H. Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: Ctivities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol. 2004, 21, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Fedoreyev, S.A.; Veselova, M.V.; Krivoschekova, O.E.; Mischenko, N.P.; Denisenko, V.A.; Dmitrenok, P.S.; Glazunov, V.P.; Bulgakov, V.P.; Tchernoded, G.K.; Zhuravlev, Y.N. Caffeic acid metabolites from Eritrichium sericeum cell cultures. Planta Med. 2005, 71, 446–451. [Google Scholar] [CrossRef]
- Yamamoto, H.; Inoue, K.; Yazaki, K. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 2000, 53, 651–657. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Kuźma, Ł.; Kiss, A.K.; Grzegorczyk-Karolak, I. Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W. W. Smith. Acta Physiol. Plant. 2018, 40, 189. [Google Scholar] [CrossRef] [Green Version]
- Weremczuk-Jeżyna, I.; Kochan, E.; Szymczyk, P.; Lisiecki, P.; Kuźma, Ł. The antioxidant and antimicrobial properties of phenol-rich extracts of Dracocephalum forrestii W. W. Smith shoot cultures grown in the nutrient sprinkle bioreactor. Phytochem. Lett. 2019, 30, 254–260. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Skała, E.; Kuźma, Ł.; Kiss, A.K.; Grzegorczyk-Karolak, I. The effect of purine-type cytokinin on the proliferation and production of phenolic compounds in transformed shoots of Dracocephalum forrestii. J. Biotechnol. 2019, 306, 125–136. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Skała, E.; Olszewska, M.A.; Kiss, A.K.; Balcerczak, E.; Wysokińska, H.; Kicel, A. The identification and quantitative determination of rosmarinic acid and salvianolic acid B in hairy root cultures of Dracocephalum forrestii W.W. Smith. Ind. Crops Prod. 2016, 91, 125–131. [Google Scholar] [CrossRef]
- Xiao, Y.; Gao, S.; Di, P.; Chen, J.; Chen, W.; Zhang, L. Lithospermic acid B is more responsive to silver ions (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Biosci. Rep. 2010, 30, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Hara, Y.; Ogino, T.; Suga, C. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon—I. Effects of nitrogen sources on the production of shikonin derivatives. Plant Cell Rep. 1981, 1, 59–60. [Google Scholar] [CrossRef]
- Talano, M.A.; Wevar Oller, A.L.; Gonzalez, P.S.; Agostini, E. Hairy roots, their multiple applications and recent patents. Recent Pat. Biotechnol. 2012, 6, 115–133. [Google Scholar] [CrossRef]
- Fattahi, M.; Nazeri, V.; Torras-Claveria, L.; Sefidkon, F.; Cusido, R.M.; Zamani, Z.; Palazon, J. A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Boiss. Ind. Crops Prod. 2013, 50, 256–263. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Sykłowska-Baranek, K.; Pietrosiuk, A.; Kuźma, Ł.; Chinou, I.; Kongel, M.; Jeziorek, M. Establishment of Rindera graeca transgenic root culture as a source of shikonin derivatives. Planta Med. 2008, 74, 1161. [Google Scholar] [CrossRef]
- Assimopoulou, A.N.; Papageorgiou, V.P. Radical scavenging activity of Alkanna tinctoria root extracts and their main constituents, hydroxynaphthoquinones. Phyther. Res. 2005, 19, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Assimopoulou, A.N.; Boskou, D.; Papageorgiou, V.P. Antioxidant activities of alkannin, shikonin and Alkanna tinctoria root extracts in oil substrates. Food Chem. 2004, 87, 433–438. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Tsermentseli, S.K.; Nenadis, N.; Assimopoulou, A.N.; Tsimidou, M.Z.; Papageorgiou, V.P. Structure-radical scavenging activity relationship of alkannin/shikonin derivatives. Food Chem. 2011, 124, 171–176. [Google Scholar] [CrossRef]
- Krolicka, A.; Szpitter, A.; Maciag, M.; Biskup, E.; Gilgenast, E.; Romanik, G.; Kaminski, M.; Wegrzyn, G.; Lojkowska, E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae). Biotechnol. Appl. Biochem. 2009, 53, 175–184. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef]
- Pietrosiuk, A.; Sykłowska-Baranek, K.; Wiedenfeld, H.; Wolinowska, R.; Furmanowa, M.; Jaroszyk, E. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm. Plant Cell Rep. 2006, 25, 1052–1058. [Google Scholar] [CrossRef]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Schenk, R.O.Y.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Aoyama, T.; Hirayama, T.; Tamamoto, S.; Oka, A. Putative start codon TTG for the regulatory protein VirG of the hairy-root-inducing plasmid pRiA4. Gene 1989, 78, 173–178. [Google Scholar] [CrossRef]
- Sidwa-Gorycka, M.K.; Krolicka, A.; Orlita, A.; Malinski, E.; Golebiowski, M.; Kumirska, J.; Chromik, A.; Biskup, E.; Stepnowski, P.; Lojkowska, E. Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: Hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell Tissue Organ 2009, 97, 59. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Start Codon Targeted (SCoT) Polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Hirsikorpi, M.; Kämäräinen, T.; Jaakola, L.; Hohtola, A. m isolation methods for medicinal and aromatic plants. Plant Mol. Biol. Rep. 2001, 19, 273. [Google Scholar] [CrossRef]
- Pavlicek, A.; Hrda, S.; Flegr, J.; Pavlíček, A.; Hrdá, Š.; Flegr, J. FreeTree—Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Aplication in the RAPD analysis of genus Frenkelia. Folia Biol. 1999, 45, 97–99. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric of plasma (FRAP) as measure of “antioxidant power”: The FRAP assay. Anal. Chem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Bolanos de la Torre, A.A.; Henderson, T.; Nigam, P.S.; Owusu-Apenten, R.K. A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem. 2015, 174, 119–123. [Google Scholar] [CrossRef]
Plant Species | Culture Conditions for the Highest Shoot Proliferation | Reference |
---|---|---|
Arnebia euchroma | LS medium supplemented with 1 mg/L TDZ: 8.6 shoots per cotyledon explant | [32] |
A. euchroma | MS medium: 7–15 shoots per explant (shoot bud) cultivated in a sequence of transfer from 20 µM TDZ (10 days) to 5 µM TDZ (20 days) | [33] |
Echium orientale | MS medium containing 1 mg/L TDZ and 0.5 mg/L IAA, leafy and petiole explants: 8.7 shoots per explant | [34] |
MS medium without any phytohormones: the highest root formation | ||
A. benthamii | MS medium with 3 µM TDZ and 1.5 µM IAA: 20.1/explant (shoot tip) | [35] |
A. hispidissima | MS medium supplemented with 0.5 mg/L BAP: 17.2 shoots per nodal explant | [36] |
1 mg/L indole-3-butyric acid (IBA) was the most effective for root induction | ||
MS medium with addition of 0.5 mg/L kinetin, 0.25 mg/L BAP, 0.1 mg/L IAA, and 100 mg/L casein hydrolysate: cluster of multiple shoots developing from shoot tip and nodal segment; in addition, newly formed shoots not only appeared on the cut edge of the explant but also covered their surface | [37] | |
Lithospermum erythrorhizon | LS medium supplemented with a combination of 0.5 mg/L kinetin and 2 mg/L BAP; the highest shoot multiplication was from shoot segments | [38] |
L. canescens | LS medium supplemented with a combination of 0.5 mg/L kinetin and 2 mg/L BAP: 6.2 newly developed auxiliary shoots per explant (i.e., shoot tips or shoot fragments with one node) | [39] |
Onosma paniculata | LS medium supplemented with a combination of 0.5 mg/L kinetin and 2 mg/L BAP: 3 newly developed auxiliary shoots per explant (i.e., shoot tips or shoot fragments with one node) |
Flask Cultures | |||||||||
Rosmarinic Acid | Lithospermic Acid B | ||||||||
Shoot line | Medium | ||||||||
DCR | DCR BAP | SH | SH BAP | DCR | DCR BAP | SH | SH BAP | ||
RgS | na | 12.7 ± 4.0 | na | na | na | 22.5 ± 5.6 a | na | na | |
RgAR | 14.3 ± 4.0 a | 11.9 ± 1.5 * | 19.2 ± 3.0 * | 17.6 ± 1.6 * | 15.3 ± 8.1 * | 49.3 ± 15.5 a,* | 20.8 ± 9.4 | 27.9 ± 2.2 a | |
RgCR/NOA | 12.9 ± 4.6 a,* | 14.7 ± 3.4 | 22.0 ± 4.8 * | 19.3 ± 2.3 * | 8.6 ± 1.1 * | 9.9 ± 0.5 a | 12.3 ± 2.6 * | 9.2 ± 0.8 a,* | |
RgTR7 | 24.6 ±5.3 a,* | 8.6 ± 1.4 * | 16.6 ± 2.4 * | 14.7 ± 1.0 * | 9.7 ± 1.2 * | 15.8 ± 11.9 a,* | 11.4 ± 2.2 a | 11.6 ± 1.4 a,* | |
RgTR17 | 15.3 ± 5.4 a,* | 10.0 ± 1.0 * | 21.7 ± 1.8 * | 16.7 ± 2.6 | 9.3 ± 3.5 | 9.4 ± 1.1 a | 15.3 ± 1.7 a,* | 11.0 ± 2.3 a,* | |
Root line | Medium | ||||||||
DCR | SH | DCR | SH | ||||||
RgAR | 14.4 ± 5.9 a,* | 1.2 ± 0.4 a,* | 0.3 ± 0.1 * | 8.5 ± 2.1 a,* | |||||
RgCR/NOA | 10.0 ± 2.5 * | 2.5 ± 1.4 a,* | 0.2 ± 0.03 * | 20.5 ± 5.5 a,* | |||||
RgTR7 | 7.4 ± 1.7 a | 2.6 ± 1.5 a,* | 0.3 ± 0.06 * | 23.1 ± 6.6 a,* | |||||
RgTR17 | 8.2 ± 1.2 a | 2.4 ± 0.9 a,* | 0.3 ± 0.06 * | 28.9 ± 7.7 a,* | |||||
Bioreactor cultures | |||||||||
Rosmarinic acid | Lithospermic Acid B | ||||||||
DCR | SH | DCR | SH | ||||||
Shoots regenerated from RgAR roots | na | 30.0 ± 3.2 a,b | na | 13.1 ± 1.7 a | |||||
RgAR roots | na | 5.6 ± 0.7 a,b | na | 0 | |||||
Shoots regenerated from RgTR17 roots | na | 11.6 ± 0.9 a,c | na | 3.9 ± 0.2 a | |||||
RgTR17 roots | 2.6 ± 0.2 a | 2.1 ± 0.1 a,c | 0.4 ± 0.01 | 0 | |||||
RgTR7 roots | 3.4 ± 0.3 a | na | 0 | na |
Shoot line | TPC (mg GAE/g DW) | FRAP (µM TE/g DW) | DPPH (Inhibition %) | |||||||||
Medium | ||||||||||||
DCR | DCR BAP | SH | SH BAP | DCR | DCR BAP | SH | SH BAP | DCR | DCR BAP | SH | SH BAP | |
RgS | na | 24.9 ± 8.8 a | na | na | na | 1.7 ± 0.2 | na | na | na | 76.3 ± 7.5 a,b | na | na |
RgAR | 53.5 ± 4.8 a | 34.7 ± 5.0 | 195.5 ± 27.2 a | 150.5 ± 27.2 a | 1.4 ± 0.1 | 0.3 ± 0.1 | 1.7 ± 0.3 | 1.6 ± 0.3 a | 57.5 ± 7.7 a | 56.0 ± 9.6 a,b | 43.6 ± 3.8 a,c | 73.0 ± 4.5 a |
RgCR/NOA | 46.4 ± 8.7 a,b | 33.7 ± 4.1 | 178.8 ± 27.2 b | 264.7 ± 32.8 a,b | 1.5 ± 0.2 | 0.3 ± 0.1 | 1.6 ± 0.4 | 2.3 ± 0.4 a,b | 28.8 ± 9.7 a | 72.7 ± 8.8 b,c | 58.7 ± 9.0 b,c | 73.0 ± 8.8 a |
RgTR7 | 50.3 ± 5.5 c | 36.9 ± 5.5 a | 174.9 ± 30.2 a,b | 187.7 ± 22.8 b,c | 1.4 ± 0.1 | 0.3 ± 0.1 | 1.6 ± 0.3 | 1.8 ± 0.2 b,c | 27.9 ± 6.7 a | 51.1 ± 17.2 a,c | 66.5 ± 9.6 a,b | 81.2 ± 8.5 a |
RgTR17 | 62.0 ± 5.3 a,b,c | 37.6 ± 4.9 a | 168.9 ± 16.8 | 177.9 ± 39.8 b,c | 1.5 ± 0.2 | 0.3 ± 0.1 | 1.5 ± 0.2 | 1.8 ± 0.4 a,b,c | 35.2 ± 3.6 a | 39.9 ± 13.7 a,b,c | 58.8 ± 4.5 a,b,c | 85.6 ± 4.9 a |
Root line | TPC (mg GAE/g DW) | FRAP (µM TE/g DW) | DPPH (inhibition %) | |||||||||
Medium | ||||||||||||
DCR | SH | DCR | SH | DCR | SH | |||||||
RgAR | 14.4 ± 2.5 a | 45.7 ± 8.1 | 0.5 ± 0.07 a | 0.9 ± 0.1 a | 87.4 ± 1.1 a | 38.2 ± 8.6 | ||||||
RgCR/NOA | 14.1 ± 0.7 b | 44.2 ± 8.1 | 0.5 ± 0.03 a | 0.9 ± 0.1 b | 86.8 ± 0.7 b | 44.6 ± 9.6 | ||||||
RgTR7 | 10.8 ± 2.9 | 37.1 ± 8.6 | 0.5 ± 0.1 a | 0.8 ± 0.1 a,b,c | 86.5 ± 1.2 | 36.1 ± 9.2 | ||||||
RgTR17 | 6.9 ± 0.9 a,b | 40.3 ± 9.5 | 0.3 ± 0.03 a | 0.9 ± 0.1 c | 83.8 ± 2.4 a,b | 32.8 ± 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sykłowska-Baranek, K.; Gaweł, M.; Kuźma, Ł.; Wileńska, B.; Kawka, M.; Jeziorek, M.; Graikou, K.; Chinou, I.; Szyszko, E.; Stępień, P.; et al. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules 2023, 28, 4880. https://doi.org/10.3390/molecules28124880
Sykłowska-Baranek K, Gaweł M, Kuźma Ł, Wileńska B, Kawka M, Jeziorek M, Graikou K, Chinou I, Szyszko E, Stępień P, et al. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules. 2023; 28(12):4880. https://doi.org/10.3390/molecules28124880
Chicago/Turabian StyleSykłowska-Baranek, Katarzyna, Małgorzata Gaweł, Łukasz Kuźma, Beata Wileńska, Mateusz Kawka, Małgorzata Jeziorek, Konstantia Graikou, Ioanna Chinou, Ewa Szyszko, Piotr Stępień, and et al. 2023. "Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production" Molecules 28, no. 12: 4880. https://doi.org/10.3390/molecules28124880
APA StyleSykłowska-Baranek, K., Gaweł, M., Kuźma, Ł., Wileńska, B., Kawka, M., Jeziorek, M., Graikou, K., Chinou, I., Szyszko, E., Stępień, P., Zakrzewski, P., & Pietrosiuk, A. (2023). Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules, 28(12), 4880. https://doi.org/10.3390/molecules28124880